UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
dATA FROM GEOTHERMAL TEST WELLS NEAR MOUNT HOOD, OREGON
By J. H. Robison, L. S. Forcella, and M. W. Gannett

OPEN-FILE REPORT 81-1002

Menlo Park, California 1981

CONTENTS

Page
Explanation of data---1
ILLUSTRATIONS
FIGURE 1 Map of Mt. Hood area showing locations of geothermal wells--- 2
FIGURE 2 Diagram of well-numbering system--------------------------- 3
FIGURES 3-9 Graphs of temperature measurements in wells 18
TABLES

dATA FROM GEOTHERMAL TEST WELLS NEAR MOUNT HOOD, OREGON
by
J. H. Robison, L. S. Forcella, and M. W. Gannett

EXPLANATION OF DATA
This report includes well specifications, drillers' logs, and temperature logs of geothermal test wells drilled at 7 sites near Mt. Hood Oregon. The wells were drilled in 1979 and 1980 under contract to the U.S. Geological Survey. The project, funded by the U.S. Department of Energy, was part of an interagency effort to determine the geothermal potential of Mt. Hood. The Agencies involved Were U.S. Department of Energy, U.S. Forest Service, U.S. Geological Survey, and Oregon Department of Geology and Mineral Industries.

Locations of the Geological Survey wells are shown in figure 1 . Also shown are locations of two deep geothermal test wells in the 01d Maid Flat area that were drilled by other agencies. The numbering system for well identification is shown on figure 2.

Descriptions of lithology are based on examination of drill cuttings with the aid of a binocular microscope. Many of the surveys listed in table 1 were made by the authors, using wireline-logging equipment mounted in a small van; most of the surveys listed for the Pucci chairlift site were made by an oilfield service company. Temperature surveys shown in figures 3-9 were made with portable and van-mounted equipment employing thermistor probes that have an accuracy and precision of $0.01^{\circ} \mathrm{C}$ or better.

Twenty samples of drill cuttings from the Pucci chairlift well were submitted to the Geothermal Laboratory at Southern Methodist University, Dallas, Texas. Bulk or solid-component thermal conductivities were determined under the direction of Dr. David D. Blackwell; the values range from 3.90 to $5.21 \mathrm{mcal} / \mathrm{cm} . \mathrm{sec} .{ }^{\circ} \mathrm{C}$.

FIGURE 1.-- Map of Mt. Hood area showing locations of geothermal wells.

TABLE 1 -- Specifications and drillers' logs of wells.

1S/9E-26aba. Eliot Branch site. Cathedral Ridge quadrangle (7.5'). Hood River County, Oregon. $45^{\circ} 27^{\prime} 35^{\prime \prime} \mathrm{N} .121^{\circ} 37^{\prime} 58^{\prime \prime}$ W. Alt. $860 \mathrm{~m}(2,820$ $\mathrm{ft})$. Drilled in 1980 to $220 \mathrm{~m}(720 \mathrm{ft})$ by American Deep Drilling \& Exploration, Oregon City, Oregon, using air-rotary method (including air hammer to install casing).

Construction: $26-\mathrm{cm}(101 / 4-\mathrm{in}$) inside diameter welded casing, surface to $78 \mathrm{~m}(256 \mathrm{ft}) .20 .6-\mathrm{cm}(81 / 8-\mathrm{in})$ id welded casing, surface to 92 m (301 $\mathrm{ft})$. $5-\mathrm{cm}(2-\mathrm{in})$ inside diameter tubing, surface to $218 \mathrm{~m}(715 \mathrm{ft})$, with 2-m (6-ft) well screen on end. 20.0-cm (7 7/8-in) hole from 92 m (301 ft) to 220 m (720 ft).

Water level in tubing: $34.8 \mathrm{~m}(114 \mathrm{ft})$, Oct. 1980.

Logs and surveys: Depth (m)
Lithology (see generalized lithology below) 0-220
Temperature, Nov. 22, $1980\left(\max 10.3^{\circ} \mathrm{C}\right) \quad 0-217$
Gamma 1 - 220
Caliper 69-220

TABLE 1 -- Specifications and drillers' logs of wells (continued).

	Thick-	
Generalized Lithology	Depth	
ness	(meters)	(meters)

$\left.\begin{array}{lccc}\begin{array}{c}\text { Clastic debris; angular to subrounded volcaniclastic } \\ \text { particles; degree of alteration variable }\end{array} & 84 & 84 \\ \text { Mudflow deposits; about } 50 \text { percent crystals, with } \\ \text { plagioclase, hypersthene, and hornblende }\end{array}\right)$

TABLE 1 -- Specifications and drillers' logs of wells (continued).

1S/9E-31aca. Clear Branch site. Cathedral Ridge quadrangle (7.5'). Hood River County, Oregon. $45^{\circ} 26^{\prime} 30^{\prime \prime}$ N. $121^{\circ} 42^{\prime} 57^{\prime \prime}$ W. Alt. approx. $1,280 \mathrm{~m}(4,200 \mathrm{ft})$. Drilled in 1980 to $311 \mathrm{~m}(1,020 \mathrm{ft})$ by American Deep Drilling \& Exploration, Oregon City, Oregon, using air-rotary and mud-rotary methods.

Construction: $20.6-\mathrm{cm}(81 / 8-\mathrm{in})$ inside diameter welded casing, surface to $69 \mathrm{~m}(226 \mathrm{ft}) .5-\mathrm{cm}(2-\mathrm{in})$ inside diameter tubing, surface to $311 \mathrm{~m}(1,020$ ft), with sealed end. $20.0-\mathrm{cm}(77 / 8-\mathrm{in})$ hole $69 \mathrm{~m}(226 \mathrm{ft})$ to 311 m (1,020 ft).

Water level in casing: Above land surface.

Logs and surveys:
Depth (m)
Litology (see generalized lithology below
0-311
Temperature, Nov. $19,1980\left(\max .10 .86^{\circ} \mathrm{C}\right.$)
0-311
Caliper 0-69
69-306
Gamma 3-311
Spontaneous potential/resistivity (single point) 69-300

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Generalized Lithology

Thick-	
ness	Depth
(meters)	(meters)

Colluvial deposits; angular clasts of hornblende andesite, pyroxene andesite 5

Epiclastic debris; assortment of clasts of andesite, basalt, and crystals of plagioclase, and hypersthene; some hematite staining and hydrothermal alteration 7479
Hypersthene andesite flows; partly fractured and permeable 26 105
Fluvial (?) debris; rounded clasts of andesite, basalt,and crystals; hydrothermally altered; partly silty 12117

Cemented epiclastic debris; matrix of small crystals and orange and green clay; abundant hydrothermal alteration

40157
Epiclastic debris; angular to rounded volcanic lithic and crystal debris 16 173
Hypersthene andesite, fractured; clay matrix 4 177
Cemented epiclastic debris of andesite and basalt; some clay matrix, alteration of fragments 55 232
Hypersthene andesite flow 3 235
Cemented, altered, andesite debris 6 241
Hypersthene andesite flow 5 246
Cemented epiclastic debris of andesite, some basalt; varying degrees of oxidation 65 311

TABLE 1 -- Specifications and drillers' logs of wells (continued).

2S/8E-1cdd. McGee Creek site. Bull Run Lake quadrangle (7.5'). Hood River County. $45^{\circ} 25^{\prime} 08^{\prime \prime} \mathrm{N} .121^{\circ} 46^{\prime} 06^{\prime \prime}$ W. Alt. $915 \mathrm{~m}(3,000 \mathrm{ft})$. In 1979 drilled to $235 \mathrm{~m}(770 \mathrm{ft})$ by Skyles Well Drilling, Oregon City, Oregon. In 1980 deepened to $610 \mathrm{~m}(2,000 \mathrm{ft})$ using mud-rotary method by Orvail Buckner Well Drilling, Redmond, Oregon.

Construction: $20.6-\mathrm{cm}(81 / 8-i n)$ inside diameter welded casing, surface to $45 \mathrm{~m}(147 \mathrm{ft})$, cemented to surface. $5-\mathrm{cm}(2-\mathrm{in})$ inside diameter tubing, surface to $608 \mathrm{~m}(1,994 \mathrm{ft})$, with $2-\mathrm{m}(6-\mathrm{ft})$ well screen on end. 20.0-cm (7 7/8-in) hole from $46 \mathrm{~m}(150 \mathrm{ft})$ to $610 \mathrm{~m}(2,000 \mathrm{ft})$.

Water Level in tubing: Approximately $10 \mathrm{~m}(30 \mathrm{ft})$ below land surface. Logs and surveys: Depth (m)
Lithology (see generalized lithology below) 0-610
Temperature, Aug. $12,1980\left(\max 60.0^{\circ} \mathrm{C}\right) \quad 0-608$
Gamma 2-603
Caliper 45-608
Resistivity, single point 45-323
Generalized Lithology

Thick-	
ness	Depth
(meters)	(meters)

Volcanic and glacial debris, including mudflows, block and ash deposits; fragments of andesite and dacite 47
$\begin{array}{ll}\text { Pyroxene andesite, with hematite alteration } 20 & 67\end{array}$
Mudflow or flow breccia, altered 96
Porphyritic pyroxene andesite, highly altered 52

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Generalized Lithology	$\begin{gathered} \text { Thick- } \\ \text { ness } \\ \text { (meters) } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$
Mudflow deposits	3	131
Pyroxene andesite, highly altered	6	137
Mudflow deposits, highly altered	6	143
Pyroxene andesite, altered	12	155
Hornblende andesite, altered	34	189
Pyroxene andesite	11	200
Epiclastic volcanic deposits	4	204
Hornblende andesite, fresh	16	220
Pyroxene andesite	15	235
Hornblende andesite	39	274
Reddish-gray clay	37	311
Dark-gray pyroxene andesite	24	335
Mudflow deposits; altered lithic clasts	6	341
Pyroxene andesite	16	357
Mudflow deposits; mostly plagioclase crystals	15	372
Pyroxene andesite	6	378
Mudflow deposits; mostly plagioclase crystals	20	398
Hornblende andesite flows	29	427
Mudflow deposits; about 25 percent crystals	46	473
Andesitic lavas, hydrothermally altered, with interbedded flow breccias	39	512
Pyroxene andesite	8	520
Mudflow deposts; altered lithic clasts	23	543

TABLE 1 -- Specifications and drillers' logs of wells (continued).

$$
\begin{array}{lc}
\text { Thick- } \\
\text { ness } & \text { Depth } \\
\text { (meters) } & \text { (meters) }
\end{array}
$$

Generalized Lithology

Pyroxene andesite, altered 550

Mudflow deposits: 60 percent lithic clasts, altered

23
Hornblende andesite 15588

Mudflow deposits; lithic clasts, altered 13601
Hornblende andesite, slightly altered 96

3S/9E-3cca. Mt Hood Meadows site. Mount Hood South quadrangle (7.5'). Hood River County, Oregon. $45^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{N} .121^{\circ} 39^{\prime} 36^{\prime \prime} \mathrm{W}$. Alt. approx. $1,665 \mathrm{~m}$ ($5,460 \mathrm{ft}$). Drilled in 1980 to $355 \mathrm{~m}(1,165 \mathrm{ft})$ by American Deep Drilling \& Exploration, Oregon City, Oregon, using mud-rotary method.

Construction: $20.6-\mathrm{cm}(81 / 8-i n$) inside diameter welded casing, surface to $50 \mathrm{~m}(165 \mathrm{ft}) 5-\mathrm{cm}(2-\mathrm{in})$ inside diameter tubing, surface to $352 \mathrm{~m}(1,155$ ft), with sealed end. $20.0-\mathrm{cm}(77 / 8-\mathrm{in})$ hole from $50 \mathrm{~m}(165 \mathrm{ft})$ to 355 m (1,165 ft).

Water level: Not determined; hole filled with drilling mud.
Logs and surveys:
Depth (m)
Lithology (see generalized below)
$0-355$
Temperature, Nov. $18,1980\left(\max 11.6^{\circ} \mathrm{C}\right)$
Gamma
5-350
3-355

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Generalized Lithology	$\begin{aligned} & \text { Thick- } \\ & \text { ness } \\ & \text { (meters) } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$
Colluvium; andesite, rare basalt	4	4
Epiclastic debris; andesite, basalt; subangular to rounded; soft clay matrix	13	17
Porphyritic hypersthene andesite	7	24
Epiclastic debris; andesite, basalt, clay matrix; hematite stained	6	30
Porphyritic hypersthene andesite, partly fractured and oxidized	15	45
Interflow of andesitic debris; oxidized	3	48
Porphyritic hypersthene andesite	3	51
Epiclastic debris; andesite, some basalt	2	53
Porphyritic hypersthene andesite	11	64
Epiclastic debris of basalt, andesite	8	72
Porphyritic hypersthene andesite	10	82
Basalt flow; brownish black, porphyritic	6	88
Epiclastic debris; subround to subangular andesite and basalt fragments, with some pale orange clay	107	195
Basalt flow; black, porphyritic	9	204
Epiclastic debris; andesite and basalt	30	234
Porphyritic hypersthene andesite	15	249
Epiclastic debris; hematite weathering	7	256
Basalt flow; dark gray, porphyritic	7	263
Epiclastic debris; basalt and andesite	6	269
Porphyritic hypersthene andesite	10	279
Interflow zone of debris; hematite-stained	3	282

TABLE 1 -- Specifications and drillers' logs of wells (continued).

	Thick- ness Generalized Lithology	Depth (meters)

Basalt flow; grayish black, porphyritic, oxidized	8	290
Porphyritic hypersthene andesite; oxidized	11	301
Epiclastic debris; andesitic	32	333
Epiclastic debris; basaltic	12	345
Basalt flow; dark gray, porphyritic	3	348
Epiclastic debris; basalt, with some andesite	7	355

3S/9E-7dbb. Pucci chairlift site. Mount Hood South quadrangle (7.5'). Clackamas County, Oregon. $45^{\circ} 19^{\prime} 18^{\prime \prime} \mathrm{N} .121^{\circ} 42^{\prime} 46^{\prime \prime} \mathrm{W}$. Alt. $1,628 \mathrm{~m}$ $(5,340 \mathrm{ft})$. In 1979 drilled to $274 \mathrm{~m}(900 \mathrm{ft})$ using air-rotary method and to $610 \mathrm{~m}(2,002 \mathrm{ft})$ using mud-rotary method by Orvail Buckner Well Drilling, Redmond, Oregon. In 1980 deepened to $1,220 \mathrm{~m}(4,003 \mathrm{ft})$ using mud-rotary method by Holman Drilling Corp., Spokane, Washington; completed 0ct. 1980.

Construction: $26-\mathrm{cm}(101 / 4-i n$) inside diameter welded casing, surface to $61 \mathrm{~m}(200 \mathrm{ft})$; cemented to surface. $20.6-\mathrm{cm}(81 / 8-\mathrm{in})$ inside diameter welded casing, surface to $189 \mathrm{~m}(620 \mathrm{ft})$. $15.6-\mathrm{cm}(61 / 8-\mathrm{in})$ welded casing, surface to $438 \mathrm{~m}(1,437 \mathrm{ft})$; suspended inside $15.6-\mathrm{cm}$ casing with casing hanger; packers in annulus between casing and hole at $948 \mathrm{~m}(3,110$ $\mathrm{ft}), 1,030 \mathrm{~m}(3,380 \mathrm{ft})$, and $1,095 \mathrm{~m}(3,590 \mathrm{ft})$; slot perforation $1,098 \mathrm{~m}$ $(3,600 \mathrm{ft}) .15 .2-\mathrm{cm}(6-\mathrm{in})$ open hole from $1,107 \mathrm{~m}(3,630 \mathrm{ft})$ to $1,220 \mathrm{~m}$ $(4,003 \mathrm{ft})$.

Water Level in casing: $573 \mathrm{~m}(1,880 \mathrm{ft})$ below land surface, Nov. 26, 1980. During drilling, water level as shallow as 80 m (260 ft), as on Sept.

TABLE 1 -- Specifications and drillers' logs of wells (continued).

20, 1979, when depth of well was $190 \mathrm{~m}(622 \mathrm{ft})$. On Dec. 3, 1979 water level approx. $215 \mathrm{~m}(700 \mathrm{ft})$, inside tubing then installed to $604 \mathrm{~m}(1,980 \mathrm{ft})$.

Logs and surveys:

Depth (m)
Lithology (see generalized lithology,
following). following).
$0-1,220$
Temperature - Dec. 3, $1979 \quad 0$ - 580

- Dec. 25, 1980; not stabilized 0-1,052

Television survey (videocassette), $15.6-\mathrm{cm}$ casing

0-366
Gyroscopic directional survey
0-438
Casing profile caliper, in $15.6-\mathrm{cm}$ casing 0 - 471

Open-hole caliper
Spontaneous potential
438-1,220
438-1,220
Dual induction (resistivity) $\quad 438-1,220$
Natural gamma $438-1,220$
Density 438 - 1,220
Neutron - porosity 438-1,220
Acoustic velocity 438-1,220
Microseismogram (fracture finder) 438-1,220

Generalized Lithology
$\begin{array}{cc}\text { Thick- } & \\ \text { ness } & \text { Depth } \\ \text { (meters) } & \text { (meters) }\end{array}$

Volcanic debris 67
Pyroxene andesite flow 30
97
Epiclastic volcanic deposits
6
103

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Generalized Lithology
Thick-
ness Depth (meters) (meters)
Andesite flows 31 134
Epiclastic volcanic deposits 6 140
Reddish-gray and gray pyroxene andesite flows 76 216
Epiclastic volcanic deposits, with some hydrothermal alteration 59 275
Pyroxene andesite 18 293
Epiclastic volcanic deposits, with some hydrothermal alteration 220 513
Pyroxene andesite 8 521
Epiclastic volcanic deposits 23 554
Reddish-gray to gray pyroxene andesite 9 563
Black, diktytaxitic olivine basalt 9
Epiclastic volcanic deposits 12 584
Pyroxene andesite 12
Epiclastic volcanic deposits 5 601
Hypersthene andesite 9
Epiclastic volcanic deposits 20 630
Hypersthene andesite 9 639
Epiclastic volcanic deposits 6 645
Pyroxene andesite 8 653
Volcanic deposits, with hematite alteration 38 691
Hypersthene andesite 6
Epiclastic volcanic deposits 15 712
Vesicular pyroxene andesite, partly oxidized 19 9 731
Epiclastic volcanic deposits 6572596610697737

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Generalized Lithology

Orange and brownish-gray altered andesite	43	780
Epiclastic volcanic deposits, highly altered, with chlorite, hematite, and limonite	22	802
Pyroxene andesite flows, hydrothermally altered Clastic andesite deposits, altered	49	851
Reddish-brown pyroxene andesite	11	862
Andesitic deposits, hydrothermally altered Dark, altered pyroxene andesite	22	884
Epiclastic volcanic deposits, altered Reddish-brown andesite, with hematite alteration	9	893
Epiclastic volcanic deposits, altered	19	912
Dark, porphyritic pyroxene andesite flows, with chlorite alteration	9	919
Epiclastic volcanic deposits, with secondary mineralization	98	931
Proxene andesite, with gray to black chlorite alteration	52	1090
Epiclastic volcanic deposits; intensely altered lava fragments Grayish-brown pyroxene andesite, varying from fresh to altered	980	

3D/9E-16cad. White River pit site. Mount Hood South quadrangle (7.5').
Hood River County, Oregon. $45^{\circ} 18^{\prime} 22^{\prime \prime}$ N. $121^{\circ} 40^{\prime} 34^{\prime \prime}$ W. Alt. approx.
$1,330 \mathrm{~m}(4,360 \mathrm{ft})$. Drilled to $305 \mathrm{~m}(1,002 \mathrm{ft})$ in 1979 by Harness

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Drilling Co., Tucson, Arizona, using mud-rotary method.

Construction: $17.8-\mathrm{cm}(7-i n)$ inside diameter welded casing surface to 71 m (232 ft). 5-cm (2-in) id tubing, surface to 288 m (945 ft), with $2-\mathrm{m}$ ($6-\mathrm{ft}$)
well screen on end. $15.9-\mathrm{cm}(61 / 4-\mathrm{in})$ hole from $71 \mathrm{~m}(1,002 \mathrm{ft})$.

Water level in tubing 44 m (144 ft), Aug. 13, 1980.

Logs and surveys:
Temperature, Nov. 21, $1980\left(\max 15.8^{\circ} \mathrm{C}\right) \quad 0-290$
Gamma

Depth (m)

2-290

Lithology - Preliminary examination shows that to total depth of $305 \mathrm{~m}(1,002 \mathrm{ft})$, formation consists of volcaniclastic debris, dominated by fragments derived from Mount Hood andesite flows.

3S/9E-30adb. Highway 26 \& 35 junction site. Mount Hood South quadrangle (7.5'). Clackamas County, Oregon. $45^{\circ} 16^{\prime} 56^{\prime \prime} \mathrm{N} .121^{\circ} 42^{\prime} 35^{\prime \prime}$ W. Alt. $1,107 \mathrm{~m}(6,630 \mathrm{ft})$. Drilled to $35 \mathrm{~m}(114 \mathrm{ft})$ by Orvail Buckner Well Drilling, Redmond, Oregon, using air-rotary method, and to 294 m (965 ft) by Harness Drilling Co., Tucson, Arizona, using mud-rotary method; completed Sept. 1980.

Construction: $31-\mathrm{cm}$ (12-in) id welded casing, surface to $35 \mathrm{~m}(114 \mathrm{ft})$. $20.6-\mathrm{cm}(81 / 8-\mathrm{in})$ welded casing, surface to $66 \mathrm{~m}(216 \mathrm{ft}) .5-\mathrm{cm}(2-\mathrm{in})$ id tubing, surface to 291 m (955 ft), with $2-\mathrm{m}(6-\mathrm{ft})$ well screen on end. $25-\mathrm{cm}(97 / 8-\mathrm{in})$ hole, $68 \mathrm{~m}(223 \mathrm{ft})$ to $107 \mathrm{~m}(350 \mathrm{ft}) ; 20.0-\mathrm{cm}(7$ $7 / 8$-in) hole to $294 \mathrm{~m}(965 \mathrm{ft})$.

TABLE 1 -- Specifications and drillers' logs of wells (continued).

Water level in tubing: Approx. $25 \mathrm{~m}(82 \mathrm{ft})$ below land surface, Nov. 1980.

Logs and surveys: Depth (m)
Lithology (see preliminary description below) 0-294

Temperature, Nov. 20, $1980\left(\max 15.5^{\circ} \mathrm{C}\right) \quad 5-288$
Caliper 68-293
Gamma 3-293
Spontaneous potential-resistivity (single point) 66-293

Preliminary description of lithology Thick-
ness Depth (meters) (meters)

Alluvial deposits of andesitic volcanic debris	69	69
Volcanic debris; dark andesitic fragments, basaltic fragments, ash	73	142
Vesicular basalt	3	145
0livine basalt	35	180
Volcanic debris; dark andesitic fragments, basaltic fragments, ash, clays	114	294

FIGURE 3 -- Graph of temperature measurements in well 1S/9E-26aba. -

Eliot Branch site, Mt. Hood area, Oregon. $45^{\circ} 27^{\prime} 35^{\prime \prime} \mathrm{N} .{ }^{\prime} 121^{\circ} 37^{\prime} 58^{\prime \prime} \mathrm{W}$. Altituide 860 meters (2,820 feet). Temperature measurements Hovember 22, 1980 by J. Robison \& J. Blevins.

FIGURE 4 -- Graph of temperature measurements in well 15/9E-31aca.

Clear Branch site, Mt. Hood area, Oregon. $45^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{N} .121^{\circ} 42^{\prime} 57^{\prime \prime} \mathrm{W}$. Altitude approximately 1,250 meters (4,100 feet). Temperature measurements November 19, 1980 by J. Robison \& J. Blevins.

FIGURE 5 -- Graph of temperature measurements in well 2S/8E-1cdd.
McGee Creek site, Mt. Hood area, Oregon. $45^{\circ} 28^{\prime} 08^{\prime \prime} \mathrm{N} .121^{\circ} 46^{\prime} 08^{\prime \prime} \mathrm{W}$. Altitude 915 meters (3,000 feet). Temperature measurements August 12, 1980 by R. Spafford, Southern Methodist University.

FIGURE 6 -- Graph of temperature measurements in well 3S/9E-3cca.

Mt. Hood Meadows site, Mt. Hood area, Oregon. $45^{\circ} 20^{\prime} 00^{\prime \prime} N$. $121^{\circ} 39^{\prime} 36^{\prime \prime} \mathrm{W}$. Altitude approximately 1,665 meters (5,460 feet). Temperature measurements November 18, 1980 by J. Robison \& J. Blevins.

Fience 7 -o ertph of tomperature measurments in well ss/si-7dto.
Pucei chafrifft site. Mt. Hood area, Oregon. $45^{\circ} 19^{\prime} 18^{\circ}$ M. $221^{\circ} 42^{\prime} 48^{\circ} \mathrm{M}$. Altitude 1.628 meters (5.340 feet). Temperature masurenents october 25, 1890 6. 6. Black. Oragon Department Eeology and Mineral Industries.

FIGURE 8 -- Graph of temperature measurements in well 35/9E-16cad.

White River pit site, Mt. Hood area, Oregon. $45^{\circ} 18^{\prime} 22^{\prime \prime} N$. $121^{\circ} 40^{\prime} 34^{\prime \prime} \mathrm{W}$. Altitude approximately 1,330 meters (4,360 feet). Temperature measurements November 21, 1980 by J. Robison \& J. Blevins.

FIGURE 9 -- Graph of țemperature measurements in well 3S/9E-30adb.

Highway 26 \& 35 junction site, Mt. Hood area, Oregon. $45^{\circ} 16^{\prime} 56^{\prime \prime}$ N. $121^{\circ} 42^{\prime} 35^{\prime \prime}$ W. Altitude 1,107 meters ($3,6 \overline{6} 30$ feet). Temperature measurements November 20, 1980 by J. Robison \& J. Blevins.

