Amax Exploration, Inc. Geothermal Library

UNITED STATES

CAL 12.01 12.01

DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

EReports . Officiated &

A COMPILATION OF DATA

FROM THE 1973

LONG VALLEY. CALIFORNIA, SEISMIC-REFRACTION

EXPERIMENT

by

David P. Hill and Stuart McHugh

U.S. GEOLOGICAL SURVEY

OPEN-FILE REPORT 75-581

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature.

A COMPILATION OF DATA FROM THE 1973

LONG VALLEY SEISMIC-REFRACTION EXPERIMENT

By David P. Hill and Stuart McHugh

CONTENTS

		Page
Introduction		2
Description of the survey	•	2
Presentation of the data		4
Acknowledgments		20
References		21

ILLUSTRATIONS

Figure	1.	Location map		3
	2.	Traveltime curves	for profile A-A'	18
	3.	Traveltime curves	for profile B-B'	19.

TABLES

Table	1.	Shotpoint	data		6
	2a.	Recording	site coordinates:	profile A-A'	7
	2ъ.	Recording	site coordinates:	profile B-B'	9.
	3a.	Distances	and traveltimes:	profile A-A'	11
	ЗЪ.	Distances	and traveltimes:	profile B-B'	15

APPENDIX

I.	Record sections	for shot points	on profile A-A'		22
II.	Record sections	for shot points	on profile B-B'	· · · ·	30

1

.= .

INTRODUCTION

In May 1973 a seismic-refraction survey was carried out across the Long Valley caldera in Mono County, California, as part of the U.S. Geological Survey's multi-disciplinary investigation of this geothermal resource area (see Muffler, 1976). The principle objective of the seismic-refraction survey was to define the P-wave velocity structure of the upper 5 to 10 km of the crust as a basis for a more complete understanding of the nature and development of what has been identified as the Long Valley resurgent caldron (Smith and Bailey, 1968; Bailey and others, 1976). This report presents the basic data obtained from the survey. An interpretation of these data is presented separately (Hill, 1976).

DESCRIPTION OF THE SURVEY

The survey consisted of two profiles crossing the caldera in roughly north and east directions. Locations of shotpoints and recording units along the two profiles A-A' and B-B' are shown in Figure 1 together with the outline of the caldera floor (Bailey and others, 1975) and 10 milligal gravity contours adapted from Pakiser and others (1960) and Kane and others (1976). The profiles intersect near the center of the caldera in Little Antelope Valley, and the shotpoint ANTELOPE is common to both profiles.

Data were recorded on 10 seismic-refraction units held in fixed positions along a given profile. Individual shots along the profile were fired at half-hour intervals. Recording unit K at the ANTELOPE shotpoint and units I and T at the east edge of the caldera were held in the same locations for all shots along both profiles.

Recording units are the standard 8-channel U.S. Geological Survey seismicrefraction trucks described by Warrick and others (1961). Each unit records the output of six vertical-component seismometers in a linear array 2.5 km long together with WWV and WWVB time signals. Two horizontal-component seismometers

Figure \mathbf{H} Location map sh to the outline showing shotpoints and he of the caldera floor recording units and 10 milligal with respect gravity contours

ω

provide a three-component station at one of the vertical component sites in the array.

Shot times were determined to within \pm 0.01 sec by recording the cap break and the output of an up-hole seismometer on two of the eight channels in an adjacent seismic-refraction unit or on a special three-channel shotpoint recorder. Because of an equipment malfunction, the shot time at SMOKEY could only be determined to within \pm 0.5 second. The shotpoint at HAMMIL proved to be inefficient and did not produce usable first arrivals on any of the recording units.

Locations of shotpoints and recording units were determined using U.S. Geological Survey 15' quadrangle topographic maps. Coordinates were read to the nearest 0.01', and the locations are judged to be accurated to within \pm 25 m. The positions of receivers within 2 km of the shotpoints were surveyed with a plane table and alidade; these relative shotpoint-receiver locations are good to within \pm 1 m. Elevations of shotpoints and receivers, which were also read from the 115' topographic maps, are judged to be accurate to within \pm 10 m.

PRESENTATION OF THE DATA

Shotpoint data (coordinates, elevation, shot time, and charge size) are summarized in Table 1. Coordinates, and elevations of the end points (seismometers 1 and 6) of the recording spreads for profiles A-A' and B-B' are given in Table 2a and 2b respectively. Shotpoint-receiver distances were computed from the coordinates using Richter's (1958) short-distance algorithm in a computer program. More accurate survey distances were substituted where available. These distances, together with traveltimes of the first energy from the shots along each profile are tabulated in Table 3a, b. The corresponding traveltime curves are plotted in Figures 2 and 3. The traveltime data in Table 3 and Figures 2 and 3 do not include elevation correlations.

Appendices I and II are collections of record sections for each of the shotpoints (except HAMMIL) forming profiles A-A' and B-B'. A record section for the HAMMIL shotpoint was not generated because of poor data quality. The record sections are presented in a reduced traveltime format, where the time axis, t, is related to the total traveltime, T,

$t = T - \Delta/6.0.$

Here \triangle is the absolute value of the shotpoint-receiver distance in km and 6.0 is the reducing velocity in km/sec. The sign convention used on the distance scale is such that negative distances indicate receivers to the west of shotpoints on profile A-A; and north of shotpoints on profile B-B'.

The record sections were computer-generated from magnetic tapes on which the data recorded in analog FM mode by each seismic-refraction unit was digitized at 100 samples per second. No filters or elevation corrections have been applied to the seismograms forming the record sections in the Appendix.

TABLE 1

Profile A-A'

Shot	Lat	Long	Elevation (m)	Time hr min sec	Shot Size (lbs)
				5/30/73	
Hammil	37°36.71'	118°23.92'	1380	22.00 0.32 PDT	3600
Deadman	37°43.61'	119°00.78'	2390	22 30 0.26	1800
Chidago	37°38.93'	118°31.25'	2040	23 00 0.42	3000
Smokey	37°41.72'	118°56.29'	2320	23 30 <u>+</u> 0.5	1200
•		·		5/31/73	
Watterson	37°39.16'	118°38.87'	2280	00 00 0.42	1800
Antelope 2	37°40.91'	118°52.68'	2200	00 30 0.35	600
Wilfred	37°40.85'	118°44.17'	2085	01 00 0.42	600
Alkali	37°40.59'	118°46.94'	2075	01 30 0.64	600

Profile B-B'

Shot	Lat	Long	Elevation (m)	Time hr min sec	Shot Size (1bs)
				5/23/73	
Mono	37°55.86'	118°56.30'	2080	22 00 1.58 PDT	2400
Convict	37°37.58'	118°50.13'	2160	22 30 0.40	1800
Sand	37°49.75'	118°56.17'	2440	23 00 0.72	1200
Antelope 1	37°40.91	118°52.68'	2200	23 30 0.22	1200
Alper	37°45.91'	118°56.15'	2205	00 ^h 00 ^m 0.36	600

6

.. .

TABLE	2	a
-------	---	---

Location of Recording Units: Profile A-A'

UNIT	LAT	LENG	ELEV(M)
U HFHFFFFFITITITIJJJJJJXKKKKKLLLLLPPPPPPPPPP	LAT 37 42.91 37 43.03 27 43.24 37 43.24 37 43.49 37 43.49 37 43.49 37 38.55 37 38.55 37 38.55 37 38.55 37 38.55 37 42.42 37 42.42 37 42.29 37 42.29 37 42.29 37 42.34 37 41.30 37 41.03 37 41.03 37 41.03 37 41.03 37 41.03 37 41.05 37 41.05 37 41.05 37 40.59 37 50.59 37 50.59 3	LCNG 118 59.30 118 39.30 118 39.35 119 0.20 119 0.50 119 0.50 119 1.8 41.35 119 42.55 119 42.55 118 42.55 118 42.55 118 42.61 118 57.63 118 57.63 118 57.63 118 57.63 118 57.63 118 57.63 118 52.95 118 52.95 118 52.95 118 52.95 118 52.95 118 52.95 118 51.64 118 51.65 118 51.65 118	ELEV(M) 2365 23689 238870 238870 238870 238870 238870 238870 233770 233770 233770 233770 233770 233770 233770 233770 233770 233770 233770 233770 233770 233770 233770 2337700 2337700 2337700 233770000000000
QE 3	37 40.40	119 54.01	2340
uz 4 05 5	37 46.90	113 54.34	2365
CE 6	37 40.87	118 34.68	2414

La

TABLE 2a Cont'd

UV IX	LAT	· LCHG	ELGV(M)
RE 1	37 40.27	113 43.85	2090
RF 2	37 40.54	113 44.07	2084
R 2 3	37 40.73	115 44.34	2684
· 98 4 -	37 40.94	118 44.55	2034
R5 5	37 41.12	118 44.80	2024
RE 6	37.41.42	112 45.08	2084
SE 1	37 41.12	L18 55.13	2438
55 2	37 41.35	113 55.35	2438
SE 3	37 41.00	118 55.47	2438
SE 4	37 41.83	118 55.60	2414
SF 5	37 42.08	112 55.73	2414
58 6	37 42.23	119 35.85	2365
7E 1	37 38.23	118 39.26	2304
TS 2	37 38.26	118 39.53	2267
TE 3	37 38.36	118 39.84	· 2243
7E 4	37 38.42	118 47.18	2231
TE 5	37 38.34	118 40.43	2188
73 6	37 38.34 .	118 40.75	2188

TABLE 25

Location of Recording Units: Profile B-B'

UNIT	LAT	LCNG	ELEV(M)
FN 1	37 49.74	118 56.08	2438
HN 2	37 49.43	118 56.05	2450
HN 3	37 49.15	118 55.96	2482
HN 4	37 48.92	118 55-78	2411
HN 5	······································		2401
	27 26 56		2170
	37 38 62	118 41.85	2145
10 2	37 39.59	118 42.19	2145
IN 4	37 38.61	118 42.55	2133
IN 5	37 38.51	118 42.81	2121
IN E	37 38.43	118 43.15	2097
JN I	37 46.72	118 36.48	2365
JN 2	37 46.52	113 56.55	2340
JN 3	37 46.51	118 56.78	2310
JN 4	37 46.36		2201
	27 45 32	118 55-18	2242
Sh C	37 41.24	118 52,14	2218
KN 2	37 41.02	118 52 25	2218
KN 3	37 46.25	113 52.41	2218
KN 4	37 41.82	118 32.69	2194
KN 5	37 40.90	118 53.03	2218
KN 6	37 42.00	118 53-08	2243
LNI	37 40.48		2201
LN 2	37 46.23	119 51 400	2292
	37 30.74	119 51.65	2267
	37 39,49	118 51.58	2267
LN 6	37 39.31	118 51.32	2194
PN 1	37 44+94	118 55.85	2218
PN 2	37 44.71	118 55.95	2267
PN 3	37 44.46	118 5ć.00	2292
PN 4	37 44.35	118 56.25	2116
PN 5	31 44.31	116 20.02 116 27 76	2340
PA C	31 44+13 37 37 77	118 50.40	2170
	37 37.05	118 30.53	2154
CN 3	37 36.81	118 50.70	2218
CN 4	37 36.54	118 50.90	2267
QN 5	37 36.40	118 50.90	2292
CN 6	37 36.15	118 51.05	2301

9

.=

TABLE 25, Cont'd

UN IT	LAT	LCNG	SLEV(M)
.			221/
RU T	31 42.02	118 54.05	2310
RN 2	31 42.52	113 23.84	2316
R.N. 3	37 42.25	118 53.72	2316
RN 4	37 42.)2	118 53.54	2292
RN 5	37 41.86	118 53.35	2267
RN 6	37 41.71	118 53.12	2243
SN 1	37 38.70	118 50.40	2157
SN 2	37 38.40	118 50.40	2170
SN 3	37 38.13	118 30.35	2170
SN 4	37 37.93	118 50.30	2157
SN 5	37 37.65	118 5).25	2157
SN 6	37 37.40	118 50.29	2157
TN 1	37 38.23	118 39.26	2304
TN 2	37 38.26	118 39.55	2267
TN 3	37 38.36	118 39.84	2243
TN 4	37 38.42	118 40.18	2231
TN 'S	37 39.34	113 40.45	2182
TN 6	37 38.34	118 40.75	2168

TABLE 3a

Distances and Traveltimes: Profile A-A'

DEACHAN		•	SMOKEY		
UNIT	DISTANCE (KF)	TRAVEL TIME (SEC)	UNIT	DISTANCE (KN)	TRAVEL TIME (SEC)
HF 6	0.22	0.16	HE 6	-7.39	2.27
HE 5	0.56	0.37	HE 4	-6.47	2. Ld
HE 4	1.01	. 0. 33	HE 3	-5.94	د ۱ د ا
HE 3	1.53	0.64	FE 2	-5.43	ತ, ರೆಟೆ
HE I	2.53	1.05	HE 1	-4.94	ذ ل م ک
JE 6	3.68	2.05	JE 6	-3.31	1.39
JE 5	4.11	2.20	4 JE 5	-3.42	1.50
JE 4	4.54	2.50	JE 4	-2.97	1.50
JE 3	4.55	2.34	JE 3	-2.54	1.40
JE 2	5.12	2.57	JĘ 2	-2.36	1.30
JE 1	5.50	2.87	JE l	-2.10	1.25
SE 6	7.65	2.25	SE 3	1.23	0.40
SE 5	7.94	. 2.28	SE 2	1.54	0.28
SE 4	8.25	2.33	QE 6	2.84	1.25
Sē 3	3.64	2.30	QE 5	3.24	4.54
SĒ 2	9.01	2.40	QE 4	3.64	1.42
38 1	9.43	2.45	QE 3	4+03	1.51
CE 6	10.30	2.71	QEZ	4.40	1.03
QE 5	10.71	2.77	QE 1	4.99	1.70
CF 4	11.10	2.19	KE 6	4.80	1.70
GE 3	11.48	- 2.49		5.10	1 79
7E 2	11.93	2.95		5.60	1 .13
CE L	12.46	2.99		6 70	2.06
KE 6	12.22	2.90		6 6 90	2.14
KE 5	12.52	2.31		7.42	2.25
KE 4	13.02	2 04		7.89	2.35
KE 3	13.40	3.00		8.32	2.44
KE Z	13.30	3 203		8-80	2.51
	13.45	3-24	48 8		
	14.15	3.28			· .
	14.64	3.55			
	15.10	3.45			•
	15.54	3.54	•		
LE 1	16.04	3.62			
PE 6	21.52	4.70			
PE-4	21.50	4.76	-		
PE 3	21.58	4.81			
PE 2	21.71	4.37			
PE 1	21.84	4.95			
RE 1	23.43	5.29			
RE 2	23.93	5.34			
RE 3	24.36	5.40			
RE 4	24.74	5.43			
RE 5	25.21	5.49			
RE 6	25.24	2.22			•
- IE 6	27.63	2 • 1 2			
. 18 4	28.35	2.01 5.93	•		
	20.20	2004 5_24			
	27.30	5.02			
12 L 72 4	27.67	5,99			
15 0	31 44	944			
	31,77	6-17			
· · · ·		6-22			
12 J	32.643	0			
30 Z 78 1	33,16	6. 19			
1 L X	JJ 8 6 4				

ANTELOPE 2

ALKALI

.

UNIT	DISTANCE (KM)	TRAVEL TIME (SEC)	UNIT	DISTANCE (KF)	TRAVEL TIME (SEC)
45 6	-12.85	2.98	HE 6	-21.06	4.72
NE 5	-12.29	2.98	HE 5	-20.60	4.31
HEA	-11.92	2. 97	HE 4	-20.13	4.70
HE 3	-11,39	2.94	HE 3	-19.60	4.72
HE 2	-10.94	2.17	HE 2	-19.17	4.06
HE 1	-10.41	2.72	HE L	-18.67	4 • JQ
JE 6	-9.30	2.57	JE 6	-17.60	4.+1
JE 5	-8.93	2.49	JE 5	-17.27	4. 34
JE 4	-8.47	2.+3	JE 4	-16.82	4.28
JE 3	-8.04	2.26	JE 3	-16.37	4.11
JE Z	-7.79	2.24	JE 2	-16.07	4.10
JE 1	-7.42	2.19	JE 1	-15.64	4.06
SE 6	-5.31	1.70	SE 6	-13.47	3.70
SE 5	-4.58	1.73	SE 5	-13.21	3-11
SE 4	-4.62	2ذ م ا	SE 4	-12.94	3.34
SE 3	-4.30	1.47	SE 3	-12.88	3.31
SE 2	-4.01	1.41	SE 2	-12.44	3 • 47
SE 1	-3.70	1.41	SE 1	-12.15	3 36
QE 6	-2.94	1.17	GE Ó	-11.39	. 3. 20 3. 21
QE 5	-2.44	1.04	QE 5	-10.89	2+41
QE 4	-2.30	0.93	QE 4	-10.69	3.10
EQ 3	-2.09	0.85	· 45 3	-10.40	
QE 2	-1.72	0.72			2.30
QF 1	-1.40	0.40	QE I	-7.43	2.00
KE 6	-0.75	0.37		-7.421	2.69
KE 5	-0.45	0.26		-3 44	2.50
XE 4	-0.28	0.17		-7-88	2.49
KE 3	0.58	0.29		-7.89	2.52
KE 2	0.87	0.37		-7.70	2.49
KE L	1.12	0.82		-7.21	2.41
LE 0	1.30		1 5	-7.66	2.37
	1.03	0.35		-0.49	2.43
	2.14	. 0.95	18 3	-6-02	2.10
	2.037	1.15		-5.57	1.97
	3 40	1.25	LE I	-5.10	1.39
	8.67	2,50	PE 6	-1.46	-0-35
05 5	8.69	2,51	PE 5	-1.00	0. 54
PE 4	8.78	2.59	PE 4	-0.57	0.36
9F 3	8,95	2.04	PE 3	0.50	0.45
PE 2	9.19	2.70	PE 2	0.86	0.68
PE 1	9.43	2.71	PEL	1.31	0.90
RE 1	11.21	3.48	RE 1	3.14	1.74
RE 2	11.59	3.41	RE 2	3.30	1.77
RE 3	11.55	5. je	RE 3	3.57	1.89
RE 4	12.27	3.33	RE 4	3.83	Led7
RE 5	12.67	. 3.31	RE 5	4.22	1.97
RE 6	13.04	3.29	RE 6	4.58	2.04
1E 6	14.75	3.45	IE 6	6.86	2 • 44
IE 5	15.18	3.50	15 5	/ • 19	2040 2 51
IE 4	15.43	3.55	15 4	1.44	2.20
IE 3	16.01	3.04	18 3	f •7L	2006
IE 2	16.53	3.67	18 2	0 • 4 1	2 70
IE 1	17.00	3.72			2.41
TE 6	18.18	3.86	IE 6		5 + 0 L 7 - 414
TE 5	18.60	3.94		10.41	2:07
TE 4	18.55	4.02	ትሮ ዓ ምም ዓ	11 73	ຊະອ⊽ 3 _ ປີສິ
TE 3	19.46	4-11	F2 3		3-15
TE Z	19.52	4.22	15 2	12 11	3.23
TE L	20.35	4 • 29			

.....

Ж	I	L	F	R	ED	
---	---	---	---	---	----	--

WATTERSON

UNIT	DISTANCE (KF)	TRAVEL TIME (SEC)	UNIT	DISTANCE (KM)	TRAVEL TIME (SEC)
HE 6	-24.92	5.50	SE 5	-25.37	5.62
HE 5	-24.46	5.49	QE 6	-23.46	4.95
HE 4	-24.00	5.48	QE 5	-22.58	4.83
HE 3	-23.47	5.43	GE 4	-22.13	4 4 4 9
HE 2	-23.05	5.40	19E 3	-22.40	4-50
HE L	-22.56	2.30	4E 2 0E 1	-21.41	4.48
JE 6	-21 .53		KE 6	-21.31	4.57
	=21.21	5.00	KE 5	-21.01	4.50
JE 3	-20.32	4.38	KE 2	-20.02	4.23
JE 2	-20.00	4. 33	XE 1	-19.85	4.21
JEL	-19.55	4.dl	LE 5	-19.16	4.07
SE 6	-17.37	4.40	LE 4		4+∎UZ 3. G7
SE 5	-17.15	4.43		$-10 \cdot 17$	
SE 4	-16.90	4.20		-17,25	3. 47
5E 3	-16.67	4.24	RF 1	-10.04	2.05
		4.19	RE 2	-9.44	2.49
35 6	-15.45	4.03	RE 3	-8.97	2.40
OF 5	-14.55	3.93	- RE 4	-8.55	2.33
GE 4	-14.77	3.84	RE 5	-8.06	2.27
QE 3	-14.48	3.76	35 6	-7.61	2.16
QE 2	-14.03	3.56	15 5	-5.92	1.46
QE L	-13.53	3.58		-5.00	1.33
KE 6	-13.26	3.49			1.22
KE S	-12.98	3 • 4 3 2 • 3 7	TF 1	-4-C4	1.09
KE 4		3.24	TE 6	-3.15	0. 33
	-11-92	3.26	TE 5	-2.78	0.75
NE 4	-11.70	3.23	TE 4	-2.36	0.68
LE 6	-11.24	3.10	TE 3	-2.06	0.34
LE 5	-11.00	· 3.11			
LE 4	-10.48	3.05			
LE 3	-10.00	3.91			
LF 2	-9.58	2.90			
	-9.12	2.04			
PE 6	-4.52	1.35			
PE 3	-3.91	1.78			
PE 3	-3.60	1.75			
PE 2	-3.32	1.01			
PE 1	-3.11	1.52			
RE 1	-1.70	0+75			
RE 2	-1.05	0.40			
RE 3	-0.58	0.30			
	0.59	0.00			•
	1.17	0.90			
TE 6	4.72	1.39			·
· 1E 5	4.80	1.80			
IE 4	4.78	1.07	•		
IE 2	5.10	1.89			
IE 2	5.50	1.90			
IE-I	5.78	1 + 73			
TE 6	6.85	2 10			
TE 5	(.LÖ 7 10	2-14			
ेट 4 ४ड २	1 + 37 7 - 56	2.24			
	8_11	2.34			
78 1	8.70	2.++1			

3.4

CHICAGO

UNIT	DISTANCE	TRAVEL TIME
•	(KP)	(250)
QE 5	-33.85	5. 34
OF 4	-33.62	6.75
QE 3	-33.30	6.63
05 2	-32.84	6.51
451	-32.31	ú. 44
KE 6	-32.18	6.54
KE 5	-31.89	6.29
XE 4	-31.40	6.39
KE 3	-30,85	6.12
KE 2	-30,87	6.08
KE 1	-30.68	6.04 '
LE 6	-30+19	6.02
LE 5	-29.58	5.96
LE 4	-29.46	5.91
LE 3	-28.99	5.38
LE 2	-28.57	5.83
PE 6	-22.85	4.99
PE 4	-22.65	4.91
PE 3	-22.49	4.36
PE 2	-22.30	4.93
IE 6	-17.24	3.53
IE 5	-16.73	さ。 45
1E 4	-16.34	3.34.
18 3	-15.81	3.25
1E 2	-15.32	3.14
IEL	-14.52	3.04
TE 6	-13.73	2.04
TE 5	-13.29	2.77
TE 4	-12.88	2.09
TE 3	-12.39	2.63
TE 3	-11.58	2.58
TE 1	-11.57	2.49

TABLE 3b

Distances and Traveltimes: Profile B-B'

MCAC

5 4 N O

UNIT	CISTANCE	TRAVEL TIME	LNIT	CISTANCE	TRAVEL TIME
	(KM)	(380)		(K,M)	(SEC)
		• ()	1.31 1	. 13	6.08
FN 1	11.33	2.60		0 + L J 13 4 2	6.35
FN 2	11.50	2.61		0.402	r 43
HN 3	12.42	2.75		1 4 4	6.56
HN 4	12.86	2.32	HIN 4		C. 64
HN 5	13.26	2.91		2 30	C 68
hil é	13.70	2.96	PN C	6 • J'I 6 • 4 7	1 45
JN 1	16.91	3.55	JK I	3.62	1.54
JN 2	17.28	3.62	JN 2	a.uu	
E NL	17.31	3.62	JN 3	a.uo	1.54
JM 4	17.58	3.64	JN 4	0.30	1.50
JN 5	17.94	3.67	JN 5	6.65	1 4 7
JN 6	18.39	3.71	J N E	7.69	1.01
PN 1	20.21	4.23	FN 1	8.91	1
FN 2	20.63	4.28	FN 2	5+33	2.20
FN 3	21.09	4.35	FN 3	9 • 79	2.13
PN 5	21.37	4.47	FN 5	13.29	2.38
PN 6	21.68	4.57	FN 6	10.41	2.42
RN 1	2471	4.42	8N 1	13.55	3.45
HN 2	24.94	5.50	RN 2	12.81	2.44
RN 3	25.46	5.49	RN 3	- 14.33	3.49
EN S	26.92	5.53	8N 4	14.81	3.48
KA I	27.63	5.65	PN 5	15.17	3.53
KN 2	27.39	5.64	KN 1	16.74	3.60
KX 4	28.44	5.66	KN 2	17.05	:.62
KN 5	78,19	5.71	KN 4	17.40	3.73
KN A	28-03	5.74	KN 5	17.11	3.80
LNE 1	29,13	5.78	KN 6	16.93	3.80
	29.43		LN I	18.19	3.78
	30.10	5,89	LN 2.	18.71	3.85
1 21 5	31.67	6.74	LN 3	19.13	3.91
	31 48	· 6.11	LN 5	20.14	. 4.04
	22 91	6.46	LN É	20.58	4.09
2-1 L CAL 7	37.44	6-50	SN 3	22.13	4.80
SN 2.	33 94	6.65	SN 2	22.64	4.60
3N 2	22.077	(10)	IN I	29.89	5.88
".			TN 2	29.57	5.82
•			- TN 7	29.12	5.92
			TN 4	28.72	5.77
				28.59	5.78
				28-36	5.76
				32 .73	6.31
			10 L TM 2	32,37	6.24
			111 G The 7		6-18
			TN J	31.48	6-13
			11V 4 Th 6	21.070	4.03
			IN D	21+47	6.00
			IN O	34.59	

TABLE 3b, Cont'd

ALPER

ANTELOPE 1

UNIT	CISIANCE	TRAVEL TIME	GNIT	DISTANCE	TRANEL TIME (SUC)
	((**)	17 26 7			
FN 1	-7:09	1.68	HN 1	-17.08	3.61
HN 2	-6.51	1.57 '	HN 2	-16.52	3.55
	-6 -00	1,50	HN 3	-15.99	3.48
	-5-50	1.46	HN 4	-15.50	3.39
A 144	-4,72	1.30	. FN 5	-15.13	3.34
.IN 1	-1.53	C.62	HN 6	-14.81	3.28
	-1-27	C. 52	JN 1	-12.11	2.89
IN 3	-1.45	C.53	5 KL	-11.83	2.83
JN 4	-1-02	C.43	JN 3	-11.93	2.80
JN 5	-0.54	C.29	JN 4	-11.58	2.74
.IN 6	-0.05	C. J3	JN 5	-11.10	2.69
GN 1	1.85	6.63	JN 6	-10.60	2.60
EN 2	2.24	C.77	PN 1	- 6.79	2.34
PN 3	2.69	¢.90	FN 2	-8.52	2.33
EN L	2.89	C.89	FN 3	-d.13	2.32
EN 5	3.04	1.05	SN 1	-3.75	1.33
EN A	3,43	1.14	RN 2	-3.43	1.16
SA I	6-82	2.23	AN 3	-2.91	1.04
GN 2	7.13	2.35	FN 4	-2.+l	.0.49
9N 3	7.65	2,36	RN 5	-2.32	C.74
9N 4	8.15	2,40	8N 6	-1.62	C-63
GN 4	8,55	2.56	KN 1	-1.02	C.51
RN A	8,95	2.55	KN 2	-0.61	6.30
KN 6	10.22	2.70	KN 3	0.40	C.22
KN 5	10.44	2.73	KN 4	0.01	C.02
KN 4	10.81	2.77	KN 6	-0.75	C.37
XA 3	14.94	2.70	LN 1	1.22	. 0.53
KN 2	10.61	2.74	LN Z	1.72	C.66
KN 1	10.40	2.73	LN 3	2.20	C.77
LN 1	11.71	2.37	. LN 5	3.08	C.98
LN 2	12.24	2.91	LN É	3.57	1.07
LN 3	12.72	2.98	SN 1	5.29	1.56
LN 5	13.64	3.11	SN 2	5.73	1.60
LN 6	14.12	3.17	SN 3	6.18	1.e74
SN 1	15,79	2.53	SN 5	7.01	1.91
SN 2	16.26	3.58	CN 2	7.81	2.06
SN 3	16.73	3.69	CN 3	3.12	2.05
SN 5	17.57	2.75	CN 4	8.32	2.12
IN 6	23.59	5.02	CN 6	9.13	2.17
IN 5	23.51	5.05	IN 6	14.75	3.46
IN 4	24.12	5.07	IN 5	15.18	-3-49 -
IN 3	24.58	5.12	IN 4	15.49	3.50
IN 2	25.07	5.13	IN 3	16.01	2.64
IN 1	25.46	5.15	IN 2	16.53	3.68
TN E	26.62	5.23	- IN 1	17.00	3.69
TN 5	26.99	5.29	TN 6	18.18	3.85
TN 4	27.26	5.31	TN 5	18.60	3.93
TN 3	27.74	£.43	TN 4	18.95	4.04
TN 2	28.21	5.45	TN 2	19.92	4.21
TN I	28.60	5.43	TN 1	20.34	4+25

CENVICT

UNIT	CISTANCE	TPAVEL TIME
	(K2)	(SEC)
	10.11	4.20
JN I	-19.11	4.20
JN Z	-18.84	4.11
JN 3	-18.99	4 • 1 1
JN 4	-18.58	4.01
JN 5	-18.10	3.97 *
JN E	-17.60	2.97
SA 3	-10-12	2+63
ON 5	-9-62	2.50
0 1 2	-4.52	2.28
NN 2	-7.47	1,99
	- 7 19	1.93
KN Z	-1.13	1 04
KN 3	-6.83	1.77
LN 2	-5.54	1.13
LN 3	-9.05	1.61
LN 5	-4 - 13	1.44
LN 6	-3.65	1.33
SN 1	-1.57	C.98
SN 3	-1.07	6.54
SN 5	-0.22	6.13
CN 2	1.14	e.72
CN 3	1.15	(.90
CN A	2.09	1.06
SN 4	2 400	1.11
CN D	2.040	1.20

зb

Figure 2. Traveltime curves along profile A-A'. Circles and dots are first arrivals for waves propagating to the left and right respectively. (X) and (+) are later arrivals propagating to the left and right respectively.

1_

Fg 3

ACKNOWLEDGMENTS

We are grateful to Wayne Jackson and Gene Taylor for their invaluable help with the logistics of the field program and to Glen Melosh for his assistance in compiling some of the data. We are particularly grateful to L. C. Pakiser for his encouragement and interest in all phase of the experiment.

REFERENCES

- Bailey, R. A., G. B. Dalrymple, and M. A. Lanphere, Volcanism, 1976, structure and geochronology of Long Valley Caldera, Mono County, California, J. Geophys. Res., (in press).
- Hill, D. P., 1976, Structure of Long Valley caldera, California, from a seismic-refraction experiment, <u>J. Geophys. Res</u>., (in press).
- Kane, M. F., R. L. Brace, and D. R. Mabey, 1976, Gravity and magnetic anomalies *v.&l.mo.5*, ウ.745-753 in Long Valley, California, <u>J. Geophys. Res</u>., (in press).
- Muffler, L. J. P., 1976, Geothermal investigations of the U.S. Geological Survey in Long Valley, California, J. Geophys. Res., (in press).
- Pakiser, L. C., F. Press, and M. F. Kane, 1960, Geophysical investigation of Mono Basin, California, Geol. Soc. Amer. Bull., 71, 415-447.

Richter, C. F., 1958, <u>Elementary Seismology</u>, Freeman, San Francisco, 768 p. Smith, R. L., and R. A. Bailey, 1968, Resurgent cauldrons, <u>Geol. Soc. Amer</u>. <u>Mem. 116</u>, 613-662.

Warrick, R. E., D. B. Hoover, W. H. Jackson, L. C. Pakiser, and J. C. Roller, 1961, The specification and testing of a seismic-refraction system for crustal studies, <u>Geophysics</u>, <u>26</u>, 820-824.

APPENDIX I

.

Record Sections for Profile A-A'

-7

() - ∇ /e'0 (2EC)

APPENDIX II

Record Sections for Profile B-B'

()) - ∇ \eⁱo (SEC)

(CSS) 0.3\Δ - T

4-19**4** 6 - -

() - ∇ \6.0 (SEC)