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I. PROGRAM SUMMARY 

1.1 PROGRAM OBJECTIVES 

Geophysical exploration, as it is most commonly practiced, 

involves the measurement of several different parameters on the 

earth's surface and, at most, a semi-quantitative joint inter

pretation of the resulting information for suhsurface structure. 

While this traditional approach has met with considerable suc

cess, by not simultaneously modeling the different data sets it 

fails to take advantage of all the available information, in 

particular the different spatial dependencies and tradeoffs 

inherent in the field measurements. 

In an attempt to improve on the traditional approach to 

exploration and in view of recent advances in geophysical 

modeling procedures, namely general linear inversion, we under

took a program aimed at developing formal numerical modeling 

techniques that are applicable to combined geophysical data 

sets for defining the earth's near surface environment. Spe

cific objectives of this program involved the development of 

forward and generalized inverse modeling techniques and their 

application to data obtained in a geothermal region for reser

voir delineation and assessment. The results of this one-year 

effort point up the increased structural resolution afforded 

by this approach. 

The numerical modeling procedures that have been 

developed are generally applicable to a variety of geophysical 

measurements (i.e., gravity, magnetotelluric, teleseismic 

travel-times and local earthquake arrival times and amplitudes). 

Given a functional relationship between the different param

eters that are measured in the field, we are now in a position 

to carry out a simultaneous inversion of any number of geo

physical data sets. The strategy adopted during the first 

year of this program was to attempt a joint inversion using 
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two of the most commonly acquired data sets for which a func

tional relationship can be assumed; gravity and teleseismic 

travel-times. In this case the parameters of interest are 

6p, variations in density, and 6a, variations in slowness, 

where 6p = f{6a). The test region chosen for our initial 

modeling experiment is the Imperial Valley, California; an 

area of proven geothermal resources. 

1.2 PROGRAM STRUCTURE AND REPORT ORGANIZATION 

The research program consisted of five main steps: 

1. Acquisition and processing of teleseismic 

travel-time and gravity data for the Imperial 

Valley. 

2. Development and testing of forward modeling 

routines; procedures for calculating travel

times and the gravity field for various 

three.-dimensional velocity and density 

structures. 

3. Generation of a velocity and density model 

for the near-surface sedimentary layers in 

the Imperial Valley and subtraction {stripping) 

of the contributions due to the sediments from 

the seismic and gravity data sets. 

4. Development of joint inversion techniques 

and their application to combined teleseismic 

and gravity data for obtaining a three

dimensional geologically consistent model of 

the subsurface physical properties; density 

and compressional wave velocity. 
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5. Interpretation of the model in light of known 

geological and geothermal features. 

Steps 1 through 3 were carried out during the first 

nine months of this program and have been described in detail 

in a series of quarterly reports written under this contract 

(Savino, et al., 1976; Savino, et al., March 1977; Savino, 

et al., June 1977). For the sake of making this report self

contained, however, we will briefly summarize the most impor

tant results of these three steps in later sections. 

During the last three months of this program, our 

efforts concentrated on Steps 4 and 5. The numerical modeling 

procedures developed and results obtained in these areas form 

the bulk of this report and are described in Sections II and 

III, respectively. Our conclusions are enumerated in Section 

IV. For the benefit of those with only limited interest in 

the program details, we will summarize the most important 

results of the modeling experiment for the Imperial Valley 

in the remainder of this section. 

1.3 GEOLOGIC AND TECTONIC SETTING OF TEST REGION 

The region chosen for a proof-test of the numerical 

modeling techniques includes the southern portion of the 

physiographic province known as the Salton Basin (Figure 1). 

This basin is the surface expression of a deep, sediment

filled, structural trough, or rift valley, called the Salton 

Trough which is considered to be the landward extension of 

the Gulf of California. The trough encompasses the low-lying 

areas of the Colorado River delta region in Mexico and the 

Imperial Valley situated between the Peninsular Ranges of 

coastal Southern California to the west and the Chocolate 

Mountains to the east. 

The Gulf of California and the Salton Trough are areas 

of rapid tectonic deformation, where patterns of high seismic

ity and high heat flow, together with patterns of sedimentation 
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Figure 1. Map of the test region examined in this study. The 
major fault zones are given by the heavy solid and 
dashed lines. The geothermal areas (KGRA's) are as 
follows: SS = Salton Sea, B = Brawley, H = Heber, 
EM= East Mesa, D = Dunes, G = Glamis and CP = Cerro 
Prieto. The symbol ~ identifies volcanoes near the 
southeastern edge of the Salton Sea and Cerro Prieto. 
The features labeled FCM and SM are Fish Creek 
Mountain and Superstition Mountain, respectively. 
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and volcanicity, reflect a transition from the divergent plate 

boundary of the East Pacific Rise to the transform boundary 

represented by the San Andreas fault system (Wilson, 1965; 

Larson, et al., 1968; Atwater, 1970; Elders, et al., 1972). 

The formation of the Salton Trough is thought to be the result 

of a combination of tensional and right-lateral strike-slip 

movements associated with the opening of the Gulf of California. 

Elders, et al., (1972) have proposed a model in which the 

continental crust is being thinned beneath a deepening and 

widening rift. Dilation is accompanied by high heat flow and 

magmatism. The trough forms as successive sections of the 

crust are sliced off along strike-slip faults. These slices 

move northwest and are transferred from the North American to 

the Pacific plate. 

The tectonic pattern of the northern Gulf of California 

and Salton trough has many features of a simple system of 

transform faults connected by ridge segments (Lomnitz, et al., 

1970). Referring to Figure 1, several of the transform faults 
in this region (San Andreas-Sand Hills, Brawley, Imperial and 

San Jacinto) are seen as fairly straight features ending 

abruptly with neither geologic nor seismic evidence of con

tinuation, at regions which may be inferred to be spreading 

centers (i.e., ridge segments). Evidence for the spreading 

centers includes geothermal steam fields, young volcanic 

activity, and the occurrence of earthquake swarms. In par

ticular, both of the Known Geothermal Resource Areas (KGRA's) 

at Cerro Prieto and the Salton Buttes are located near the 

intersections of transform faults with a suspected ridge seg

ment (e.g., the KG~ at Cerro Prieto is located on a ridge 

segment between the San Jacinto and Imperial faults) . 

Several other KGRA's have been identified in the 

Imperial Valley (Figure 1) on the basis of heat flow measure

ments and gravity anomalies (Elders, et al., 1972). These 

include East Mesa, Glamis, Dunes, Heber and Brawley. In 
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contrast to Cerro Prieto and the Salton Buttes, however, there 

is no surface expression of the thermal anomalies at these 

other KGRA's; such as warm springs, mud pots and quaternary 

volcanoes. Thus, one of the objectives of our modeling experi

ment was to use teleseismic travel-times and gravity observa

tions to define the subsurface three-dimensional density and 

velocity structure of this region in an attempt to identify the 

sources of the geothermal reservoirs. 

1.4 DESCRIPTION OF RESULTS 

The teleseismic data base compiled for this experiment 

was obtained from seismograms for worldwide earthquakes re

corded at one or more of the 16 stations of the USGS-Caltech 

network operating in the Imperial Valley. Several thousand 

time picks were made for different portions of the P waves 

from 182 events that occurred during the three year interval 

April 1973 to July 1976. The data were grouped according to 

event source region, corrected for estimates of delays due 

to the sediment stack in the Imperial Valley and zero-meaned 

to minimize contributions from deep structures (i.e., >50 km). 

The gravity data were supplied by Professor Shawn 

Biehler of the University of California at Riverside. This 

data base consisted of 13,715 observations, with complete 

Bouguer corrections, for 'the region 32° to 34°N, 114° to ll7°W. 

These data were fit with a quadratic surface and interpolated 

to a regular grid. Subsequent processing included various 

filtering, stripping for the effects of the sedimentary layers 

and decimation. An important last step in the processing pro

cedure was to rotate the observed travel-time and gravity data 

sets by 45 degrees into a coordinate system more nearly aligned 

with the prevailing northwest trend of geologic features in the 

test region. The configuration of the seismic array, the 

spatial coverage of the gravity observations and the processing 

of both data sets are described in detail in Section III. 

6 



A simultaneous inversion of the combined travel-time 

and gravity data was carried out. In this calculation we 

modeled the crust and topmost mantle in the region shown in 

Figure 1 as a four layer cell model, each layer consisting 

of an eight by nine grid of cells. Lateral variations in 

density and slowness were assumed to exist only between 6 and 

33 km, except for the sedimentary section in the upper 6 km 

for which both the travel-time delays and gravity data were 

corrected. A linear density-velocity relationship (Press 

and Biehler, 1964) was assumed for each layer in the inversion. 

One of the more important points concluded from the 

inversion calculation was that lateral density and velocity 

contrasts needed to fit the observed data were quite large: 

greater than 0.3 gm/cc and 0.75 km/s, respectively. These 

large contrasts were assumed to be due to the difference be

tween crust and mantle materials. Thus, the most likely expla

nation for most of the observed gravity and travel-time anomalies 

was considered to be lateral variations in crustal thickness. 

Our interpretation of the final inversion model in 

terms of crustal thickness beneath the Imperial Valley region 

is shown in Figure 2. Figure 2a is a contour plot of crustal 

thickness with contour levels indicated every 1.5 km. In 

Figure 2b the increment between contours is increased to 6 km 

to allow for plotting and comparing the major geologic fea

tures and geothermal areas with the model. One of the most 

significant features to be noted in Figure 2 is the location 

of all the geothermal areas near regions of relatively thin 

crust or upwelling of high temperature mantle material. In 

particular, the Salton Sea KGRA, one of the largest geother

mal fields in the Imperial Valley, is situated over a region 

of pronounced crustal thinning, of the order of 10 km. This is 

consistent with the hypothesis that the Salton Sea KGRA is asso

ciated with an active spreading center. While our model also 

predicts substantial mantle upwelling under Cerro Prieto, the 

location of a presumed spreading center, the lack of seismic 
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Figure 2a. Crustal thickness map obtained from final inversion 
model. The contour increment is 1.5 km with 
extreme levels of F= 7.5 km and W = 33 km. The 
uncertainty in the maximum and minimum crustal 
thickness resulting from a reasonable range of 
values for crust and mantle densities is given in 
Table 3, Section III. The straight line connecting 
points 1, 2 and 3 is a profile from Hill, et al., 
1975b along which the maximum depths of earthquakes 
were observed to vary from 15 km between points 1 
and 2 to about 8 km near point 3. The geographical 
area covered in this figure is the same as in 
Figure 1. 
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and gravity data results in very low resolving power in this 

region of the model. These regions of thin crust contrast 

strongly with the Peninsular Ranges and Chocolate Mountain 

areas where the crust thickens to values in excess of 30 km. 

Before continuing we must mention the uncertainty 

associated with assigning actual values of crustal thickness 

at any specific location in the model. This uncertainty 

arises from several possible factors ranging from an inappro

priate value assumed for the crust-mantle density contrast 

to the occurrence of near-surface localized zones of high 

density sediments and/or igneous intrusions (Biehler, (1971). 

In light of these possibilities, the amount of crustal 

thinning predicted by this model under the Salton Sea KGRA is 

considered to be a maximum estimate. The presence of several 

high density rhyolite domes and the observed occurrence of 

cementation of sedimertts in this region (Elders, et al., 1972) 

would be mapped into the crustal thickness model as a region 

of exaggerated thinning. These points are treated in more 

detail in Section III, including quantitative estimates of 

their effects. 

Other significant correlations that can be seen in 

Figure 2 are (1) the location of several of the major fault 

systems (e.g., the Imperial, Sand Hills and San Jacinto) 

over regions of large gradients in crustal thickness, and 

(2) the intrusion of relatively thick crust well into the 

valley under the Fish Creek and Superstition Mountains. It is 

also interesting to note that sites of relatively frequent 

seismic swarm activity, and no known history of major earth

quakes (M ~ 6.0; Richter, 1958), are located over regions of 

relatively thin crust, such as north of Brawley and near the 

southeastern edge of the Salton Sea (Hill, et al., 1975a; Hill, 

1977). Swarm type activity has also been observed at the East 

Mesa KGRA (Combs and Hadley, 1977). 

Hill, et al., 1975b reported a systematic decrease in 

the focal depths of earthquakes proceeding northwest along 
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the Imperial and Brawley faults between the points marked 1 

and 3 in Figure 2. From 1 to 2 the maximum focal depths of 

earthquakes were computed to be about 15 km, while at 3 the 

event focal depths, at least during the time period of their 

study, did not exceed 7 to 8 km. While a possible systematic 

variation in the crustal velocity model used to locate these 

events might explain the variation in focal depths, the manner 

in which the event depths and crustal thickness correlate, in 

conjunction with the spatial variation in the mode of stress 

release in this region, suggests an alternate explanation. 

Namely, the relatively thin and presumably hot crust near the 

Salton Sea cannot support the storing of stress levels suffi

ciently large to initiate and dynamically maintain rupture 

conditions over fault dimensions corresponding to a large 

earthquake. On the other hand, along the Imperial fault where 

the crust is predicted to be thicker and correspondingly 

cooler, large earthquakes can and do occur. 

The crustal thickness model in Figure 2, defined over 

the 72 cell centers of the model, was fit with a quadratic 

surface. This resulted in a regular grid of more than 4000 

points with a spacing of 2.5 km. These points were plotted 

with different perspectives in three-dimensional hidden line 

form. Figure 3a is a three-dimensional plot of upper 

mantle topography beneath the Imperial Valley. The observer 

is looking down at the valley from a platform 600 km high over 

a point in the Pacific Ocean approximately 1000 km due south 

of the center of the model. The model center is located on 

the x-y plane at Z = 50 km at a point 15 km due south of 

Brawley. Figure 3b is a view from the north at distances 
'I> 

from the model the same as in Figure 3a. The most notable 

feature on either of these figures is the substantial mantle 

upwelling under the Salton Sea. One can also clearly iden

tify two southeast to northwest trending regions of crustal 

thinning which are the approximate locations of the remaining 

Imperial Valley KGRA's. 
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The acid test for the applicability of an inversion 
model is how well that model predicts observed data. In Figure 

4 we compare the predicted and observed gravity and travel-time 

data sets. Figure 4a compares the gravity data and, as can be 

seen, the fit is quite good. In fact, over most of the region 

the predicted and observed data agree to within 4 milligals 

as compared to a total observed anomaly of 60 milligals. In 

the case of the travel-time data (Figure 4b) the inversion 

model accounts for most of the observed anomalies, both in 

magnitude and azimuthal dependence. The scatter inherent in 
these travel-time data, however, precludes the possibility 

of obtaining a fit to the details of the azimuthal variation. 

1.5 THE METHOD AS AN EXPLORATION TOOL 

The results obtained from this numerical modeling 

experiment point up the effectiveness of a simultaneous inver

sion of different geophysical data sets for deducing earth 
structure. A formal inversion yields an optimal numerical 

model of the subsurface and a description of its uniqueness, 
which in turn provides a measure of the resolving power of 

the inverted data. An important conclusion from the Imperial 

Valley study was that the resolving power of a combined 

gravity/travel-time data set exceeds their individuaJ resolving 

power. Inverted separately, travel-times from near vertical 

ray paths and gravity data are somewhat ambiguous in deter
mining the depth of an anomaly. In a joint inversion, however, 

gravity and travel-times complement each other and remove much 

of this ambiguity because their sensitivity to depth varia

tions is different. 

It should be noted that the full potential of this 

modeling procedure was not realized in this study because of 
the less than optimal spatial configuration and teleseismic 

event recording capabilities of the Imperial Valley array. 
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Figure 4b. Comparison of observed relative travel-time residuals (left) and residuals 
predicted by the final inversion model (right). Each of the small solid 
circles represents the location of a seismic station. Residuals are plotted 
at each event-station azimuth as lines radiating outward (residuals > 0) or 
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More optimal seismic arrays, in terms of station spacing and 

signal-to-noise ratios for teleseismic events, have been, or 

are being, operated in other geothermal regions (e.g., Coso 

Hot Springs, Yellowstone) and we strongly recommend the 

application of the modeling techniques developed under this 

program to these regions. 

The incorporation of additional geophysical data sets 

is the next logical step in the further development of the 

modeling technique. For example, a substantial increase in 

resolving power could be realized by the addition of local 

earthquake data. This would provide signals with shorter 

wavelengths and shallower angles of incidence than teleseismic 

signals, thus providing additional independent information 

about the subsurface velocity structure. The full power of 

the method will be realized with the development of a capa

bility for inverting multiple data sets such as gravity, 

travel-time, surface wave, electromagnetic and heat flow. 

This would provide a completely integrated interpretation of 

the earth's near-surface structure. 
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II. TECHNICAL DISCUSSION 

2.1 STATEMENT OF THE PROBLEM 

As applied in geophysics, inversion is a method for 

inferring the earth's physical structure from a set of experi

mental data. The primary aim of inversion is to derive an 

optimal model of the subsurface - a model that is consistent 

with all available geophysical data and that conforms to our 

prior geophysical and geological ideas of what the subsurface 

is like. In a "joint" or "combined" inversion, data from one 

or more geophysical surveys are interpreted simultaneously and 

systematically in terms of both an optimal model and a descrip

tion of its uniqueness. In the Imperial Valley study, a com

bined set of gravity and teleseismic P-wave travel-time data 

were inverted to infer the density and compressional velocity 

in the upper 33 km beneath the valley. This chapter describes 

the techniques used to solve this inverse problem. 

A set of experimental data and a set of parameters that 

describe a model of the earth can be denoted by the vectors d 

and p, respectively, and in general are related by 

(1) 

where A is a vector of "data functionals" that describe theo

retically the ideal experiment attempted in measuring d, and 

where e is a vector of experimental errors. The evaluation of 

A at a model, known as "forward modeling," produces the data 

vector we predict would be measured in the absence of experi

mental error on an "earth" described by that model • 
• 

The stochastic interpretation of Equation (1) is that 

d is a statistical estimate for A(~) and e is the error of 

estimation. The "forward problem" can be described as the 

problem of finding d for a given model ~' assuming ~ is zero. 
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We must know how to solve this problem - namely, how to eval

uate the data functionals - before the inverse problem can be 
solved. In the "inverse problem" d is given, p is unknown, 

and e is not zero. A solution to the inverse problem is an 

optimal estimate for p, derived as a function of d and a 

description of its accuracy. This description normally takes 

the form of an expected value and a variance of ~, denoted 

E(~) and Var(e}, respectively. 

2.2 FORWARD MODELING 

The gravity and travel-time forward problems were solved 

for three-dimensional earth models composed of N homogeneous 

rectangular cells of arbitrary density and velocity. A model 

consists of a number of layers between the earth's surface and 

a finite depth Zmax· Each layer contains a two-dimensional 

grid of cells, where the cells at the outer edges can be 

arbitrarily large in order to simulate a model of infinite 

lateral extent. 

A particular earth structure is uniquely defined by the 

X, Y and Z coordinates of the cell interfaces, an N by 1 den

sity vector p, and an N by 1 slowness (reciprocal velocity} 

vector a. Each component of £ or a is a value of density or 
slowness in a cell. 

A three-dimensional cell-model can describe a wide variety 

of earth structures. Any discrete model parameterization, 

though, has inherent limitations on its ability to describe all 

possible structures. The cell-model does not describe density 

and slowness variations within the boundaries of a cell nor 
density and slowness below Z • However, these limitations max 
were accounted for by our data processing procedure and inver-

sion algorithm. In addition, it was found that many non
homogeneous-cell structures could be accurately modeled by 

"volume weighted" homogeneous cells (Savino, ~ ~., 1977}. 
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The gravity/travel-time inverse problem was posed with 

density and slowness as unknown parameters and with cell 

coordinates as known. The gravity and travel-time data func

tionals are therefore functions of density and slowness. 

2.2.1 Forward Gravity Modeling 

Let ~ be a vector whose components are the values of 

vertical gravity at an array of stations on the earth's sur

face. The vector ~ due to a density model £ is given by 

( 2) 

(Savino, et al., 1976, 1977), where G is the "gravity kernel 

matrix," thelth column of which is the gravity field due to 

a unit density ith cell. The first term in Equation (2) is 

the gravity field due to the earth's density between Z = 0 

and Z = Zmax· The gravity field due to density below zmax' 
in effect the rest of the earth, is written symboLically as 

y and can be thought of as a regional gravity field. 

In Equation (2), g represents the total gravity field 

that would be measured on the earth's surface. A related 

forward problem is to calculate the anomalous gravity field, 

og, due to an anomalous density, on, above Z • Since the - ~ max 
relationship between ~ and £ is linear, 8~ is given by 

2.2.2 Forward Travel-Time Modeling 

The teleseismic travel-time forward problem is to cal

culate the travel-time residuals from an event of known location 
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... 

to an array of stations through a given velocity model. A 
residual travel-time is a travel-time minus the predicted 

Herrin travel-time for the known event-station distance. 

Fermat's principle implies that the travel-time from 

Event e to Station s through slowness distribution a is 

given to first order by (see Figure 5) 

s; s 
tes = ( d~ a(~) + j d~ a(~), le s; 

( 3) 

where ~ is distance along the path of integration, which is 

the geometrical ray path through a radially symmetric refer

ence velocity model. This reference path has the Herrin model 

(aH) ray parameter for the event-station distance. Therefore, 
the path segment ss~ is found by ray-tracing downward from 

the station with the given ray parameter. 

The travel-time from e to s predicted by the Herrin 

model, t:s' is obtained by substituting aH for a in Equation 
(3). Therefore, the travel-time residual at Station s can 

be written 

t R = t - t H = 1 s d ~ a ( ~ ) - ( s d t; aH ( t; ) 
es es es s' Js' 

{4) 

In vector notation, tR , t , and t:s are components of vectors 
R H es es 
~~ ~, and~' respectively, whose lengths are Se, the number 
of stations that record Event e. The relationship of ~ to a 
slowness cell-model a is 

( 5) 
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where Te is the "travel-time kernel matrix," whose components 

are reference path lengths through the model cells. The sth 

component of !e is the sum of the second and third terms in 

Equation (4). From Equation (5), we see that the anomalous 

residuals due to an anomalous slowness, 6~, above Zmax are 

given by 

s:tR -- T s:a u-e e u 

2.3 DATA PROCESSING 

Comparing Equations (2) and (5) to (1) , we see that the 

equations that relate observed travel-time residuals for E 

events and observed gravity data to a density-slowness model 

are 

(6) 
S. = G.e_ + Y. + £g 

~=Tea+ !e + ~, e = 1, .•• 1 E, 
(7) 

where £g and ~ are the error vectors in the gravity data and 

travel-time residuals for Event e, respectively. To facilitate 

an inversion algorithm, we assume that the components of £g 
and £e are zero-mean and uncorrelated. Specifically, 

E (£ ) = 
-4J 

o 1 var (~) 

E ( E.e) = 0 , V ar ( E.e) = L ! 1 e = 1 , ••• , E , 

(8) 

(9) 

where '1: g and '1: e are diagonal matrices containing the standard 

deviations of the gravity data and residuals from Event e, 

respectively. 
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This section describes the processing procedures that 

are required to produce data which obey Equations (6) through 

(9) and to derive estimates of their standard deviations. 

2.3.1 Gravity Data Processing 

The gravity data for the Imperial Valley study consisted 

of about 14,000 Bouguer and terrain corrected observations pro

vided by Professor Shawn Biehler of the University of California 

at Riverside. To facilitate the processing and inversion of 

these data, they were converted to a regular rectangular grid of 

644 values, spaced 4.88 km apart, by a least-squares quadratic 

surface interpolation technique. The technique is described by 

Savino, et al., (1977). We denote the resulting grid of gravity 

data by the vector~~, which is related to£ by 

The vector y~ is the regional gravity field. Its role in the 

formulation of the inverse problem is discussed in the next 

section. The error vector £~ represents all the contributions 
-g 

to ~~ other than the regional field and the gravity field due 

to the density structure £· These contributions include 

1. Reading errors. 

2. Bouguer qorrection and interpolation errors. 

3. Gravity effects of the earth's density variations 

between model cell boundaries. 

The largest source of error is expected to be the third. It 

was reduced and uncorrelated with two procedures. The first 

was a correction for the anomalous gravity field due to the 
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low-density sedimentary section in the upper 6 km of the 

crust. The second procedure was to low-pass filter and 

decimate the corrected gravity field. 

The sediment correction was calculated by forward 

modeling the upper 6 km with a finely gridded cell model, or 

"small-grid" model. The resulting gravity small-grid correc-

tion is given by 

where GSG is the gravity kernel matrix for the small-grid 

model and 8£SG is the vector of sediment-minus-basement 

density contrasts for the model, all of which were negative. 

The small-grid model was derived from depth-to-basement maps 

for the Imperial Valley. It and the small-grid correction 

are presented in Section III. 

The purpose of low-pass filtering the small-grid 

corrected data is to suppress the short-wavelength components 

caused by possible near-surface small-scale density variations. 

However, a low-pass filter also correlates the errors of 

gravity values at neighboring grid points. Decimating the 

filtered data to a courser grid produces a final data vector 

with reduced correlations. Decimation also removes some of 

the redundancy in the data. 

The relationship between the primed and unprimed 

quantities of Equations (6) and (10) are 

.s.= F (,<l" - 0gSG) 
L 

G = FL G" 

y = FL y"' 

E ::::: FL (£g 
_. - o SlSG) 

.;;_g 
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where ~ is the final gravity data vector and FL is the low

pass/decimate filter. It is not necessary to filter G~, the 

gravity kernel matrix for g~, in order to obtain G, the 

kernel matrix for ~· If the filter FL is designed properly 

and does not remove gravity effects attributable to £ 1 deci

mating the appropriate rows of G~ suffices. Similarly, since 

the regional gravity field is a slowly varying function of 

position, it is unaffected by a low-pass filter. Hence L is 

simply a decimated version of y~. 

The error vector, s , for the final gravity data has -g 
the same three contributions as ~, only filtered, decimated, 

and corrected for the sedimentary section. An additional 

source of error, probably the largest, is the errors in the 

small-grid correction caused by the use of an approximate model 

of the sediments. We estimated this error to be of the order 

of 3 milligals for each of the final 219 gravity data. There

fore, the diagonal components of ~g were set to three. 

2.3.2 Travel-Time Data Processing 

Travel-time residuals were derived from recordings of 

182 worldwide events at the 16 stations of the Imperial Valley 

array. Every station did not produce a usable record of every 

event so the final data base consisted of 1266 event-station 

seismograms. From these, 527 residuals were obtained for 

stations and 50 groups of events having distinct ray paths. 

An accurate measure of the travel-time from an event 

to a given station requires an accurate estimate of the origin 

time of the event and a reliable determination o£ the first 

P-wave motion on the seismogram. In practice, first motion is 

often poorly defined because of the interference of noise with 

the P-waveform. Other points on the waveform, in particular 

the first few peaks, troughs, and zero-crossings, are more 

clearly identifiable. For a given event, the difference in 
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arrival time of a common clearly-defined point on the wave
forms recorded at two stations is an accurate measure of 

the difference in travel-time to the two stations and is 

unaffected by uncertainties in event origin time or first

motion determination. Therefore, differences between travel
time residuals at different stations, or "relative residuals," 

were used in this study rather than "absolute residuals." 

The residuals used in the inversion were "average
station relative residuals," defined as absolute residuals 

minus a weighted average of the absolute residuals. The 
residuals determined directly from the data, however, were 

"key-station relative residuals," which are absolute residuals 

minus the absolute residual for a key, or reference, station. 
Average-station relative residuals are obtained from either 

absolute or key-station relative residuals by zero-meaning. 

This part of the travel-time data processing is discussed in 

the next section. 

To obtain estimates for key-station relative residuals, 

the arrival times of as many as nine peaks, troughs, or zero
crossings were measured from each seismogram (Savino, et al., 

1977). Denoting the arrival time of a given pick p at Station 

s for Event e by t~sp' the corresponding relative residual 
with respect to a reference Station r is 

~t~ = t~ - t~ - tH + tH 
esp esp erp es er (12) 

where the last two terms are the predicted Herrin times from 

e to s and r, respectively. The relative residual for Station 
s is estimated by the sample mean of the discernible picks 
common to s and r: 

(13) 

where Pes is the number of picks. 
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The estimate ~t~ has two primary sources of error. es 
The first is due to delays caused b~r slowness variations not 

modeled by the cell-model slowness vector ~· The major error 

of this type is due to the sedimentary section in the upper 

6 km beneath the Imperial Valley and, as with the gravity 

data, is compensated for by a small-grid correction. Denoting 

the small-grid sediment-minus-basement slowness vector by 

oa8 G, the delays due to the sediments for Event e are given 

by 

R 
ot SG = TSG oaSG 
--e e 

where TSG is the small-grid travel-time kernel matrix. The e 
corrected relative residuals are 

= ~t~ 
es 

R R 
ot SG + ot SG 

es er 

where the last two terms, respectively, are the small-grid 

delays for Stations s and r. 

The second source of error is due to reading errors 

and seismogram noise. Denoting the error in the arrival time 

t~sp by E:~sp' we see from Equations (].2) and (13) that the 

corresponding error in ~t~s is 

Pes 
1 

= Pes L 
p=l 

( £... - E:~ ) 
esp erp 

To determine the variance of ~E~s' we assume that the error 

in the picks for a given event are zero-mean, independent, 

and have a common variance a 2 . This implies e 
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(14) 

where Pess' is the number of picks common to Stations s and s' 

and where 6 is the Kronecker matrix. 

From Equation (14) it is apparent that the errors in the 

relative residuals at different stations are correlated since 

their covariance is non-zero. In fact, ~£~ can be defined as es 

the difference between £;s and £;r where 

£~ 
es 

1 
= Pes 

~ 

£esp 

Then Equation (14) is nearly equivalent to the assumption that 

, cov (£;s' £;s~) = 0 
(15) 

"~s can be thought of as the zero-mean component of error in 
an estimate for the absolute residual at Station s. Of course, 

an estimate for the absolute residual would also have a base

line error due to the fact that the absolute travel-time to 

the reference station (or any station) is known much less pre

cisely than the travel-time differences between stations. 

In light of the facts that £~ is uncorrelated with £~ ~, es es 

where s and s~ are any two stations, and that the zero-meaning 

procedure described in the next section eliminates baseline 
errors, it is convenient to define an estimate for the absolute 

residual at s in terms of the key-station relative residual: 
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tR = 6tes + t - tH es er er ' 

where ter is an estimate for the absolute travel-time to r whose 

e~ror, €~r' has variance oe
2
/Per· The relationship between 

tes and the slowness model a is then Equation (7) - namely 

where each component of ~ now includes the baseline error in -e 
ter· The sth components of ~ is the sum of €~s and the error 

in the small-grid correction at Station s. We assume this latter 

error is independent of €~ and has variance o 1
2 • Referring 

es th 
to Equations (15) and (9), we therefore set the s component 

of the diagonal variance matrix ~e 2 to 

o 2/P + o 2 
e es 1 

o1 was taken to be 0.03 s. 

The variance o 2 was calculated in e terms of a sample 

variance derived from all the picks 

modified to ensure that it did fall 

0 2 
e 

For o 2 we again used 0.03 s. 

for a given event and 
2 below some minimum o 2 : 

(6t" - 6t" ) 2 
esp es 

The final step of data processing consisted of averaging 

together the residuals for events very close in location whose 

ray paths to a given station were nearly coincident. These 

group averages were treated as individual events. The group 

residuals and variances were computed as 
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where g denotes a group of Eg events. 

2.4 FORMULATION OF GRAVITY/TRAVEL-TIME INVERSION 

The processed gravity data, ~' and travel-time residuals, 

tR, e = 1, ••• , E, are related top and a by Equations (6} 
....;..e - -
through (9). In this section we combine Equations (6} and (7) 

into a single relationship of the form Equation (1} , to which 

our inversion algorithm can be applied. 

2.4.1 Gravity Inverse Problem 

Recall from Equations (6) and (8) that the relationship 

between ~ and £ was 

Var 
2 

(8 ) = ~ g I 
-g 

(6) 

(8) 

where ~ g is a diagonal matrix of standard deviations of the 

components of the error vector £g· 
Comparing Equation (6) to Equation (1) , we see that the 

role of the gravity field y may be interpreted two ways. First, 

we could treat y as an additional unknown parameter vector and 

solve for it together with R· Second, we could treat it as an 
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error term like £ and specify its mean and variance. These -g 
two approaches are equivalent for a given assumption about the 

form of y. We adopt the second approach since y is not an 

unknown of interest as is £· 

The mean of y corresponds to a possible known component 

in the regional gravity field - namely, a known baseline or the 

gravity field due to a known density anomaly below Z • The max· 
variance of y expresses the expected size and form of unknown 

gravity effects from below Zmax· This variance matrix must have 
large covariances since a regional field is slowly varying and 

thus correlated between gravity stations. While our inversion 

algorithm can handle nondiagonal variance matrices with no 

conceptual difficulty, it is more meaningful to transform 

Equation (6) into an equivalent equation in which the error 

term has zero-mean and a diagonal variance. The appropriate 

transformation produces a data vector ~~ given by 

where the matrix Fg is 

F = 2 g [Var (c:. + y)] -l/2 • g -g - (16) 

( )-l/2 denotes the inverse of the square root of a matrix. 

This transformation is a deregionalization operator - the 

subtraction of the mean of y corrects for a known regional 

field and multiplication by Fg filters the result. Applying 

the transformation to each term in Equation (6) produces 

= ~G £ + ~£ -g 

33 

( 17) 



where 

fl5£ = F (Sf. - E y) g 

flG = F G g 

fl£ = Fg ( £ . + y - E y) (18) -g -g 

If the variance assumed for y is complicated, the com

putation of Fg may be very difficult. Therefore, we assume the 

regional field is at worst a linear trend of the form 

(19) 

where y1 , Yx' and Yy are scalars, ! is a vector all of whose 
components are one, and ~ and ~, respectively, are vectors 

containing the x and y coordinates of the gravity stations. 

The mean and variance of y is P-xpressed in terms of the means 

and variances of y 1 , y , and y • 
X y 

Equations (19) and (16) imply that the filter F is a g 
detrending operator of the form 

( 20) 

The scalars a1 , ax, and ay are functions of variances specified 

for y1 , Yx' and Yy' respectively. 

We assume the variance of y1 is very large, stating in 

effect that the baseline of the gravity data is unknown. 

Therefore, a1 approaches the value l T 2: g - 2 l and F g zero-means. 
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Since the density above zmax' £' can contribute to ~ 

a slowly varying component which might have the same form 

assumed for the regional field, the filter F may remove some 
g 

of the gravity effect due to £ along with the regional field. 

This possibility is compensated for by the use of ~G as the 

kernel matrix relating ~~ and £· The use of G in place of ~G 

in Equation (17) would be incorrect. 

2.4.2 Travel-Time Inverse Problem 

We saw that the observed travel-time residuals from E 

events are related to a by 

tR = T a + '[ + E: I e = 1, • • • I E -e e- -e -e 
( 7) 

with 

2 

E(E: ) = 0, Var (£e) = I e = 1, E. -e e , • • • I (9) 

where l: e is the diagonal matrix of standard deviations for the 

residuals from Event e. 

Each component Tes of le is the sum of 1) the residual 

accumulated between Event e and zmax' 2) the Herrin travel-time 

between Z = 0 and Z = zmax' and 3) the baseline error in an 

estimate for the travel-time to the key station. For a given 

event, each of these contributions to Tes can be expected to 

be either the same for each station or a slowly varying func

tion of station position. Therefore, le can be ~reated as 

a "regional" contribution to the data from Event e and handled 

as we handled y in the gravity problem, an approach similar to 

the one used by Aki, et al., 1977. 

We assume !e is at worst a linear tread: 

( 21) 
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It is therefore removed from the data by a transformation of 
the form in Equation (20). Denoting the detrending operator 

for Event e by Fe' we obtain 

t.t = t.Te a + b.£e -e 

E(L1f.e) = 0, Var (L1fe) = I~ , (22) 

where 

A:!:e = F [ tR - E (!.e) J e --e 

AT = FeTe e 

Af..e = Fe [ ~ + 't - E (!.e) J --e 
( 23) 

The expected value of -r , E(-r ), is effectively a correction --e --e 
for a known residual, such as due to a known mantle inhomogeneity. 

For the Imperial Valley, we treated !e as only an unknown 

baseline by assuming 't 1 had a very large variance and 't and e ex 
'tey had zero variances. In this case, Fe is simply a zero-
meaning operator and A~ is a vector of average-station rela
tive residuals. As a result, b.:!:e is unaffected by any baseline 

errors or errors in event origin time and event location. 

2.4.3 Joint Gravity/Travel-Time Inverse Problem 

As they stand, Equations (17) and (22) are uncoupled 

equations for £ and ~' respectively. We couple them by 
assuming a relationship between slowness and density. Any 

nonlinear relationship can be approximated by a linear one 

of the form 
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for geologically reasonable value of a and p. The constants 

c 1 and c 2 may be different for different layers in the model. 

To write this relation in vector form, we partition ~ 

and p by layers. Define p(t) to be the vector of density values 

for the tth of L layers. -Similarly define ~(t): 

• • • I 

... , (24) 

The density-slowness relationship we assume is 

In terms of layer partitions, Equations (17) and (22) 

can be written 

~t = -e 

L 

I ~G(t) £(t) + ~£g 
t=l 

L 

I ~Te(t) ~(t) 
t=l 

+ ~£a, e = 11 .•• , E 1 

where ~G(t) and ~Te(t) are partitions of ~G and ~Te. 

(26) 

Assuming that the filters F and F of Equations (18) and g e 
(23) zero-mean, each partition of ~G has the useful property 

that 
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!J.G ( 5/,) 1 = 0 I 5/, = 1 I ••• , L. ( 2 7) 

This is because a zero-meaned gravity field is insensitive to 

a layer of uniform density, which contributes only a constant 

to the total field. Similarly, since the ray paths to an 

array of stations from a teleseismic event are nearly parallel 

between the surface and Zmax' 

!J.Te (51,) 1 = O, 5/, = 1, ••• , L, e = 1, ••• , E. (28) 

Equations (27) and (28) imply that /J.~ and !J.!e are insensitive 

to the baseline, or average value, of density and slowness in 

each layer. Consequently, they are sensitive only to lateral 

variations in density and slowness. Therefore, we define 

anomalous density and slowness vectors by 

(29) 

where W is any positive definite weighting matrix. The second 

terms in Equation (29) are essentially weighted averages of 

density and slowness in layer 51,, respectively. Substituting 

Equation (29) into Equations (25) and (26) gives 

L 

!J.s_ = L cl ( 5/,) 
5/,=1 

/J.G(J/,) !J.~ (51,) + /J.£g 

L 

/J.t = L /J.Te (5/,) !J.a(JI,) + !J.£ (30) -e 5/,=l ..;..e 
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and 

~.f?_(Q,) = c
1 

(Q,) ~~(Q,), Q, = 1, ••• , L. 

The constants c 2 {Q,) drop out of the problem and are only 

needed if we wish to relate the baselines of density and 

slowness in each layer. 

( 31) 

Since Equation (30) is linear, a linear inversion tech-
A 

nique can be used to find an estimate, ~~(Q,), for ~~(Q,), Q, = 1, 

.•• , L. Equation (31) implies that an estimate for~£ is 

obtained as 

(32) 

The joint gravity/travel-time inverse equations in 

Equation (30) can be summarized by the single vector equation 

d = A P + e 

E(~) = O, Var (~) = I , (33) 

where I is the unit matrix. In Equation (33), the data have 

been normalized by their standard deviations in order to sim

plify the formalism of linear inversion methods. 

2.5 INVERSION METHOD 

In the gravity/travel-time inverse problem, the relation

ship between the data vector d and parameter vector p is linear. 

Consequently, a linear inversion technique can be used to find 

an optimal estimate for E· With linear inversion, an optimal 

estimate of the form 
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(34) 

is found, where A+ is a generalized inverse of the matrix A. 

In this section, we describe the techniques used to find ~. 

2.5.1 Optimality Criterion 

Our criterion for defining an optimal estimate for £ is 

a double one. The first criterion is that £ give a close fit 
A A to the data. Namely, ~should make ¢1 (~) small, where 

A T A 
(d - A£) (d - A~) . 

¢1 (£) is the sum of the squares of the residuals of fit between 

the data vector d and the data predicted by £, A~. Since d 
was normalized to have unit variance, no weighting coefficients 

are needed in the definition of ¢1 • 
A 

The second criterion for optimality is that £ be as 

"smooth" as possible in some sense. Two interpretations of a 

smoothness criterion are 1) that £ be as small as possible 

and 2) that p have the smallest spatial variations possible. 

Both these and other interpretations of smoothness can be 

expressed as the requirement that, for an appropriate matrix 
A 

B, ¢2 (£) be a minimum, where 

Because of its role in the smoothness criterion, we refer to B 

as a "smoothing" matrix but it is really a "roughing" operator 

since the minimization of roughness produces smoothness. 

Our criterion for obtaining an optimal estimate is that 

£minimize both ¢1 , the misfit to the data, and ¢2 , the 
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unsmoothness of the model. Unfortunately, though, no model 

makes ¢1 and ¢2 simultaneously absolutely minimum. However, 

an optimal compromise is achieved by minimizing¢<£>, where 

for some positive value of a. For any a, the resulting model 

parameter estimate provides the smallest value of ¢1 of all 

models that have its value of ¢2 , and vice versa (Backus and 

Gilbert, 1970; Jordan, 1973). 

The "trade-off parameter" a regulates the relative 

importance of minimizing ¢1 compared to ¢2 • The minimization 

of¢ defines a family of model estimates, E(a), each giving 

its own compromise between fit and smoothness. ¢1 and ¢2 are 

monotone increasing and decreasing functions of a, respectively. 

Although every value of a produces an optimal estimate for £ 1 

it is desirable to avoid values that are too large or too small 

and thus overly sacrifice either fit or smoothness. 
1\ 

For a given a, the vector £ that minimizes ¢ is 

(35) 

The actual computation of £, however, is done with singular 

value decomposition as described in Section 2.5.4. 

The smoothing matrix B allows us to restrict the 

possible solutions for p to ones that are reasonable geo

logically. Geologic information can also be incorporated 

into ~ more directly by defining ~ to be a perturbation to 
1\ a starting model Ps· In this case, p becomes 

(36) 
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2.5.2 Smoothing Matrix 

The smoothness criterion we used penalized lateral 

spatial variations in density and slowness with wavelengths 

less than a specified wavelength W. The continuous analog 

of the function ~ 2 is 

1\ 
~2(p) = 

z 
r max roo !00 Jr dz dx dy 
0 ·-oo -oo 

[
/\ 2 p(x,y,z) 

We set W to 50 km. The matrix B is defined in terms of finite 

differences of the parameters in each layer of the cell model. 

The purpose of this smoothness criterion is to prevent 

lateral variations in density and slowness that are not neces

sary for fitting the data. Compared to the smoothness criterion 

used in standard inversion methods, in which W is set to zero, 

this criterion is much more effective in this regard. 

2.5.3 Uniqueness 
1\ 

To understand the uniqueness of E1 we study its relation-

ship to E by substituting Equation (33) into Equation (34) giving 

1\ This means that p is an estimate for Rp with error of estimation 

A+e: 
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( 3 7) 

The matrix R is called the resolution matrix. Equation (37) 

shows that each component of ~ is an estimate for a weighted 

average of the components of p. The weighting coefficients, 

called an "averaging kernel," are the components of the 

appropriate row of R. 

Denote the ith averaging kernel (ith row of R) by the 

vector ki. The extent to which ~i resembles the vector ii 
(the ith row of the unit matrix) is a measure of the resolving 

f th d d f d . . th . th t power o e ata or eterm1n1ng e 1 parame er pi. In 

fact, an alternate way to define the optimal estimate £, is 
A T 2 2 to let p. =a. d and minimize r. + a v. for each i, where 1 -1 - 1 1 

A 
Var (p.) 

1 
(38) 

The quantities r. and v. describe the uniqueness of the estimate 
1 1 

~i. The quantity ri indicates how well the data resolve pi with 

standard deviation v .• It is convenient to define a normalized 
1 

measure of resolving power by 

(39) 

qi takes values from 0 to 1: qi = 0 indicates no resolving 

power and qi = 1 indicates perfect resolving power. 
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2.5.4 Computational Method 

The generalized inverse A+ was calculated with a matrix 

method known as singular value decomposition (SVD). The meth6d 

takes advantage of the fact that any real M by N matrix can be 

decomposed as (Lanczos, 1961) 

C = S A TT 
MxN MxK KxK KxN 

(40) 

where K is the rank of C and obeys K ~ min (M,N) • The matrix A 

is a square diagonal matrix containing the non-zero singular 

values of C: 

The K columns of the matrices S and T are left-hand and right

hand othornormal eigenvectors of c, respectively. Thus, 

To find A+, as defined in Equation (35), the matrix C 

is defined as 

and decomposed as in Equation (40). Then, A+ is given by 

( 41) 

It can be seen that the trade-off parameter ~ does not affect 

s, A, or T so they need only be calcaluted once. Furthermore, 

singular values that are small compared to ~1/ 2 do not contribute 
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much to A+, so every non-zero singular value and its associated 

eigenvectors need not be computed. 

The trade-off parameter determines the number of degrees 

of freedom in the estimate £. It can be seen from Equation (41) 
that as a approaches oo, A+ approaches zero in which case p is 

zero and has zero degrees of freedom. In general, the number 

of degrees of freedom is given by 

(42) 

In effect, f is the number of linearly independent combinations 
A 

of the data vector d that are fit by e· 
The straightforward numerical implementation of SVD re

quires alternating operations on the rows and columns of c. 
Consequently, this procedure can be very inefficient unless 

C and other needed arrays can be simultaneously held in the 

internal memory of the computer. On the UNIVAC 1108, the 
largest matrix that can be decomposed in core is roughly 170 

by 170 unless extended memory facilities are invoked. For the 

Imperial Valley inversion, the matrix involved was much larger 

than this (746 by 216). Therefore, it was necessary to develop 

and employ a pre-SVD procedure for reducing C by Householder 

transformations to a smaller matrix suitable for an in-core SVD 
routine. In addition, a post-SVD procedure was developed to 

reconstruct the eigenvectors of the original matrix C from the 

Householder transformations and the eigenvectors output by 
the SVD routine. 
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III. RESULTS 

3.1 SMALL-GRID CORRECTION FOR THE IMPERIAL VALLEY SEDIMENTS 

As noted in previous reports written under this contract 

(Savino, et al., March, June 1977) and by other people who 

have investigated teleseismic and gravity data from the 

Imperial Valley (Steeples, 1975; Biehler, 1964), the near

surface low velocity sediments in this region have a major 

effect on both travel-time delays and the gravity field ob

served there. Steeples (1975) estimated the delay through 

the thickest section of the sediments as being approximately 

0.8 seconds for vertical incidence and longer for shallower 

angles of incidence. With respect to the gravity field, 

Biehler (1964) showed that, because of the increase of density 

with depth typical of a thick sedimentary basin, most of the 

observed gravity anomaly in the Imperial Valley is caused by 

the upper few thousand feet of sediments. Thus, it was clear 

from the outset of this program that we would have to, in 

effect, strip off the sediments to uncover details of the 

deeper structure. 

3.1.1 Sediment Thickness Model 

Figure 6 is a depth-to-basement map of the Imperial 

Valley taken from Rex (1970). Various kinds of geophysical 

data were used to produce this map ranging from surface 

mapping of major fault systems to refraction profiles and 

information from deep wells. The basement depths in many 

locations, however, are best guess estimates. 

A digitized version of Figure 6 was obtained from 

Proff~ssor Shawn Biehler. While the original digi tization 

was performed on a regular 2 km by 2 km grid, in view of the 

scale lengths of the features of interest in this study we 

smoothed the model to a 6 km by 6 km grid. This smoothing 

46 



,j:::o 
-....] 

\_) 

Me ceo 

' 
...... 

,, 
\'\ 

\ 
\ __ .1----------··-

DEPTH TO BASEMENT. IMPERIAL VALLEY, 

OUTCROP 

( 5,000 FEET 

5,000-10,000 FEET 

I 0,000- 15,000 FEET 

15,000-20,000 FEET 

> 20,000 FEET 

0 

r ,~ 
·~~~~-Jo 0 

'\), ' ~q 

Figure S. Map of the thickness of water filled sediments in the Imperial Valley. 
This may also be considered a depth to basement map with contours at 
5000 feet increments. 

C::::!J __ .... -



was accomplished by picking east-west slices through the model 

spaced every 6 krn going from north to south. For each slice, 

or cross-section, the complete depth to basement data were 

plotted and four layers, 1.5 krn thick, were defined at incre

ments of 6 krn. The top layer was subdivided into three 0.5 krn 

layers. The motivation for a finer subdivision of this layer 

carne from the study by Biehler (1964) which showed the strong 

effect of these near··surface sedimentary layers to the observed 

gravity field. 

Twenty east-west slices were defined over the region of 

interest from which layer interfaces between slices are found 

by linear interpolation. Figure 7 sho~s, from top to bottom, 

three typical slices (cross-sections) that span the Imperial 

Valley, proceeding from the north near the Salton Sea to just 

south of the Mexican border. The location of the seismograph 

station SUP on b~sernent outcrop as compared to SNR on the full 

thickness of sediments (Slice 10 in Figure 7) is one example 

of the variability in the near-surface structure beneath the 

Imperial Valley seismic arrRy. Figure 8 shows the resulting 

depth-to-basement model in plan view t~at was subsequently 

used in forward modeling travel-time and gravity calculations 

for sediment stripping. 

3.1.2 Gravity and Travel-Time Corrections 

In order to calculate the gravity field and travel-time 

delays resulting from the sediments, a density-velocity (or 

slowness a = ~, where v is velocity) model for the sediments 

was assembled. The model was taken from Biehler (1964) and is 

given in Table 1. The density and slowness contrasts listed in 

this table are with respect to basement values of p = 2.70 grn/crn3 

and a = 0.1695 sec/krn. 
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Depth 
(km) 

0 

0.5 

1.0 

1.5 

3.0 

4.5 

6.0 

TABLE 1 

DENSITY AND SLOWNESS SEDIMENT MODEL 

Density Contrast 
(gm/cm 3

) 

0.43 

0.34 

0.29 

0.20 

0.07 

0.03 

Slowness Contrast 
(sec/km) 

0.357 

0.265 

0.215 

0.137 

0.053 

0.043 

A gravity anomaly vector was computed using the density 

contrast model in Table 1 corresponding to the region in Figure 

8. At each cell in the three-dimensional grid an element of 

the gravity kernel matrix was calculated using the formula 

for the gravitational attraction of a right rectangular prism 

given by Nagy (1966, 1967). The product of the kernel matrix 

with the model parameter vector, each element of which corre

sponds to a density contrast in a cell, results in a vector 

containing a value for the gravity anomaly at each point of 

observation (644 in this case). The data vector was subse

quently low-pass filtered to minimize discretization effects. 

The resulting predicted gravity field for the sediments is 

shown in Figure 9. 

A travel-time delay vector was computed for the sediment 

stack using the slowness model in Table 1. The delays were 

calculated for the actual azimuths and ray parameters corre

sponding to the observed events in the teleseismic data base. 

The results are shown in Figure 10 at three different azimuths 

for each of the 16 stations in the array. 
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The circumference of the circles in Figure 10 corresponds 

to a delay of 0.0 seconds. Positive delays are drawn out from 

the circles, while negative delays are drawn in toward the 

center. The radius of a circle equals 0.5 seconds. As expected, 

all of the delays associated with the sediments are ~ 0 and do 

not exhibit a marked dependence on azimuth at any of the 16 

stations. This latter result is to be expected because of the 

near vertical incidence of the ray paths, especially as the top 

of the sediment column is approached. The delays range from 

values of about 0.8 seconds for stations near the center of the 

valley (e.g., WLK, SNR, BON) to values< 0.1 seconds at several 

of the flank stations (e.g., AMS, COT, SUP). This delay vector 

was applied to the travel-time data to arrive at a set of resid

uals stripped of the sediments. The final correction in this 

series was for the different station elevations as reported in 

Hill, et al., (1975b). 

3.2 FINAL OBSERVED DATA VECTORS 

3.2.1 Gravity Data 

Each gravity value in the original data base was supplied 

in the form of a complete Bouguer corrected gravity observation. 

In order to integrate this data base into the inversion codes it 

was necessary to carry out the preliminary processing steps 

described in Section II. The first of these consisted of cal

culating gravity values on a regular rectangular grid of points 

based on the original irregularly spaced observations. This 

was done for a large area including the region to be modeled 

by the inversion plus surrounding bands of data. The surround

ing data were required to facilitate application of various 

filtering techniques. Figure 11 is a contour plot of the grid 

point gravity values for the region to be modeled. 
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Figure 11. Complete Bouguer anomalies interpolated to 
a regular grid (GPGV) before. filtering. 
Contour levels are in milligals and the 
data plotted is the anomaly plus 1000 
milligals. 
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Various filtering techniques were investigated to pro

duce a gravity data set appropriate for a discretized model. 

This involved the removal of both regional and near-surface 

effects that could not be attributed to the density variations 

of a cell-model. In addition to the small-grid sediment cor

rection, the most effective techniques for removing these 

effects while retaining maximum information in the data were 

found to be the low-pass filtering, decimation, and detrending 

operations described in Section II. 

A 10 km wide Gaussian filter was employed to low-pass 

filter the gravity data. The output of this filter was 

decimated to a final grid spacing of 6.9 km. This process 

suppressed the significant gravity field that can be contri

buted by very small density anomalies near the points of 

observation. Without filtering, these contributions would 

appear as a coherent, systematic source of error which is 

unacceptable to the inversion method. The final gra~ity data 

vector is essentially a point by point subtraction of the 

low-pass filtered small-grid correction from the filtered 

observed data and is shown in Figure 12. In the inversion 

results, the same data is plotted in a different format. 

3.2.2 Travel-Time Data 

As mentioned in Section II, the worldwide events that 

were analyzed for travel-times to the array of seismograph 

stations in the Imperial Valley were grouped into events from 

50 separate source regions. These 50 regions represented the 

sampling of distinct ray paths, with respect to azimuth and 

epicentral distance, available for this study. The resulting 

travel-time residuals, referenced to SUP, are plotted in 

Figure 13a. 
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In this figure, positive residuals (late arrivals) are 

drawn out from the circumference of the cirles, while negative 

residuals (early arrivals) are drawn in toward the center of 

the circles. The circumference of each circle corresponds to 

a delay of 0.0 seconds and the lengths of the radii corresponds 

to a delay of 0.5 seconds. Note that the residuals plotted in 

Figure 13a were stripped of the delays resulting from the sedi

ments by subtraction of the data shown previously in Figure 10. 

The next step in processing the travel-time data was 

to zero-mean the data. The first procedure, discussed in 

Section 2.4.2, involved computing the variance-weighted mean 

value across all 16 stations for a particular event group and, 

then, subtracting this mean value from each of the individual 

station values. The results of this operation are shown in 

Figure 13b. The average-station relative residuals in this 

figure display an overall two-fold dependence on event group 

azimuth. For instance, the four stations (CRR, SUP, COK and 

SGL) located on the western flank of the array exhibit posi

tive residuals (delays) for events originating at azimuths 

between 0 and 160 degrees, and negative residuals for event 

azimuths between 200 to 300 degrees. All of the remaining 

stations, with the exception of OBB, exhibit a residual pattern, 

however, which is just the opposite. A strong azimuthal varia

tion in station residual arises from structure which is 

presumed to be deeper than the maximum depth (33 km) of the 

model to be inverted. Thus, we sought an additional zero

meaning procedure that would minimize the pronounced azimuthal 

variations evident in Figure 13b, and, as a result, the depen

dence in these residual data on deep structure. 

In Figure 14, the results of this additional zero

meaning scheme, suggested by the data in Figure 13b, are 

plotted. Here, stations CRR, SUP, COK and SGL were zero

meaned separately from the remaining 12 stations. As the 

data in this figure clearly show, this zero-meaning scheme 
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has successfully minimized the azimuthal variation, at least 

to within the estimated variance of the residuals. These 

data comprise the travel-time vector in a form appropriate 

for input to the inversion codes. 

3.3 INVERSION RESULTS 

3.3.1 Model Parameterization 

We modeled the crust and topmost mantle beneath the 

Imperial Valley as a four layer cell-model, each layer con

sisting of an eight by nine grid of cells (Figure 15). 

Lateral variations in density and slowness were assumed to 

exist only between 6 and 33 km, except for the upper 6 km 

of sediments for which the data were corrected. The velo

cities shown in Table 2 represent the plane-layered com

pressional velocity model used to calculate ray paths for 

the travel-time kernel matrix. 

TABLE 2 

LAYERING AND REFERENCE VELOCITIES FOR INVERSION MODEL 

DEPTH 
(km) 

0.0 

6.0 

15.0 

24.0 

33.0 

LAYER 

1 

2 

3 

4 
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REFERENCE VELOCITY 
(km/s) 

5.9 

6.2 
• 
6.4 

6.5 
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The density-velocity relation assumed in the inversion 

was 

~p(t) = 0.4 ~v(.Q.) .Q, = 2,3,4, 

where t is layer number. This was translated to the following 

density-slowness relation: 

.Q, = 2,3,4, 

where v
0

(2) is the velocity in layer t of the reference model. 

Our original intention was to use a ~P to ~v ratio closer to 

the 0.3 value suggested by Press and Biehler (1964). However, 

our preliminary forward modeling results and other available 

information about the deep structure beneath the Imperial 

Valley indicated that because of crustal thinning, the true 

average velocity in each layer of our model was higher than 

the crustal reference value v
0

• Thus, a ~P to ~v ratio of 

0.4 implied a reasonable ~P to ~a ratio. 

3.3.2 Preliminary Modeling 

Two procedures were employed to obtain preliminary 

models of the Imperial Valley. The first was a formal inver

sion of the observed data without the benefit of a starting 

model. The second procedure was to forward model trial density

slowness structures, comparing their predicted data to the 

observed data. The results of these two procedures were used 

to construct a starting model to be input to a final inversion 

of the observed data. 

The inversion with no starting model produced several 

optimal models, corresponding to different numbers of degrees 

63 



of freedom between 10 and 120. The smoothest model giving an 

acceptable fit to the data had 80 degrees of freedom and is 

shown in Figure 16 as contour plots of the density variations 

in each of the three layers between 6 and 33 km. The gravity 

and travel-time data predicted by this model are nearly identi

cal to the data predicted by the final model, which are shown 

later in Figure 19. 

Two main points were concluded from this preliminary 

inversion. First, a good match to both the gravity and travel

time data (Figure 19} is provided by a model forced to obey 

a fixed density-velocity relation. Second, the lateral density 

and velocity contrasts needed to fit the observed data are 

large: greater than 0.3 gm/cm3 and 0.75 km/s, respectively, as 

seen in Figure 16. These large contrasts are almost certainly 

due to the difference between crust and mantle materials. 

Therefore, the most feasible explanation for most of the 

observed gravity and travel-time anomalies is lateral variations 

in crustal thickness. 

The preliminary inversion model is a nonunique solution 

for the density-velocity structure beneath the Imperial Valley. 

Its essential features, and the results of forward modeling, 

were next incorporated into a starting model for the purpose 

of reducing the nonuniqueness of a final inversion and pro

ducing a more realistic model. The starting model, shown in 

Figure 17, is a simplified model of a crust with variable 

thickness and, in addition, has no anomalies shallower than 

15 km. It predicts only the gross features of the observed 

data but, compared to the model of Figure 16, it concentrates 

more high density material in the deepest layer and is thus a 

more tenable model of crustal thickness variation. 
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3.3.3 Final Inversion 

Figure 18 displays our final model obtained by inverting 

the combined gravity and travel-time data set with the model in 

Figure 17 as a starting model. Like the preliminary inversion 

model, the final model has 80 degrees of freedom. The data 

predicted by the final model (Figure 19) are nearly the same as 

the data predicted by the preliminary inversion model. This 

was expected since for a given number of degrees of freedom, 

a starting model does not greatly affect the data predicted by 

the final model when the data functionals are linear. 

Figure 19 shows that the final model fits the observed 

gravity data very well. Over most of the region, the predicted 

and observed gravity data agree to within 4 milligals as com

pared to the 60 milligals anomaly in the observed data. In the 

case of the travel-time data (Figure 19b), the final model 

accounts for most of the observed anomalies, both in magnitude 

and azimuthal dependence. Due to the scatter in the 527 observed 

residuals, it is clearly not possible to fit the details of the 

azimuthal variation. However, the overall agreement between the 

observed and predicted travel-times is good, particularly for 

the stations with the most reliable data. An inversion model is 

expected to give the best fit to data at stations with the 

most accurate and largest number of data. In the case of the 

Imperial Vall~y array, the stations in the center of the valley 

produced the fewest usable data, as can be seen in Figure l9b 

and in Figure 20, which shows the percentage of events recorded 

by each station from the total of 182 events used in this study. 

As a result, the agreement between the predicted and observed 

residuals is better for the flank stations than the central 

stations. One notable exception to this is the failure of 

the final model to simultaneously predict both the large posi

tive residuals for southeast azimuths at Station SUP and the 

large negative residuals for the northwest azimuths at COK. 
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This is evidently due to an inconsistency in the observed data 

possibly caused by a systematic error in the COK residuals. 

A likely source of this error is the complexity of the faulting 

and resulting sediment thickness near COK (Figure 6) which 

could not be accounted for in the small-grid correction be

cause of a lack of detailed information in this area. 

The final model (Figure 18) is a good example of an 

optimal inversion model. In addition to providing a good fit 

to the data, it is smooth in that it contains no unnecessary 

large lateral variations and is coherent from layer to layer. 

Compared to the preliminary inversion model, the final model 

has smaller density contrasts at depths shallower than 15 km 

and a broader area of high-density, high-velocity material 

below 15 km. It is thus consistent with an interpretation 

in terms of variations in crustal thickness. 

To properly interpret the final model, we must examine 

its uniqueness. Figure 21 shows contour plots of the nomal

ized resolving power (q) in each layer. In Section 2.5.3 we 

saw that q can assume values between zero and one, where 

zero indicates the worst possible, and one the best possible, 

resolving power. For our cell model, "perfect" resolving 

power, or q = 1, would imply that the data determined gravity 

and velocity variations on a scale less than or equal to the 

dimensions of the cells. In general, a rule of thumb is that 

he data resolve variations on a scale equal to 1/q times the 

cell dimensions, which are 9 by 15 by 15 km in the center of 

the model. 

The resolving power of a gravity data set is mainly a 

function of its areal coverage and station spacing. Station 

spacing smaller than th•.:! minimum depth of investigation 

essentially achieves the maximum resolution possible from 

gravity data. The travel-time residuals observed at an array 

of stations measure differences in the integrated slowness 

along the ray paths to different stations. Their resolving 
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power is controlled by three factors. The first is an inherent 

limitation caused by the finite wavelength of the observed 

signals. The second is the array configuration, both its areal 

coverage and station spacing. Third is the distance and 

azimuthal distribution of the observed events. The latter two 

factors determine the extent to which the subsurface region of 

interest is probed by the ray paths of the observed signals. 

It was these two factors that determined the resolving power 

contributed by the travel-time data in this study. 

Figure 21 shows that the resolving power exceeds 0.7 

in the central portion of each layer in the model. For the 

most part, the largest variations in density are within the 

regions for which q exceeds 0.5. Our analysis of the standard 

deviations of the model showed that the best resolved density 

variations in each layer are determined with standard devia

tions of approximately 0.02, 0.03 and 0.03 gm/cm3 , respectively, 

which are small compared to magnitude of the variations. 

The distribution of resolving power (Figure 21) 

reflects the manner in which gravity and travel-times sense 

subsurface anomalies. The dependence of gravity on density 

decays rapidly with depth. A travel-time residual, on the 

other hand, is equally sensitive to slowness anomalies every

where along its ray path. As a result, we see that the re

solving power in the shallowest layer is dominated by the grav

ity data as indicated by the fact that the zone of high resolu

tion roughly outlines their areal coverage. In the middle 

layer, the gravity data are less important and the high resolu

tion zone tends to outline the array of seismic stations. In 

the deepest layer, the travel-time data dominate and define a 

zone of high resolution somewhat larger than that in the middle 

layer, partly due to the divergence of the ray paths with depth 

and partly due to the fact that the standard deviations of the 

model tend to be larger in the deepest layer. 
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Because of their different sensitivities to depth varia

tions in density or slowness, the combined inversion of gravity 

and travel-time data reduces much of the poor depth resolution 

both gravity and travel-times have when inverted separately. 

However, it does not eliminate the depth resolution problem 

completely, so the depths of density and velocity anomalies 

can be mislocated to some extent, even in a combined inversion. 

There is some evidence of this in our final model where there 

is an apparent misalignment of the anomalies in different 

layers. Moreover, in the shallowest layer, the density high 

just west of the center of the layer is partially compensated 

by the density low directly below it in the middle layer. We 

believe this apparent vertical instability was not required 

by the gravity data but might represent an attempt by the 

inversion to resolve the conflict between the travel-time 

residuals at stations COK and SUP, referred to earlier. 

Although every density and velocity variation in our 

final model cannot be attributed to a variation in crustal 

thickness, we constructed a crustal thickness model that 

explained most of the lateral variations. To define crustal 

thickness, we recognized that in both the middle and bottom 

layers of the final model, the largest values of density 

clustered around the value 0.3 gm/cm3 and the smallest values 

clustered around -0.1 gm/cm3 . Since the average value of 

density in each layer is indeterminate, we could treat 0.3 

as the density of pure mantle and -0.1 as the density of 

pure crustal material, implying a reasonable crust-mantle 

density contrast of 0.4. Denoting these baseline-removed crust 

and mantle densities as Pc and PM' respectively, we defined the 

crustal thickness for each vertical column ~f cells as 
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t = 

where z1 is the depth to top of the shallowest invert~d layer 

(6 km), his the thickness of the layers (9 km), and ~p(t) is 

the density estimate for the tth cell in the column. 

The resulting crustal thickness model is contoured in 

Figure 22a and shown in Figure 22b in block form where each 

block corresponds to a column of model cells. A smoothed 

representation of this block model was shown earlier in 

Figure 3a. The model implies that crustal thickness ranges 

between approximately 6 and 33 km. However, this range 

depends on the values chosen for PM and Pc· Table 3 lists 

the minimum and maximum crustal thickness values that result 

from a selection of reasonable values for pM and Pc' including 

the values PM= 0.3, Pc = -0.1 used for Figure 22. 

TABLE 3 

CRUSTAL THICKNESS RANGES FOR SELECTED VALUES OF 

PM and Pc, THE MANTLE AND CRUSTAL DENSITIES 

ASSOCIATED WITH THE FINAL INVERSION MODEL 

Minimum Maximum 
PM Pc Thickness Thickness 

0.3 -0.1 6.2 33.3 

0.4 -0.1 11.6 33.2 

0.3 0.0 6.3 42.4 

0.4 o.o 13.0 40.0 
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(a) Contour map of crustal thickness model obtained by interpreting 
0.3 grn/cm 3 in inversion model as mantle density and -0.1 gm/cm 3 as 
crustal density. Contour interval is 1.5 km. (b) Perspective view 
of block crustal thickness model as seen from due south of center 
of model. 
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