U.S. Gen.

United States Department of the Interior Geological Survey

A NEW HEAT-FLOW CONTOUR MAP OF THE CONTERMINOUS UNITED STATES

by

J. H. Sass, W. H. Diment, A. H. Lachenbruch, B. V. Marshall,

R. J. Munroe, T. H. Moses, Jr., and T. C. Urban

Open-File Report 76-756

1976

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature. This report presents a series of maps depicting our interpretation of the heat flow within the conterminous United States based on all the data available to the U.S. Geological Survey (USGS) as of August 1976. Sources include all published data and about a hundred new USGS values currently being readied for publication.

Figure 1 shows the distribution of points. The dots are USGS values, and the circles, those published by other institutions. For completeness, points in northern Mexico, southern Canada, and the Pacific coastal waters are included. A few points were left off the map. These included sites where the temperature profile showed curvature not related to changes in thermal conductivity and sites within a 3-km radius of hot springs or other currently active hydrothermal manifestations. Because of problems associated with the scale of the map, we have occasionally generalized one value from a number within a small area. In other instances where a sharp transition occurs over a short distance, one point is offset to show clearly the control for the transition.

In Figure 2, observed heat-flow data (q) are shown as coded symbols with state boundaries and latitudes and longitudes as points of reference.

Figure 3 shows our interpretation of the heat-flow field as a contour map. Our aim was to produce a map that was as objective as possible, and in general, we were guided by the heat flow alone without reference to other geological or geophysical quantities; however in

drawing the contours in areas of spotty control, we were guided by thermal criteria such as the presence or absence of hot springs. Figure 3a shows the contours for the entire continental United States, and Figure 3b, for the western part of the country where most of the thermal structure is found.

Figure 4 shows the reduced heat flow (q_r) plotted on a base adapted from the physiographic map of Fenneman (1946). The reduced heat flow (see e.g., Roy and others, 1972) is defined by $q_r = q - DA_o$ where q = surface heat flux, A_o , the observed radioactivity, and D, an empirically determined constant for a given heat-flow province. For the United States west of the Great Plains, D is 10 km and for eastern United States, D was taken as 7.5 km (cf. Roy and others, 1968a; Birch and others, 1968). Figures 2 and 4 represent an updating and revision of Figures 9 and 10 of Diment and others (1975). The sources of individual points (with the exception of the unpublished USGS data which are now being readied for publication) may be obtained from Table 1 which lists published data by state, physiographic province, and geographic location.

						q	A
11 S.A							
ALAP TOL TALLADEGA	ព	'n	68	33-16	86-01	0 05	
U.S.A ARIZONA		.0	00	33-10	00-01	0.43	
AZ BR SRM SANTA RITA MTS. A719	R	0	68	31-50	110-45	2-06	
AZ BR HV1 HELVETIA A729	R	١Õ	68	31-52	110-48	1.78	3.8
AZ BR CNY CONVINENTAL A972	R	0	68	31-53	111-00	2,47	
AZ BR TB2 TWIN BUTTES A940	U	S	71	31-53	111-02	1,56	
AZ BR THE TWIN BUTTES A616	<u></u>	15	71	31-53	111-02	1.88	5.30
AZ BR SRI SIERRITA MTS.	R	0	68	31-53	111-08	5.0	7.7
AZ OK 104 IMIN BULLES VALT	U U	S.	71	31-54	111-02	1,98	
AZ OR IPO IWIN BUILES A044 A7 OD HDI HEIMET DELK AGAG	- U	15	71	31-54	111-03	2.10	5.3
AZ DR HEL HELMEL FEAR ADAD A7 BR HNI MISSION INA	u G	20	71	31-58	111-04	2.14	
AZ BR DR1 DRAGOON UCSD 4	- G		00 40	33-43	110-04	C . 75	÷ 1
AZ BR DR1 DRAGOON LICSD 4	ÿ	i a	40	12-02	110-04	1.50	3.1
AZ BR AJ1 AJ0	คื	iô.	68	32=06	112-45	2.4	6.0
AZ BR KCL TUCSON KCL-7	ŭ	is.	71	32-11	111-07	2.56	0.0
AZ BR SB1 SILVER BELL 0151	R	80	68	32+25	111-32	2.36	
AZ BR RR1 RED ROCK D-9-7	U	S	71	32-36	111-36	0,85	
AZ BR SH2 SAN MANUEL	<u>ا</u>	0.	48	32-37	110-39	1.2	
AZ BR ORI ORACLE UCSD=3	W	ľΑ,	69	32+37	110-48	1.85	5.7
AZ BR 5M1 SAN MANUEL	ų	IS	71	32-40	110-42	1.54	6.00
AZ BN TUZ TUMA LCRPw13	ų	IS.	71	32-41	114-37	2.10	
AZ BR TUS TUMA LURP-26	- U	15	71	32-44	114-37	1.92	
AZ ON CLI CLOT UM7-0 AZ AR CHI CHRISTMAS MINE SH-1	- 0	15	71	32-47	111-29	1.30	
AZ BR RW1 RAINBOW VALLEY UCCD-3	 	1.	40	33-02	110-10	2.40	1400
AZ BR BC1 BUCKEYE HTLLS UCSO-1	ũ	i A	60	22-12	112-38	3 43	
AZ BR HG1 HIGLEY Dele6	ū	ŝ	71	33-11	111=43	1.70	
AZ BR TH1 TEMPE A-1-3	ū	IS.	71	33-25	112-01	1.10	
AZ BR PH1 PHOENIX ST-1	Ū	IS.	71	33-32	112-20	3.00	
AZ BR QZ1 QUARTZSITE	R	0	68	33+38	114-20	2.4	10.7
AZ BR BG2 BAGDAD 13-64	R	to	68	34-35	113-11	1.64	
AZ BR BG1 BAGDAD 8-62	R	0	68	34-36	113-12	1.6	6.6
AZ BR HL1 HUALAPAI MTS.	8	to	68	35-08	113~49	2.14	Z.0
AZ BR WHL WHITE HILLS	R	10	68	35-43	114-22	2.82	
C. SP ET1 EL CENTRO DO							
CA SE ET2 EL CENTRO PU	. 5		68	12-30	110-30	0.80	
CA SB FT3 FL CENTRO 14	- 5		40	32431	110-43	1.40	
CA SB ET4 EL CENTRO LO	E H	16	60	32-41	116-22	1.20	
CA SB ETS EL CENTRO CW	- H	1F	68	32-43	115+57	1.90	
CA BR IVI IMPERIAL VALLEY UCH 127	Ċ	εõ.	71	32-46	115-14	2.6	
CA BR IV2 IMPERIAL VALLEY UCR 116	C	÷Ō.	71	32-47	115-15	4.9	
CA BR IV3 IMPERIAL VALLEY UCR 123	č	0	71	32-47	115-15	 3.8	
CA BR IV4 IMPERIAL VALLEY UCR 122	C	:0	71	32-48	115-15	3.3	
CA BR IVS IMPERIAL VALLEY UCR 124	C	0	71	32-48	115-15	2.9	
CA BR IV6 IMPERIAL VALLEY UCR 125	0	0	71	32-49	115-14	2.1	
CA BRILVY IMPERIAL VALLEY UCR 126	<u> </u>	:0	71	32-50	115=15	5.9	
CA ES A71 ANZA AND	H	E	68	J2-52	116=34	1.10	
UR FO REL ANGA ATT Ca ES 872 an7a am7	H H		66	33-30	116-36	1.87	3.60
CA SR 471 AN74 4+2	 	10	40	33432	110-30	4 6 7 0	2.00
CA BR CK3 FAGLE MT. CK=3	- 6	ic. Ic	71	33-32	116-34	1,20	2.CV 4.00
CA FS L81 L. A. BASIN IB-1	ŭ	is i	71	11-51	118-02	1.74	7100
CA FS ACI SANTA ANA AC-1	ŭ	IS	71	33-58	117+38	1.60	3.40
CA FS 582 SAN BERNADINO SB-2	H	ŧE	68	34-15	117-19	1.63	
CA FS SB3 SAN BERNADINO SB-10	. •	IE.	68	34-15	117-20	1.58	3.70
CA FS 584 SAN BERNADINO SB-5	۲	ŧΕ	68	34-16	117-20	1.08	
CA BR LC1 LUCERNE VALLEY LV-1	H	ŧΕ	68	34~37	116-43	1.65	3.1
CA BR BRW BARSTOW M10+11	6	20	68	34-30	116-41	1.6	

3 :

and the second

1000

						<u>q</u>	<u>A</u>
CA FS LH	3 LAKE HUGHES LH+3	HE	68	34-39	118-29	1.68	2.60
CA PS LM	CLAKE HUGHES LH-2	HE	68	34=41	118-26	1.56	3.40
CA FF TF	LARE HUGHES EH-1 Temachart NT. Duisa	HE	68	34+44	118-24	1.72	8,70
CA FE TE	2 TEHACHAPI MT. DH-70	HE	68	34-51	110-44	2,21	
CA FE TE	3 TEHACHAPI HT. DH=14	HE	68	34-52	118~45	2.03	7.70
CA FE TE	TEHACHAPI MT. DH-43	HE	68	34~53	118-46	2.02	2.10
CAPE IE	TELION RANCH DH-43	05	71	34-53	118-46	1.83	
	7 TEJON RANCH DHWAESA7.6	HE	21	34-56	118-49	1.30	1.10
CA FE EH	1 ELK HILLS 382-36	ŬŠ	żî	35-16	119-23	1.26	
CA FE EH	2 ELK HILLS 343+36	US	71	35-16	119-24	1.12	!
CA FE EH.	3 ELK HILLS 344-355	US	71	35-17	119-22	1+20	F
CAFE EN	+ ELN MILLS 372+35R 5 FLK MILLS 324-305	05	71	35-17	119-28	1+30	F - F
CA FE EH	5 ELK HILLS 385-247	115	71	35-14	110-33	1.20	
CA FE EH	7 ELK HILLS 366-24Z	Ū.S	71	35-18	119-34	1.00	
CA FW TS	LA PANZA TS-1	US	71	35-26	120-30	2.21	5.40
CA FE WB	WEST OF BAKERSFIELD	BE	47	35-28	119-45	1,29	
CA FH HT	J LUSU AREA 1 Moli Isted Moli	CO	75	36-03	117=46	10.3	
CA FW HT	5 HOLLISTER HO-5	HE	60	36432	121-27	1.49	1
CA FW HT	HOLLISTER HO-1	HE	68	36+43	121-24	1.71	3.40
CA FW HT	+ HOLLISTER HO+4	HE	68	36-48	121-20	2.30	
CA FW HT	5 HOLLISTER HO-6	HE	66	36-50	121-17	2,30	F
- CA 78 111	T HOLLISTER HU-2 L 7	HE	68	36-53	121-35	1+70	
CA SN JB	L'JOSE BASIN	115	00 71	37-06	110-21	1.40	
CA SN SU	SAN JOAQUIN EX. RANGE	US	źî	37+06	119-44	0.61	2.1
CA SN HC	HELMS CREEK	US	71	37-08	118-59	1.30	9.0
CA SN ST	SHERMAN THOMAS	US	71	37-10	120+04	0.45	0,70
	T PERMANENTE	05	71	37-19	122-07	2,20	
CA FE SE	L SUNNYVALE C=3	05	71	37-27	122-02	2.02	3.4
CA FE HP	MENLO PARK MP-1	ŰŠ	68	37-27	122-10	2.10	
CA FE DM	DUMBARTON S.F. BAY	US	71	37-29	122-08	2,25	5
CA BR BRI	S BLACK ROCK	US	71	37-41	118-32	2.00)
CAFE IN	LINAUT UNVC Fordveley metu	05	71	37-48	121-35	0.96	•
CA SN OM	OMO RANCH	- 03 R0	/1 68	30-72	120-34	2.00	
CA SN WR	WRIGHT+S LAKE	RO	68	38-50	120-15	0.83	4.70
CA SN LO	LOOMIS	80	68	38-50	121-10	0.62	1.80
CA SN HL		RO	68	38-52	120-39	1.06	6.40
CA SN IK	LEODNIAKE	05	71	38-52	121-03	0.70	
CA SN GR	GRASS VALLEY	ĉĭ	57	30-17	121+01	1+4	3.20
CA SN SJ	3 SAN JUAN RIDGE	US	71	39-24	120-52	0.69	1.70
CA FE FB	FORT BRAGG	US	71	39-26	123-44	2.00	F
CA FE-WI	- WILLITTS EC-1	US	71	39-34	123-07	1.85	
	COLD CREEK FA-A	05	71	39+42	122+48	1.20	2.80
CA BS ML	MOONLIGHT VALLEY	05	71	39-42	120-48	1.50	10.50
U.S.A	- COLORADO	~ •	• •	-0-13		1.7.	10430
CO'RM TI	L TRINIDAD #1	RE	75	37-13	104-43	4.69	
CO RM HS	HESPERUS DDH=1	RO	68	37-23	108-04	2.08	i e
CO CO OV	S SUMMITVILLE DDH→SM31 Dove opeek ddu-a o	DB	74	37-26	106-36	2.46) 1
CO CP DV	DOVE CREEK DUHHOAYY	08	14	37-47	108-46	2.17	, 1
CO RM SN	STLVERTON	RE	75	37-48	107-37	2.27	, 1
CO RM OU	OURAY DDH=1	DB	74	37-56	107-40	3.7	•
CO RM. MAN	(MARY ALICE CREEK	RE	75	38-03	107-30	3.44	•

•4

and the second

出来の記録

2002753

199

Constanting

が見たた

					<u>1</u>	$\underline{\Lambda}$
CO RM NEI NELLIE CREEK	RE	75	38-04	107-23	3.07	
CO RM WUI WESTCLIFFE DDH-3+4+9+1	08	74	38*08	105-27	1.62	
CO CP ATI ATKLUSON MESA	R£	75	38-15	108-49	1,38	
CO RM WIL WEIMORE NI	RE	75	38-14	105-05	1.23	
CO MM ONI GEM MARK UDH+314	DB	74	38-16	105-32	1.87	
CO DW CCM CANON CITY DDUCA	ME	75	38-26	108-46	1.33	
CO RM CUP CUMBERLAND RASS DDH-CHA	HQ DD	68	38-30	105-20	. 1.84	
CO RM BVA BUENA VISTA		74	30-41	108-30	1:80	
CO GP REC HED CREEK 7	AT	50	38-49	104-49	1.4	
CO RM CHE CRESTED BUTTE	ŘĒ	75	38-55	107-07	2.40	
CO CP GL1 GLADE PARK DDH=10+11+16	08	74	38=57	108-37	1.45	
CO RM PD1 PARADISE PASS ODHPP+2	RO	68	39-00	107-04	1.55	
CO RM KO1 KOKOMO DDH+1201	D8	74	39-26	106-08	2.8	
CO RM SPK SOUTH PARK	RE	75	39~28	105-47	5.33	
CO RM RB1 ROBERTS JUNNEL	RO	68	39-30	105-50	2.46	
CO RM RDI REDULIFFE	RE	75	39+31	106-22	2.64	· .
CO RM URI URAD DDH=CX111-194	KU No	58	39-33	106-24	2.25	
CO CP TG2 RTO BLANCO TG2.3	UB HIS	74	39=40	105-50	2,50	
CO RM GD1 GOLDEN DDH=1	03	1 L 4 R	30-47	108-09	1.50	
CD RM CRY CENTRAL CITY	RF	75	39-48	105-10	2.20	
CO RM RMA ROCKY MT. ARSENAL	US.	71	39=51	104=51	2.00	3.90
CO RM APX APEX DOH-178H	DB	74	39-52	105-33	1.67	
CO CP RF1 RIFLE 28-1 & 14-1	RO	68	39-57	108-23	1.24	
CO CP YC2 YELLOW CREEK CH=2	US	71	39-58	108-28	1.40	
CO CP. YC1 YELLOW CREEK CH-1	U5	71	40-03	108+20	1.50	
CO CP BRU BARCUS CREEK BC~1	US	71	40=03	108-31	5.00	
CO CP YC3 YELLOW CREEK CH-3	US	71	40-03	108-21	1.50	
CO RM AM1 ADAM5 TUNNEL	8 I	50	40-15	105-40	1.7	
DC 40 0C1 D08+1	61.					
USA FLORTDA	0.	04	74-00	//=00	1.12	
FL CN 001 NFAR ORLANDO	КΤ	72	20-28	A1-13	0.92	
U.S.A GEORGIA			20-20	01-13		
GA CN LRI LA GRANGE	DR	63	33+	85-	1.0	
GA CN GHI GRIFFIN	DR	63	33-13	84-15	0.97	
U.S.A IDAHO						
ID CU ID1 PT. PICKED OFF MAP	RO	72	44=06	115-40	3.0	
ID RM WAL WALLACE	US	71	47-29	115-58	2,30	
ID RM SRI SILVER SUMMIT	RO	68	47=30	116-02	2,25	
ID RM UMI URESUENI MINE	КŌ	60	47+30	116+05	2.22	
1 TP CY1 COESCENT CITY (TADEN A	~~	70			• • • •	
IL IP CY2 CRESCENT CITY, F. WESSEL	20	70	40=40	87-46	1.44	
IL IP CY3 CRESCENT CITY, CONDUCT 1	20	70	40-40	87-54	1.42	
IL IP ANI ANCONA, MUSSER 1	čõ	70	41-01	88-54	1.41	
U.S.A INDIANA		••				
IN IP ROI ROYAL CENTER 5-36.38	co	70	40-53	86-28	1.40	
IN IP ROZ ROYAL CENTER 5-55	C.O	70	40-55	86-27	1.39	
IN IP RO3 ROYAL CENTER S=46	CO	70	40+55	86-28	1.41	
IN IP MIL MONRUEVILLE: L. WELL	CO.	.70	40-59	84-52	0.97	
IN IF LFI LINKVILLE FIELD	сø	70	41-23	86-14	1.26	
- VESTAR "" 1088 TA TO CIO CRIDOR D. HUTCHINSON "		70	41-12	45-10	1 4 7	
TA TP KET KEOTAL L. MODEL N	60	70	41-12	91-EE	1.47	
TA TP KE2 KEOTA. J. ANDERSON 3	c0 c0	70	41-22	91433 91433	1.49	
IA IP RL1 REDFIELD BOOK 1	ČΟ	70	41-34	94-06	1.17	
IA IP RL2 REDFIELD, BRODERICK 1	cõ	70	41-40	94-10	1.17	
IA IP RL3 REDFIELD. PRICE 1	co	70	41-42	94-10	1,16	
IA IP VI1 VINCENT, ANDERSON 1.3	ço	70	42-38	94=01	0.91	

٨

No. of Concession, Name

					<u> </u>	<u> </u>
IA IP VIZ VINCENT. HOFFMAN 1-OLSON	co	70	42-38	94-03	0.95	· · ·
IA IP SPE SPENCER	RO	68	43-10	95-11	0.44	
KS IP SYR SYRACUSE	81	50	37-57	101~45	1.55	
KS IP LY1 LYONS HOLE 1.2	US	71	38-23	98-10	1.50	
MI CS LSI STATION B	ыс	45	47-11	01-15	מול מ	
MI CS LS2 STATION 5	HS	65	47-35	88~13	0.79	
MI CS L53 STATION 4	HS	65	47-49	88~54	0.75	•
MI CS LS4 STATION 7	HS	65	48-02	86-14	0,87	
ME AP CAO CASCO	80	6 A	44-03	70-37	1.80	12.0
HE AP BLU BLUE HILL	RO	68	44-24	68-37	1.44	14.67
U.S.A HASSACHUSETTS	• •					
MA AP UWI UREWSTER	RO	68	41-45	70-05	1.16	
MA AP MF1 MTLLERS FALLS	RO	68	42-23	72=27	1.47	
MA AP CHE CHELMSFORD	RO	68	42-38	71-25	1.63	11.6
U.S.A MICHIGAN						
MI IP LEN LENEY 1956 MT TP NV2 NORTHYTELE 106	LE	56	42-06	83-23	0.8	
MI IP NV1 NORTHVILLE+ N+203	C0	70	42-26	83-34	1.20	
MI IP BP1 BURNIPS. 5-503-E	co	70	42-43	85-49	1.07	
HI IP OLI OVERISEL 150	JB	73	42-44	86-00	0.90	
HI IP OLI OVERISEL 157 MI IP OLI OVERISEL 162	18	73	42-44	86-00 84-00	0.90	
HI IP HUT MUTTONVILLE 2	18	73	42-48	82=44	0.90	
MI IP BGY BILLINGSLEY 1	JB	73	43-32	85 36	1.00	
HI IP AUL AUSTIN-MAREK 1	JB	73	43-32	85-16	1.20	
MI IM ELL L. BREGGS 2 MI IP MOI MARION 972	38	73	43-50	85×35 85×45	1.20	
MI IP HOZ MARION 965	JB	73	44-04	85-05	1.30	
MI IP MO3 MARION 829	JB	73	44=09	85-00	1.20	
NI IP MO4 MARION 192	JB	73	44-12	85+11	1.10	
MI CS CUI CALIMET	RU BT	54	40=40	84-28	1.05	
HI CS DW1 DELAWARE	RÓ	68	47-24	88+01	0.99	
U.S.A MINNESOTA						
NN CS WIE ROT CITES WILLIAMS 71	RO	72	44-54	93-12	1.15	
MN CS WI3 ROY CITES WILLIAMS 71	RO	72	47-09	95-12	1,03	
MN CS EY1 ELY 3.4	RO	68	47-69	91-43	0.82	1.4
U.S.A MISSOURI	•••					
MO TP ADI BOSS USANT	80	65	37+30	90-40	1.24	
MO IP BF1 BOURBON B-20	RO	68	38-09	91-15	1.24	
MO IP LVY LEVASY	RO	68	39-05	94-10	.1.17	5.5
U.S.A MONTANA BT PH CN1 CODVE CITY 1 2						
MT RM DN1 DTIION	81	27	45-03	109-57	1.31	
MT RH NB1 NYE BASIN HOLE NB-2	US	71	45-22	109-49	1.39	5.50
MT RH VG1 VERDIGRIS CREEK M-22	US	71	45-23	109~54	1.63	5.50
MI KM VOZ VERDIGRIS CREEK M-19A	US	71	45-23	109-55	1.41	5.50
MT RM WLL WHITEHALL	8L BL	73	45-45	112-20	1.94	5.2
MT RM SF1 SILVER BON	ΒĹ	73	45-57	112-42	2.0	4.8
MT RM BUI BUTTE DDH 8-3	eL,	67	46-03	112-33	2.1	8.6
MIRM SHI SELK PARK MIRM DGI DEEP LOOGE	BL	73	46-15	112-27	1.98	7.0
MT RM PG1 PHILIPSBURG	81 81	73	46-29	112-35	1.93	
MT RM UN1 UNIONVILLE	RL	77	46-29	112-07	1.92	

								• <u>q</u>	A
MT	RM	011	OTTOWA GULCH DOH-1.2	88	73	46-44	112-19	3.2	
MT	RM	¥01	WOODCHOPPER G. DDH~4.6	88	73	46-44	112-19	4.7	
MT	RM RM	Rai	BALD BUTTE DDH=9, 10+13	BB	73	46-43	115-11	5.0	
MT	RM	EHI	EMPIRE CREEK DDH-15	68	73	46-45	112-22	9.5	
MŤ	RM	NH1	NEIHART 36+37	eĻ.	67	46-58	110-43	1.66	
.MT	RM DM	LI1	LINCOLN 1,29	BL.	67	47-02	112-23	2.16	
мт	RM RM	CXI	CONRAD	BC BL	67 40	48-14	115-55	1+75	
MT	RM	KN1	KEVIN-SUNBURST	81	69	48-45	111=50	1.0	
υ,	5.A.		NEVADA	_					
NV	98	CE1	CRESCENT PEAK 1	RO	68	35-28	115-08	2.33	7,90
NV	82	RK1	INDIAN OPRA VALLET INAA BOCK VALLEY TWAS	05	71	35-35	115-47	2.1	
NV	ÐR	FF1	FRENCHMAN FLAT TW-3	US	71	36-46	115-52	2.20	
NV	BR	нні	HAMPEL HILL TW-F	US	71	36-46	116-07	1 81	
NY	BR	YH1	YUCCA MT. TH-6	US	71	36-48	116-24	1.60	
NV NV	BH	YF1	TUCCA FLAT THEE	US LIE	71	37-03	116-00	0.70	
NV	BR	PMI	PAHUTE MESA PHAI	115	71	37-11	110#12	1.90	
NV	8R	PM2	PAHUTE NESA PH-2	US	71	37-21	116-34	1,50	
N¥	8R	TP4	TEMPIUTE	US	71	37-38	115-33	1.10	5,40
NV	BR	SK1	SILVER PEAK	US	7.1	37+43	117-47	1.90	
NV	88	GPD	GOLDE IELD	US	71	37+44	117-12	2.30	10,30
NV	88	851	BRISTOL RANGE ESP-1 .	115	71	37-38	114#30	1.69	
NV	BR	POI	PIOCHE B-1 & B-3	RO	68	38+05	114-37	1.92	
NV	BR	8\$2	BRISTOL RANGE ESP-3	US	71.	38=06	114-36	1.74	•
NV	BR	CGI	CROW SPRINGS 2,4,7,8610	RO	68	38-14	117-33	2.30	
NV NV	AR	541	HALL MINE BY & ON	US DA	71	38+18	116,035	1.30	
NV	BR	RYI	ROYSTON	RO	68	18-19	117010	1.68	
NV	8R	РТН	PILOT HTS, DH-1+2 & 3	us	71	38-19	117-52	1.95	2.7
NV	BR	LNI	LUNING M-4	US	71	38~29	118-12	7.20	:
NV NV	8R nn	UEI	HALSTON VALLEY UCE-1	US	71	38+34	116-56	1.79	4.40
NV	BR BR	PSI	PATTERSON PASS POLO 1 3	115	끆	38-35	116-12	1.20	•
NV	BR	FV1	FISH LAKE VALLEY UCF+10	บร	71	38~41	116-28	1.20	
N۷	88	LSV	LITTLE SMOKEY VA. UCE-14	US	71	38-43	116-02	1.50	
NV	BR	FV2	FISH LAKE VALLEY UCE-9	US	71	38-49	116-27	1.20	
NY	82	DNC	GARONERVILLE DINE NUT CANYON DN-10	RO	68	38-51	119-45	1.14	
NV	88	EV3	FISH LAKE VALLEY UCE+124	115	71	38-52	116=20	2+43	3.00
NV	BR	YR1	YERINGTON	ŘÖ	63	38=55	119-04	2 36	
NV	BR	YR2	YERINGTON	US	71	38-56	119=04	1.84	
NV	88	SC1	SCHURZ	RO	68	38-57	118-38	1.88	5.30
NV	90	501	SINGATSE BANGE		11	38+55	116-36	2,00	
NV.	88	WH1	WARD MT.	Ro	68	39=04	114~55	2.05	
NV.	88	TCÌ	TAYLOR CANYON	RO	68	39-05	114-41	5.32	
NV	BR	SS1	SAND SPRINGS	US	71	39-12	118-22	1.57	3.20
NV NV	88	ME I CV3	MUNIE CRISIO 9 & 14 Stiver city cu-1	RO	68	39-14	115+34	2.14	5 70
NV	BR	RTI	RUTH	80	11	30-14	115774V 116059	1.92	⇒,/U 7,70
N٧	BR	5P1	SPRING VALLEY	RŐ	68	39-17	114-21	1.83	
NV	88	VC1	VIRGINIA CITY C-63	ŲS	71	39-18	119-39	7.00	3.40
NV	BR	[W]	LOUSETOWN	US	71	39-23	119~38	2.80	
NV NV	BK BD	₩МÌ ЕК1	WASHINGION MILL VC+4	US	71	39-28	119-38	2.10	6.50
NV	BR	LLI	LOVELOCK	RO	68	40-02	118-19	2.50	*• 3V
N٧	88	GAP	GOLD ACRE PIT	US	71	40-16	116+45	2.50	4.60

.

									<u>q</u>	A
NV	BR	TN2	TENABO	US	71	40+18	116-40		3.53	4.1
NV	BR	LDI	LANDER	US	71	40-20	116-43		3.00	
NV	BR	IRC	IRON CANYON	US	71	40+33	117-06		3.50	4.3
	98	BMI	PANIHER CANYON BM3 & 37	US	71	40-33	117-34		3,80	
	90	011	DATING MIN DICKINGHAN DUA 6 11	HO	60	40-33	117-14		2,06	
NV	88	FCI	FLDER CREEK FC=4	116	71	40-37	117-04		2.70	7.60
NV	BR	GVI	ADELAIOE GV-1	us.	71	40-50	117-04		3420	1.90
NV	BR	WE1	WHITE ELEPHANT BUTTE	US	71	41-53	115+05		3,30	043
<u>,</u> U.	S.A.		NEW HAMPSHIRE		• •				3,30	
NH	AP	FW1	FITZWILLIAM	RO	68	42+47	72-08		1.63	9.6
NH	AP	DU1	DURHAM	RO	68	43=07	70-55		1.08	3.8
NH NH	AP	CCD	CONCURD	RO	68	43-12	71-32		1.73	
	AP	0.11		RO	68	43-16	71-59		1.59	
NH	42	K 0 1	KANCANAGUS	RU	68	43-56	71-32		2.15	21.2
NH	AP	NCI	NORTH CONWAY	80	60	44-02	71-29		1.89	20+1
NH	AP	NR1	NORTH HAVERHILL	RD	68	44-06	72-00		1.34	7.8
U.	5.A.		NEW MEXICO						1104	
NM	ØR	нц	HACHITA .	0S	75	31=51	108-18		2.40	4.5
NH	0R	LTI	LITTLE HACHET MT.	RE	75	31+54	108-26		2.30	
NM	BR	CD1	CORNUDAS	05	75	32+01	105-29		2.00	
- PEM - KAN	10 14	601	GRANITE DAP	ME	75	32-07	108-56		1.22	
	10	211	SILING NO T	RE	75	32+10	109-02		2,92	
NM	AR	.WS1	WHITE SANDS #2	0 m	30	32-14	104=07		1.20	
NM	10	MWI	MARLAND-OHIO #1	HC	54	32-18	103-65		1 00	
NH	BR	LGI	LORDSBURG	05	75	32-20	103-45		1.70	2.30
NM	BR	MRI	HIRAGE	RE	75	32-22	107-40		9.68	
ŇŇ	IP	881	BLVEBIRD #1	HC	56	32=24	104-16		0.90	~
NH	8R	061	OROGRANDE	D5	75	32-24	106-07		3.10	5.10
NM	BR	002	OROGRANDE UCSD-6	MA	69	32-26	106-06		2.24	6.70
NM MM	80	W25	WHILL SANDS #3 ODGAN DOW-1	RE	75	32+26	106-27		2.08	
NH	80	ON2	OPGAN	08	14	12+27	106-36		2.76	
NM	BR	063	OROGRANDE NORTH	03 8F	75	12-20	106-36		1 75	3.40
NM	IP.	G01	GETTY #7 DOOLEY	нс	56	12-30	104-09		1.00	
NH	BR	WS3	WHITE SANDS #4	RE	75	32-32	106-25		2.18	
NM	8R	CPK	COOKS PEAK	05	75	32-32	107-41		3.60	2.40
NH	BR	WG1	WHITE SIGNAL	RÔ	68	32-32	108-21		2.06	
NM	IP	SAM	SANDBURG AND MILLS #1	HC	56	32=38	104-14		1.20	
- NM - NM	88	111	ITRONE UCSD=5	NA DC	69	32=40	108-29		2.16	7.10
NM	10	CRO	ΓΑΝΟ ΥΑЦЦΟΙ ΓΑΡ ΡΟΓΚ ΟΙ ΑΝΟ ΟΧΕ ΑΙ		75	32-43	107=35		2.60	4.90
NH	6R	SRA	SANTA RITA	nc	20	32-47	103=48		1 40	4 20
NM	BR	BK1	BITTER CREEK	80	68	12-54	100-04		2.77	4,20
NM	8R	API	ANIMAS PEAK	RE	75	32-58	107-32		1.70	
NM	8R	CF 1	CLIFFE	RÖ	68	33-03	108-30		2.56	
NH	BR	TTI	T OR C NORTH	RE	75	33-17	107-16		2.20	
NM	BR	CI1	CHLORIDE #1 & 2	RE	75	33-19	107-42	•	5.95	
NM NH	BR	581	SIERRA BLANCA	RE	.75	33+28	105-47		1.77	
NM	00	NG1	HAILHOAD LANA SUUTH	RE	75	33-31	108-11		1.98	
NM	BR	FT1	FORT CRATG	RE.	15	33-34	107-36		3.36	
NM	BR	czi	CARRIZOZNW	RE	70	3343/	104-03		2:01	
NM	BR	BN1	BIG RED CANYON	RF	75	11-44	107-21		1.28	
NM	ÐR	R52	RAILROAD CAN NORTH	RE	75	33-45	107+49		1.75	
NH	ØR	8H1	BINGHAM SOUTH	RE	75	33-53	106-21		1,56	
NM	8R	8HS	BINGHAM NE	RE	75	33-57	106-17		1.46	
NM	BR	NY1	NORTH BALDY	RE	75	34-02	107-13		2.48	
NM	BH-	CD1	CHUPADERA MESA	RE	75	34-06	106-48		2.20	

A

					q
	00	N 0.1	NACON CHA NEOT	.	
NM	BR	MG2	MAGDALENA WEST MAGDALENA NY	RE 75 34=07 107=17 RF 75 34=09 107=10	2.01
NH	BR	NKI	NORTH LAKE	RE 75 34-14 107-38	1.91
NM	BR	151	INDIAN SPRINGS	RE 75 34-18 107-26	1.95
NM NM	BH RD	051	PIE IOWN NORTH	RE 75 34-19 108-07	1.55
NM	BR	P12	PIETOWN NW	RE 75 34=20 108=30 RE 75 34=23 108=13	1.44
NM	BR	571	SILVER CITY	RE 75 34-47 108-16	2.33
NH	BR	AQI	ALBUQUERQUE #1 & 2	RE 75 34-56 106-33	1.50
NM	BR BR	2P1 CF1	CUNI PIA MESA Cutnes cooneds	RE 75 34-58 108-45	2.96
NH	ÐR	6 61	WAGON WHEEL	RE 75 35=00 105=37	0.02
NH	BR	MYE	MORIARTY EAST	RE 75 35-00 105-54	1.02
NH	8R	AQ2	ALBUGERQUE	RE 75 35+03 106-31	1,08
NM	BR	HM J	HOLWEG	RE 75 35-07 107-48 DE 76 35-00 104-14	1.68
NH	BR	RUI	RIO PUERCO #2	RE 75 35+12 107+01	2.27
NH	0R	RU2	RIO PUERCO #3	RE 75 35-12 107-05	2.66
NH	BR	RU3	RIO PUERCO #1	RE 75 35-13 107-01	3.08
NB MH	BR	500	SAN DEDOA NI L 3	RE 75 35+13 107+19	2.36
NM	8R	M21	HARQUEZ SE	RE 75 35+15 106+11	2.11
NH	8R	MZZ	MARQUEZ	RE 75 35-17 107-15	Z.14
NM	BR	SFP	SAN FELIPE	RE 75 35-18 106-15	1.86
NM	병문	021 SH0	URTIZ MT. SAN MATEO MESA	RE 75 35020 106-11	1.76
NH	BR	GII	GALISTEO	RE 75 35020 107437 RE 75 35025 107437	1.68
NH	BR	CS1	CERRILLOS	RO 68 35-28 106-07	1.22
NH	BR	GW1	GALLUP WEST	RE 75 35-33 108-46	2.94
NH	BR	GRZ MK1	GALLUP WEST #2	RE 75 35-35 108-51	1.66
NM	BR	GW3	GALLUP WEST N3	RE 75 35=38 109=19	1.27
NH	₿R	GW4	GALLUP	DB 74 35-39 108-31	1.61
NM	BR	CW1	CROWN POINT	RE 75 35-40 108-00	1.91
NM	98 98	C#2	CHACO SLOPE	RE 75 35-62 107-56	2.04
NM	BR	evî	BUCKMAN	RE 75 35-52 106-09	1.49
NM	8R	GŤÍ	LOS ALAMOS GT-1	PO 73 35 54 106 40	3.6
NH	88	RA1	RED HT.	RE 75 35-55 107-49	1.70
NM	9R 9R	CYN	CHACU WASH CHACO CAN.	RE 75 35-56 107-48 RE 78 14-02 107-54	1.63
NM	BR	DX1	DIXON	RE 75 36-13 105-48	5.25
NM	ØR	GAV	GAVILIAN EAST	RE 75 36-22 106-54	1.51
NM	88	TAL	TIERA AMARILLA	RE 75 36-23 106 23	2.34
NM	AR	EVI	FL VADO SW	RE 75 36+27 105-35 RE 75 36-27 106-51	2429
NM	BR	GB2	GOBERNADOR SOUTH	RE 75 36+36 107+21	1.35
NM	8R	MUI	HUNOZ CREEK	RE 75 36-36 107-25	1.29
NM	88	TAB	TABLE MESA #1 6 2	RE 75 36-37 108-37	2,30
NM	89	CZK	CARRIZO CREEK	HE /5 36439 105459 DE 75 36439 107-60	2,66
NH	BR	GB1	GOBERNADOR GB-1	US 71 36-41 107-12	2.01
NH	BR	001	QUESTA EAST	RE 75 36-42 105-28	2.04
NM	BR	002	QUESTA PLANCO SACT HO	R0 68 36-42 105-31	1.53
NM	BR	RVI	RED RIVER DDH-1	HE 75 36-42 107-43 DB 74 34-43 106-94	1.33
NM	BR	VJI	VERMAJO RIVER	RE 75 36048 104453	1.93
NM	BR	802	BLANCO EAST #1	RE 75 36+45 107+43	1,31
NH	88	RN1	RATTLESNAKE	RE 75 36-45 108-48	1.46
NM NM	BR BR	NOI 803	NU AUUA Blanco North	RE 75.36-46 105-58 RE 75.36-47 107-50	3.02

-9

							q	• <u>A</u>
NH BR AEL	AZTEC NE	RE	75	36~50	107-55		1.47	
NH BR VJ2	ATTER NUMPER	RE	75	36-54	184-55		2.86	
NH BR CHW	CEDAR HTLL BEST	NE De	75	36-54	108~01		1,46	
U.S.A. +	NEW JERSEY	nc.	r ə	20431	107-59		1421	
NJ AP FRI	FRANKI, IN+OGDENSOURG	UR	71	41-06	74-35		0.91	
U.S.A	NEW YORK							
NY AP WAL	WAIRING GLEN HOLE 23	UR	71	42-25	6-54		1.72	
NY AP HYI	WEST VALLEY HOLESI	UR HD	4	42021	74-20		1.00	
NY AP HM1	HINROD MH7.8	UR.	71	42-21	76057		1.55	
NY AP LXI	LACKAWANNAS BUFFALD HOLE.	UR	71	42-48	78-51		1.20	
NY AP NEL	NIAGARA FALLS WPL-1	UR	71	43-05	79-00		1.10	
NY AP MIL	MIUDLEPORT FRC+1	UR.	71	43=12	78-26		1.18	
NY AP UNI	00,5100 FALL3 F1 17495797098	RU DO	68	4]∞[8 4/ \3	73+37 73-37		1.05	•
NY AP WD1	WADHAMS	80	50 68	44013 44-14	73-36		0,70	0.4
NY CS 8Z1	BALHAT	ันค	7/1	44016	75025		1.27	44
NY AP SQ1	SARANAC LAKE	RO	68	44-20	74-16		0.81	0.4
NY AP RX1	RIVERVIEW	R0	68	44~35	73-54		1.22	5.8
U.S.A. **	NORTH DAKOTA							
NO IP CUI	CARRIE HOVESHD AS	UL AA	59	48-18	101-40		1.4	
NO IP ENT	E-L-K- #1 NELSON	čn.	70	40-53 40-64	102-20		2.20	
U.S.A. **	OKLAHOMA	ΨΨ		40-30	100030			
OK IP PC1	PICHER 43~C.P.5	RO	68	36-59	94~52		1.4	7.6
U.S.A.	OREGON							
OR BR KL1	KLAMATH CO. Alvord 10-14-1431	BL.	69	42-12	121-50		1.6	
OR OR TK!	THOMAS CR. 37-18514	80	73	42-17	120-07		2.3	
OR CU BRS	BURNS	80	13	3C9CC 43077	120021		346	
OR CU GY1	GRASSY MT. 21-43536	80	73	43-41	117~23		1.5	
OR CU VEL	VALE	BL.	69	43-46	117-22		1.6	
OR CU CB1	CHALK BUTTE 19-45526	80	73	43-52	117-10		3.6	
	CHALK BUITE 19-45525	80	73	43-33	117-09		6.9	
OR CU CB4	CHALK BUTTE 19-4-514	80 80	73	43-53	117011		3+3	
OR CU C85	CHALK BUTTE 19-45511	60	73	43-55	117-10		5.7	
U.S.A	PENNSYLVANIA					~~~~~	tarihid a dinandi, taratan _{sab} a	
PA AP HH1	MT. HOLLY SPRING	UR	71	40-06	77-11		0.57	
PA AP RP1	READING OLEY	UR	71	40=22	75-50		0.70	
PA AP RUL PA AP IIII	HILDELSVILLE	UR	71	40=34	75-12		0.89	
PA AP SX1	SABULA	00	71	41-12	20-90 20-30		1.21	•
PA AP ERI	E.N.CLAIR #1	Ja	60	41-52	78∞00		1.31	
PA AP ET1	EARL AN HILL NI	Jo	60	41=56	77-51		1.47	
U.S.A 5	SOUTH CAROLINA			•				
SC CN AKI	AIKEN	DI	65	33-17	81-40		1.06	
50 18 AS1	ASSMAN ET	••	70		100.10			
SD TP HOD	MOONSHINE GULCH NENw2	ils.	70	43-13	103-67		2.10	
SO IP WPS	WINDY FLATS NBH-1	ŭs	81	44-18	103-40		0.50	
SD IP LM1	LEAD-YATES	ΒĒ	67	44-21	103-45		1.9	
SD IP DY1	DACY RTM-1	US	71	44∞22	103=53		1.90	
	IENNESSEE	• •						
ILS.A	TEXAS	DR	63	35-55	84-19		0.82	
TX IP UVI	NEAR UVALDE	ю т	72	20-17	00-41		1 11	
TX BR SZ1	SHAFTER	DS.	75	20-48	104-24		1.5	3.5
TX IP GJI	GULF #1 NORYHRUP	HC	56	31+10	103-14		1.1	202
TX 1P BE1	BIG LAKE #1→B	θĊ	45	31-12	101-29		2.0	

10

		<u>q</u> <u>A</u>
TX IP BEZ BIG LAKE-UNIVERSITY TX IP DKI DONNELLY AND GERRE AL	HC 56 31-15 101-28	1.1
TX IP VHI VAN HORN	DS 74 31#27 104693	1.6
TA IP STP STANDARD POTASH 02 TEST	HC 56 31-39 102-15	1.2
UT BR CC1 CEDAR CITY DE HOUES	US 71 37038 113028 US 71 37682 113610	2a19 7 17 N.F.O
UT CP HB1 HORSE RANGE MESA	RE 79 37-59 109-03	1.46
UT CP LAT LA SAL	WR 66 36-15 109-17	1.2
UT BR MD1 MILFORD	RO 68 38-29 113-00	2.22 10.3
AL UN ART HADE VI OI CH DIE BURSTEL MISC	SP 64 38-46 109-38	1.10
UT CP-REL REED. CRESC. EAGIF AR.	SP 64 38455 109450	1001
UT OR SOL SPOR MOUNTAIN	WR 66 39-63 113-13	2.0
UT BR GC1 GOVERNMENT CANVON BC-1A	RO 69 39-52 112-03	1.90
UT BR EAL EUREKA ETHS (A)	R0 68 39-57 112-03	2.0
UY BR BII BINGHAM (CC+)24	80 40 40-31 113-00 05 11 39-59 109-30	1.00
UT BR BIZ BINGHAM D~142	CH 73 40-32 112-09	2.1
UY BR JV1 JORDAN VALLEY	WR 66 40-47 112-04	1.8
U.S.A VERNONY	_	
VI AP LAI LONDUNDERRY	R0 68 63-15 72-50	1.23
VI AP NAL DESIGN	RU 68 43+17 72-49 RO 68 43-30 72-31	1.22
U.S.A VIRGINIA	NU 88 83420 72433	1020
VA AP CRY CRIPPLE CREEK	RE 73 36=49 81=06	1,03
VA AP AA1 ALBERTA	01 65 36-92 77-94	1.4
VA AF GUI GRUNDY H.S.A. www.WASHINGION	RE 73 37~20 82~00	1.70
VA CU RZ1 RICHLAND DHON	18 81 64-21 110-17	1.60
WA PC RAE RANDLE	DL 74 46-21 122-05	1,50
WA CU BOI BENTON CITY	BL 69 66029 119036	1.17
HA CU RZS RATTLESNAKE HILLS	US 71 46-26 119-47	1,38
MA PC COM CHEMACIS MA CHERZA MILLA DHAI		0.83
WA PC WOL WESTPORT	Bi 74 46033 119031	1052
WA PC MOI MOCLIPS	BL 69 47-12 124-06	1.1
WA CU ODZ ODESSA	0L 74 47-20 118-55	1.7
WA PC DUI WENAICHEE Wa Do NDI Nagitu Penn	BL 74 47-22 120-18	1.5
WA CU RED REARDON	66 89 47450 121422 66 74 47453 118443	1.020
WA CU WKI WILBUR	RO 66 4A-06 118-62	1.45
WA RM NM1 NESPELEM	61 74 48-22 118-53	1.7
WA PC ADI ANACORTES	BL 74 48-23 122-38	0,9
HA PL MAI MAZAMA Ha PM Phi proupito	8L 74 48-37 120-23	1.7
WA RM TOI TONASKIT	81 74 48649 118448	1.8
WA RM MIE MEYALINE	RO 68 48-55 117-20	2.52
HA RH LOT LEADPOINT	BL 69 48-55 117-36	2,96
VA RH CUU CURLEN	BL 74 49-00 118-36	1.7
ULSAA, SH UKUVILLE ULSAA, SH UKUVILLE	8L 74 49-00 119-29	1.7
WV AP LAW LEWIS MAXWELL NIISF	JO 60 39-17 80-46	1.22
WV AP GRI M.O. GOFF HI	JO 60 39-18 80-14	1.26
WV AP JL1 J.H. LAKE #1	JO 60 39-25 80-05	1.20
WY AP NUU MONGANIOWN	UR 71 39-40 79-59	1.12
WY RM GZ1 GREEN RIVER GRIST	15 71 41-72 109-25	1.40
WY RH RIE ROCK R. FIELD	BL 69 41-40 105-07	1.2
WY RH FD1 FERRIS FIELD	BL 69 42-10 107-08	1.4
WY RM PEL PINEDALE DHPU	US 71 62066 169036	1.30 4.30

		9	A
Y RH PE1 PINEDALE DHPW Y RM BY1 BIG MUDOY FIELD Y IP LCF LANCE CK. FIELD Y IP SCF SALT CK. FIELD Y RM GEL GEBO FIELD Y RM MEE MEETEETSE Y RM LSO LITTLE SAND DRAW FIELD Y RM OB1 OREGON BASIN FIELD Y RM YS1 YELLOWSTONE	US 71 42-46 109-34 BL 69 42-51 106+58 BL 69 43-04 104-38 BL 69 43-35 106-15 BL 69 43-48 108-14 R0 68 43-52 109-17 BL 69 44-22 109-00 BL 69 44-22 108-56 WH 65 44-27 110-50	1.30 1.4 2.0 1.8 1.6 1.95 1.3 1.3 1.3 3.49	4.30

BB /3	Blackwell and Baay, 1973
BC 45	Birch and Clark, 1945
BE 47	Benfield, 1947
BI 50	Birch, 1950
BI 54	Birch, 1954
BL 67	Blackwell, 1967
BL 69	Blackwell, 1969
BL 73	Blackwell and Robertson 1973
BL 74	Blackwell, 1974
BO 73	Bowen, 1973
CL 57	Clark, 1957
CO 70	Combs. 1970
	(see also Combs and Simmone 1073)
CO 71	Combs, 1971
CO 75	Combs, 1975
CW 73	Costain and Wright, 1973
DB 74	Decker and Birch, 1974
	(see also Decker and Smithson 1973)
DI 65	Diment et al., 1965a, 1965b
DR 63	Diment and Robertson, 1963
DS 75	Decker and Smithson, 1975
DW 64	Diment and Werre, 1964
HC 56	Herrin and Clark, 1956
HE 68	Henyey, 1968; Henyey and Wasserburg, 1971
HS 65	Hart and Steinhart, 1965
JB 73	Judge and Beck, 1973
JO 60	Joyner, 1960
KI 7Z	King and Simmons, 1972
LE 50	Leney, 1956
LU 48	Lovering, 1948
073	Potter, 1973
CE 05	Reiter et al., 1975
1008	Roy et al., 1968a, 1968b
W 72	Roy et al., 1972
51°04 10 70	Spicer, 1964
NC 41	Orban, 1970; Diment et al., 1972
NG 71	ouss et al., 1968
10 71 11 60	bass et al., 1971
N 09 N 65	Murren et al., 1969
01 03 70 66	White, 1965
nv 00	wright, 1966

(see also Costain and Wright, 1973)

References

Benfield, A. E., 1947, A heat flow value for a well in California: Am. Jour. Sci., v. 245, no. 1, p. 1-18.

Birch, Francis, 1950, Flow of heat in the Front Range, Colorado: Geol. Soc. America Bull., v. 61, no. 6, p. 567-630.

Birch, Francis, 1954, Thermal conductivity, climatic variation, and heat flow near Calumet, Michigan: Am. Jour. Sci., v. 252, no. 1, p. 1-25.

Birch, Francis, and Clark, Harry, 1945, An estimate of the surface flow of heat in the west Texas permian basin: Am. Jour. Sci., v. 243-A, p. 69-74.

Birch, F., Roy, R. F., and Decker, E. R., 1968, Heat flows and thermal history in New England and New York, <u>in</u> Zen, E., White, W. S., Hadley, J. B., and Thompson, J. B., Jr., eds., Studies of Appalachian Geology--Northern and maritime: New York, Interscience, p. 437-451.

Blackwell, D. D., 1967, Terrestrial heat-flow determinations in the northwestern United States: Harvard Univ., Cambridge, Mass., Ph. D. thesis.

Blackwell, D. D., 1969, Heat-flow determinations in the northwestern United States: Jour. Geophys. Research, v. 74, no. 4, p. 992-1007.

Blackwell, D. D., 1974, Terrestrial heat flow and its implications on the location of geothermal reservoirs in Washington: Washington Div. Mines and Geology Inf. Circ., no. 50, p. 21-33.

Blackwell, D. D., and Baag, C. G., 1973, Heat flow in a "blind" geothermal area near Marysville, Montana: Geophysics, v. 38, p. 941-956.

Blackwell, D. D., and Robertson, E. C., 1973, Thermal studies of the Boulder batholith and vicinity, Montana: Soc. Econ. Geologists Guidebook, Butte Field Meeting, Aug. 18-21, p. D-1 to D-8.

Bowen, R. G., 1973, Geothermal activity in 1972: Ore Bin, v. 35, no. 1, p. 4-7.

Clark, S. P., Jr., 1957, Heat flow at Grass Valley, California: Am. Geophys. Union Trans., v. 38, p. 239-244.

Combs, J. B., 1970, Terrestrial heat flow in North Central United States: Massachusetts Institute of Technology, Cambridge, Mass., Ph. D. thesis.

Combs, J., 1971, Heat flow and geothermal resource estimates for the Imperial Valley, in cooperative geological-geophysical-geochemical investigations of geothermal resources <u>in</u> The Imperial Valley area of California: Univ. California, Riverside, Education Research Service, p. 5-27.

Combs, J., 1975, Heat flow and microearthquake studies, Coso geothermal area, China Lake, California: Final Report, Contract No. N00123-74-C-2099, Advanced Research Projects Agency Order No. 2800, 65 p.

Combs, J., and Simmons, G., 1973, Terrestrial heat flow determinations in the North Central United States: Jour. Geophys. Research, v. 78, no. 2, p. 441-461.

Costain, J. K., and Wright, P. M., 1973, Heat flow at Spor Mountain, Jordan Valley, Bingham, and La Sal, Utah: Jour. Geophys. Research, v. 78, no. 35, p. 8687-8698.

Decker, E. R., and Birch, F., 1974, Basic heat-flow data from Colorado, Minnesota, New Mexico, and Texas: U.S. Geol. Survey Open-File Rept. 74-9, p. 5-1 to 5-59.

Decker, E. R., and Smithson, S. B., 1973, Geophysical studies in the southern Rio Grande rift: EOS (Am. Geophys. Union Trans.), v. 54, p. 463.

Decker, E. R., and Smithson, S. B., 1975, Heat flow and gravity interpretation across the Rio Grande rift in southern New Mexico and west Texas: Jour. Geophys. Research, v. 80, no. 17, p. 2542-2552.

Diment, W. H., Marine, I. W., Neiheisel, J., and Siple, G. E., 1965a, Subsurface temperature, thermal conductivity and heat flow near Aiken, South Carolina: Jour. Geophys. Research, v. 70, no. 22, p. 5635-5644.

Diment, W. H., Raspet, R., Mayhew, M. A., and Werre, R. W., 1965b, Terrestrial heat flow near Alberta, Virginia: Jour. Geophys. Research, v. 70, no. 4, p. 923-929.

Diment, W. H., and Robertson, E. C., 1963, Temperature, thermal conductivity, and heat flow in a drilled hole near Oak Ridge, Tennessee: Jour. Geophys. Research, v. 68, no. 17, p. 5035-5047.

Diment, W. H., Urban, T. C., and Revetta, F. A., 1972, Some geophysical anomalies in the eastern United States, <u>in</u> Robertson, E. C., ed., The Nature of the Solid Earth: New York, McGraw-Hill, Inc., p. 544-572.

Diment, W. H., Urban, T. C., Sass, J. H., Marshall, B. V., Munroe, R. J., and Lachenbruch, A. H., 1975, Temperatures and heat contents based on conductive transport of heat, <u>in</u> White, D. E., and Williams, D. L., eds., Assessment of geothermal resources of the United States--1975: U.S. Geol. Survey Circ. 726, p. 84-103.

Diment, W. H., and Werre, R. W., 1964, Terrestrial heat flow near Washington, D. C.: Jour. Geophys. Research, v. 69, no. 10, p. 2143-2149. Fenneman, N. M., 1946, Physical divisions of the United States: U.S. Geol. Survey, scale 1:7,000,000.

Hart, S. R., and Steinhart, J. S., 1965, Terrestrial heat flow-Measurement in lake bottoms: Science, v. 149, no. 3691, p. 1499-1501.
Henyey, T. L., 1968, Heat flow near major strike-slip faults in
central and southern California: California Institute of Technology,
Pasadena, California, Ph. D. thesis, 415 p.

Henyey, T. L., and Wasserburg, G. J., 1971, Heat flow near major strike-slip faults in California: Jour. Geophys. Research, v. 76, no. 32, p. 7924-7946.

Herrin, E., and Clark, S. P., Jr., 1956, Heat flow in west Texas and eastern New Mexico: Geophysics, v. 21, no. 4, p. 1087-1099.

Joyner, W. B., 1960, Heat flow in Pennsylvania and West Virginia: Geophysics, v. 25, p. 1229-1241.

Judge, A. S., and Beck, A. E., 1973, Analysis of heat-flow data--Several boreholes in a sedimentary basin: Canadian Jour. Earth Sci., v. 10, p. 1494-1507.

King, W., and Simmons, G., 1972, Heat flow near Orlando, Florida, and Uvalde, Texas, determined from well cuttings: Geothermics, v. 1, no. 4, p. 133-139.

Leney, G. W., 1956, Preliminary investigation of rock conductivity and terrestrial heat flow in southeastern Michigan: Univ. Michigan, Ann Arbor, Michigan, Ph. D. thesis.

Lovering, T. S., 1948, Geothermal gradients, recent climatic changes, and rate of sulfide oxidation in the San Manuel district, Arizona: Econ. Geology, v. 43, no. 1, p. 1-20.

Potter, R. M., 1973, Heat flow of the Jemez Plateau (abs.): EOS (Am. Geophys. Union Trans.), v. 54, no. 11, p. 1214.

Reiter, M., Edwards, C. L., Hartman, H., and Weidman, C., 1975, Terrestrial heat flow along the Rio Grande rift, New Mexico and southern Colorado: Geol. Soc. America Bull., v. 86, p. 811-818.

Roy, R. F., Blackwell, D. D., and Birch, F., 1968a, Heat generation of plutonic rocks and continental heat-flow provinces: Earth and Planetary Sci. Letters, v. 5, no. 1, p. 1-12.

Roy, R. F., Decker, E. R., Blackwell, D. D., and Birch, F., 1968b, Heat flow in the United States: Jour. Geophys. Research, v. 73, no. 16, 5207-5221.

Roy, R. F., Blackwell, D. D., and Decker, E. R., 1972, Continental heat flow, <u>in</u> Robertson, E. C., ed., The Nature of the Solid Earth: New York, McGraw-Hill, Inc., p. 506-543.

Sass, J. H., Munroe, R. J., and Lachenbruch, A. H., 1968, Measurement of geothermal flux through poorly consolidated sediments: Earth and Planetary Sci. Letters, v. 4, no. 4, p. 293-298.

Sass, J. H., Lachenbruch, A. H., Munroe, R. J., Greene, G. W., and Moses, T. H., Jr., 1971, Heat flow in the western United States: Jour. Geophys. Research, v. 76, no. 26, p. 6376-6413.

Spicer, H. C., 1964, Geothermal gradients and heat flow in the Salt Valley anticline, Utah: Boll. Geofisica Teor. ed. Appl., v. 6, no. 23, p. 263-282.

Urban, T. C., 1970, Terrestrial heat flow in the Middle Atlantic States: Univ. Rochester, Rochester, New York, Ph. D. thesis, 398 p.

Warren, R. E., Sclater, J. G., Vacquier, V., and Roy, R. F., 1969, A comparison of terrestrial heat flow and transient geomagnetic fluctuations in the southwestern United States: Geophysics, v. 34, no. 3, p. 463-478.

White, D. E., 1965, Geothermal energy: U.S. Geol. Survey Circ. 519, 17 p.

Wright, P. M., 1966, Geothermal gradient and regional heat flow in Utah: Univ. Utah, Salt Lake City, Utah, Ph. D. thesis, 181 p.

Figure 1a. Locations of heat-flow determinations in the western United States. Dots are USGS values, open circles, those published by other investigators.

Figure 2. Observed heat flow (q) in the United States. Physiographic boundaries (Figure 4) have been generalized from Fenneman (1946).

 $1 \text{ HFU} = 1 \times 10^{-6} \text{ cal/cm}^2 \text{sec} = 41.8 \text{ mW/m}^2$

 $1 \text{ HFU} = 1 \times 10^{-6} \text{ cal/cm}^2 \text{sec} = 41.8 \text{ mW/m}^2$

Figure 4. Reduced heat flow (q*) in the United States. Physiographic provinces after Fenneman (1946). $1 \text{ HFU} = 1 \times 10^{-6} \text{ cal/cm}^2 \text{sec} = 41.8 \text{ mW/m}^2$