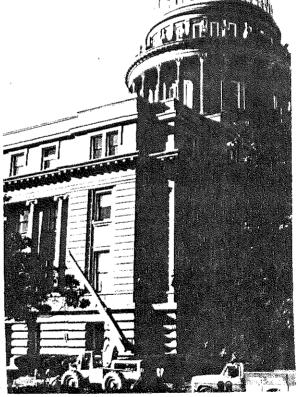
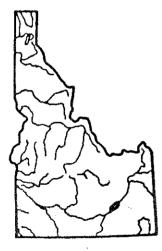
GEOIHERMAL INVESTIGATIONS in Idaho Part 9


F. DELLECHAIE, VILL PRÉSIDENT - EXPLO


GEOTHERMAL INVESTIGATIONS IN IDAHO

PART 9

POTENTIAL FOR DIRECT HEAT APPLICATION OF GEOTHERMAL RESOURCES

Drillers finish work on the first of several geothermal wells being planned for the Capitol Mall complex in Boise where it is hoped that enough hot water will be found to heat several state buildings.

IDAHO DEPARTMENT OF WATER RESOURCES WATER INFORMATION BULLETIN NO. 30 JUNE 1980

WATER INFORMATION BULLETIN NO. 30

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part 9

Potential for Direct Heat Application of Geothermal Resources

by

John C. Mitchell Linda L. Johnson John E. Anderson

With a section on Preliminary Environmental Assessment of Idaho Geothermal Resource Areas

by

Susan G. Spencer Jacquelyn F. Sullivan

Work performed under U.S. Department of Energy Contract No. DE-AS07-77ET28407 Modification No. A001 Designation UC-66-2

> Idaho Department of Water Resources Statehouse Boise, Idaho

June 1980

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

The information is the result of tax-supported research and as such is not copyrightable. It may be freely reprinted with the customary crediting of the source. The Idaho Department of Water Resources would appreciate notification of any reprinting of this information.

TABLE OF CONTENTS

	-
Preface	xiv
Abstract	1
General Introduction	2
Purpose and Scope	2
Well- and Spring-Numbering System	2
Use of Metric Units	3
Chemical Geothermometers	6
Present and Potential Geothermal Use in Idaho	7
Organization of Data	15
Geothermal Potential of the Northern Idaho	10
"Panhandle" Region	17
	17
Shoshone County	
Nezperce County	20 21
Geothermal Potential of the Central Idaho Region	
Idaho County	22
Adams County	26
Valley County	32
Lemhi County	37
Boise County	45
Custer County	47
Northern Elmore County	51
Camas County	53
Northern Blaine County	61
Summary of Central Idaho Region	71
Geothermal Potential of the Snake River Plain Region	73
Washington County	76
Payette County	82
Gem County	82
Canyon County	84
Ada County	86
Southern Elmore County	90
Gooding County	95
Jerome County	98
Minidoka County	100
=	100
	104
Northern Fremont County	109
Butte County	
Western Cassia County	114
Summary - Snake River Plain Region	118
Geothermal Potential of the Basin and Range of	+10
Southeastern Idaho	121
Eastern Cassia County	121
	127
Oneida County	127
Franklin County	
Bear Lake County	134
Caribou County	135
Bannock County	144

White of Containty (continued).

· · · · · · · · · · · · · · · · · · ·	2age
Power County Bingham County Bonneville County Madison County Jefferson County Southern Fremont County Clark County Teton County Summary - Basin and Range, Central Rocky Mountain	151 153 157 162 165 167
Province, Southeastern Idaho	173
References	
Basic Data Table 1 Basic Data Table 2	
Basic Data Table 3Basic Data Table 4	243
Preliminary Environmental Assessment Idaho Geothermal Resource Areas	
Iddito deormerinar Resource Areas	222

LIST OF TABLES

Tab]	.es Page
1.	English Metric Conversion Factors
2.	Geothermal Development in Idaho - Hot Water Uses 9
3.	Areas in Idaho most Favorable for Power Generation Based on Surface Manifestations, Geology and Geothermometery
4.	Towns and Recreational Home Areas in Central Idaho within 5 km (3 mi) of a 20°C or Higher Thermal Spring or Well
5.	Cities and Towns in the Snake River Plain Region within 5 km (3 mi) of a 20°C or Higher Thermal Spring or Well 119
6.	Cities and Towns in Southeast Idaho within 5 km (3 mi) of a 20°C or Higher Thermal Spring or Well 172

LIST OF FIGURES

Fig	ure Page
1.	Diagram showing the well- and spring-numbering system
2.	Temperature conversion graph 5
3.	Index map of Idaho showing locations and present uses of geothermal energy 8
4.	Required temperatures for geothermal fluids 12
5.	Index map of Idaho showing areas most favorable for power generation based on surface manifesta- tion, geology and geothermometery
6.	Index map of Idaho showing locations of counties and subregions covered in this report
7.	Index map of Shoshone County showing locations of known thermal water occurrences with surface temperatures above 20°C
	Index map of Nez Perce County showing locations of thermal water occurrences with surface temperatures of 20°C or higher 19
9.	Thermal spring and well location map of Idaho show- ing their approximate surface temperatures, relations to curvilinear zones, linear and circular features in pocket
10.	Topographic maps showing typical central Idaho thermal spring occurrences near sharp river bends 23
11.	Index map of Idaho County showing locations of thermal water occurrences with surface temperatures of 20°C or higher 24
12.	Index map of Adams County showing locations of thermal water occurrences with surface temperatures of 20 ^o C or higher 27
	Gravity map of Council-Cambridge area, contour interval is 5 milligals 29
14.	Gravity profile near Council 30
15.	Index map of Idaho showing known and suspected faults

Figure

16.	Index map of Valley County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher
17.	EROS false color infrared Landsat EDISE image of part of west-central Idaho and eastern Oregon show- ing selected linear features and thermal water lo- cations with surface temperatures above 20°C 35
18.	Index map of Lemhi County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher
19.	Linear map compiled from Landsat, false color, infrared imagery. Topographic base is from Elk City AMS map (scale 1:250,000)
20.	Geologic map of the Big Creek Hot Spring area in Lemhi County, Idaho 42
21.	Aeromagnetic map of the study area
22.	Index map of Boise County showing locations of thermal water occurrences with surface tempera- tures of 20 ^o C or higher
23.	Index map of Custer County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher
24.	EROS false color infrared Landsat EDISE image of central Idaho showing selected linear features and thermal water locations with surface tempera- tures above 20°C
25.	Index map of Elmore County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher 52
26.	Index map of Camas County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher
27.	Index map of Blaine County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher
28.	Topographic map of Hailey area showing location of Hailey Hot Springs with respect to the City of Hailey

Page

Figure

Figu	ure Pac	je
29.	EROS false color infrared Landsat EDISE image of south-central Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C	55
30.	Magnetic anomalies near Bald Mountain and NE of Sun Valley	57
31.	Idealized block diagram of Magic Reservoir Area in Camas and Blaine counties depicting theoretical structural control for Magic Hot Springs well 7	70
32.	Index map of Idaho showing the Snake River Plain and its subdivisions	74
33.	Index map of Washington County showing locations of thermal water occurrences with surface temperatures of 20°C or higher	77
34.	27-Hz apparent resistivity map (telluric line north-south), Weiser, Idaho-Vale, Oregon	79
35.	Map of 27-Hz apparent resistivity (telluric line east-west), Weiser, Idaho-Vale, Oregon	79
36.	Telluric anomaly map at 20- to 30-sec period, Vale, Oregon-Weiser, Idaho	79
37.	Index map of Payette and Gem counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher	33
38.	Index map of Canyon and Ada counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher	35
39.	EROS false color infrared Landsat EDISE image of part of southwestern Idaho and southeastern Oregon showing selected linear features and thermal water locations with surface temper- atures above 20°C	87
40.	Topographic map of west Boise Front area showing locations of potential geothermal sites	89
41.	Map of Boise Front area showing total conductance for transmitter 1 A array	91
42.	Map of Boise Front area showing total conductance for transmitter 2 A array	92

. .

,

.

	Figu	Page
	43.	Map of Boise Front area showing total conductance for transmitter 1 B array
	44.	Map of Boise Front area showing total conductance for transmitter 2 B array
	45.	Index map of Gooding County showing locations of thermal water occurrences with surface tempera- tures of 20 ^o C or higher
	46.	Index map of Jerome and southern Minidoka counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher 99
	47.	Index map of Owyhee County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher
	48.	Index map of Twin Falls County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher 105
, surfa	49.	Gravity map showing lows near Buhl, east of Jerome and near Oakley 107
	50.	Aeromagnetic map showing low west of Jerome 108
	51.	Index map of Fremont County showing the locations of thermal water occurrences with surface tempera- tures of 20°C or higher 110
	52.	Map of rock types and 26 Hz apparent-resistivity (telluric line north-south), Island Park, Idaho 111
	53.	Comparison of skin-depth pseudosections and one- dimension inverted section with gravity and magnetic data across the Island Park area 111
	54.	Telluric anomaly map at 20- and 30-sec period, Island Park, Idaho 111
	55.	Index map of Butte County showing locations of thermal occurrences with surface temperatures of 20°C or higher 113
	56.	Index map of Cassia County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher 115

-,

ŀ	ʻigu	ire	Page
с ~	57.	Gravity profile near Oakley	116
5	8.	Interpreted section across the west side of the southern Raft River Valley	124
5	9.	Map of the Raft River Valley region, Utah and Idaho, showing major topographic features and faults	125
6	i 0 .	Complete Bouguer gravity anomaly map of the southern Raft River Valley	126
6	1.	Index map of Oneida County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	128
6	2.	Index map of Franklin and Bear Lake counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher	130
6	3.	EROS false color infrared Landsat EDISE image of part of southeastern Idaho and northern Utah show- ing selected linear features and thermal water locations with surface temperatures above 20°C	133
6	4.	Gravity lows from Gem Valley, near Preston in Cache Valley, and near Bear Lake	136
6	5.	Gravity profile near Bear Lake	137
6	6.	Index map of Caribou County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	138
	7.	EROS false color infrared Landsat EDISE image of part of southeastern Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C	141
6	8.	Index map of Bannock County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	145
6	59.	Index map of Power County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	148
	70.	Travertine deposits and associated known thermal springs in southeastern Idaho	150

Figure Page	3
71. Index map of Bingham County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher 152	2
72. Gravity lows south of Blackfoot and Swan Valley 154	4
73. Gravity profile near Blackfoot 155	5
74. Index map of Bonneville County showing locations of thermal water occurrences with surface temperatures of 20°C or higher	6
75. Index map of Madison and Jefferson counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher 158	3
76. Bouguer gravity anomaly map of southeastern Idaho showing the location of the Rexburg caldera complex	9
77. Bouguer gravity anomaly map of the Rexburg area showing the outline of the Rexburg caldera complex as inferred from the gravity data 161	L
78. Residual aeromagnetic map of the area of Heise Hot Springs showing the location of the gravity high at Heise Hot Springs and a gravity low to the east	4
79. Magnetic and gravity profiles and interpreted section across the anomalies at Heise Hot Springs . 166	б
80. Index map of Clark County showing locations of thermal water occurrences with surface tempera- tures of 20°C or higher	8
81. Index map of Teton County showing locations of thermal water occurrences with surface temperatures of 20°C or higher 170	0
82. Index map showing known geothermal resource areas (KGRAs) and federal and state leased lands in Idaho	4

ACKNOWL EDGMENTS

Many people have contributed to this study in the hope that the information will be of benefit to the people of the State of Idaho.

The United States Department of Energy (DOE) granted financial support, while the U.S. Geological Survey (USGS) made available personnel and laboratory facilities for water quality analyses. EG&G Idaho, Inc., a prime contractor of DOE, made available laboratory facilities, personnel, and equipment for neutron-activation analyses of trace metals from thermal water samples at the Idaho National Engineering Laboratory.

Field checking of many springs and well locations was accomplished by Andres Garcia, George Denman, Mark Von Lindern and Larry Beard of the Idaho Department of Water Resources (IDWR). Compilation of the computerized data on thermal springs and wells for the two maps was the responsibility of Sharron Chapman, IDWR. Other IDWR personnel, especially Ralph Mellin, provided review assistance and many details for the report.

National Oceanic and Atmospheric Administration (NOAA) published the map Geothermal Resources of Idaho (Plate 1 in pocket) using information on thermal springs and wells supplied by IDWR, the USGS Geotherm data bank, and many other sources.

All of these cooperative efforts are gratefully acknowledged and appreciated; without such generous support, this study could not have been accomplished.

PREFACE

Geothermal energy (the natural heat energy of the earth) is receiving nationwide attention. Increasing involvement of many parties in the exploration for and development of this energy source has been accelerated by four factors:

- Ecologically, geothermal energy appears to be a better alternative than other methods of power generation such as nuclear, fossil fuel or hydroelectric.
- Economically, it competes favorably with hydroelectric and fossil fuel power generation and may be less expensive than nuclear methods.
- 3. Enormous reserves of geothermal resources have been identified and can be developed if the effort is made to utilize them.
- Efficient use of all energy sources is recognized as necessary if present energy shortages are to be alleviated and future shortages avoided.

Published information on the geothermal potential in Idaho consists mostly of numerous reports that briefly describe or mention thermal water occurrences in particular areas or regions of the state. Seven published reports (Stearns and others, 1937; Waring, 1956; Ross, 1971; Nichols and others, 1972; Warner, 1972 and 1975; Young and Mitchell, 1973) have been written on Idaho's geothermal potential on a statewide basis. Three of the reports are mainly compilations of pre-existing data collected by various investigators over an extended time interval of approximately 50 to 60 years. Waring (1965, p. 26-31) essentially updates the data of Stearns and others (1973, p. 136-151). Godwin and others (1971) classified approximately 6,075,000 hectares (15 million acres) of land in Idaho as being prospectively valuable for geothermal exploration. Ross (1971) published geologic and chemical information on about 380 thermal water occurrences, and presented brief evaluations of the geothermal potential of different regions of the state. Nichols and others (1972) identified nonpower uses and the economic impact of these uses on Idaho. Warner (1972 and 1975) dealt with Idaho's geothermal potential based on its regional geologic setting. Other reports deal with localized areas. Young and Whitehead (1975a, 1975b) wrote on the geothermal potential of the Bruneau-Grand View and Weiser areas. Mitchell (1976a, 1976b, 1976c) published information on the northern Cache Valley, Blackfoot, and Camas Prairie areas. Wilson and others (1976) reported on geothermal investigations of the Cascade, Idaho, area. Mink and Graham (1977) reported on the geothermal potential of the west Boise area. In addition to the above published reports, there are seven unpublished open-file reports prepared by the U.S. Geological Survey (USFS) that are listed in the selected references. These are available for public review.

Idaho, the prospects for early development of In geothermal energy as an energy source appear excellent. The geologic setting appears favorable reqional the for existence of large geothermal fields, although little is known of the full potential of this resource. A great deal more must be learned of geothermal occurrence and utilization. The Idaho Department of Water Resources (IDWR) initiated a study of geothermal potential to generate interest in development of the resources and to properly perform the department's regulatory function (Water Information Bulletin No. 30. Part 1, Young and Mitchell, 1973). The study, prepared jointly with the USGS, located 25 areas in Idaho where indications of potential power development utilizing geothermal energy were found. Parts 2, 3, and 4 of Water Information Bulletin No. 30, prepared by the USGS, studied areas in southwest Idaho. Parts 5, 6, and 7, prepared by the IDWR, studied areas in south-central and southeastern Idaho. Part 8, prepared jointly by the IDWR and the Southern Methodist University, describes the heat flow regime in and around the Snake River Plain.

There are four objectives common to each of the studies: (1) to encourage the development of the resource through public knowledge of its occurrence, characteristics, origin, and properties; (2) to develop the expertise within the IDWR to properly perform its function of regulation of the resource; (3) to protect the ground and surface waters of the state from deleterious effects that might be brought about by large-scale geothermal development efforts by public or private parties; (4) to protect the geothermal resource from waste and mismanagement because of lack of knowledge of its occurrence, characteristics, and properties.

This study (Part 9 of Water Information Bulletin No. 30), prepared by IDWR, summarizes a part of the effort to obtain additional data on the properties, origin, occurrence, and characteristics of this resource in Idaho. It contains information on 899 thermal water occurrences with surface temperatures of 20°C or higher from both springs and wells. Chemical analyses of 357 of the 899 total thermal water sites are also contained herein, as well as previously published and unpublished geophysical, geological and hydrological information. Thirty-six of the 44 counties in Idaho are discussed in separate chapters of this report. The eight counties not discussed in the report contain no known geothermal water discharges and little is known of their geothermal potential. Six of the eight counties not discussed are in northern Idaho: Bonner, Boundary, Kootenai, Benewah, Clearwater and Lewis counties. The other two (Lincoln and Minidoka counties) are within the eastern Snake River Plain aquifer, which may mask deep thermal anomalies in these counties.

ABSTRACT

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93°C. Fifty-one cities or towns in Idaho containing 30 percent of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Poctello, and Idaho Falls.

Fourteen sites appear to have subsurface temperatures of 140°C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and the Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process.

Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

The geothermal potential in Idaho's future can be most beneficial, providing the resource is utilized in an environmental and economical manner. While some thermal waters are being used to their maximum, most heat is dissipated through irrigation practices or is discharged unused.

It appears that the greatest potential for rapid on-line industrial process heat is in the Boise, Nampa-Caldwell, Pocatello, and Weiser areas where geothermal discharges from several wells are known. Existing industry in these areas could possibly be induced to retrofit to geothermal process or space heat if sufficient temperatures and flow rates can be found.

-1-

GENERAL INTRODUCTION

PURPOSE AND SCOPE

This report was prepared in response to the many requests from Idaho's citizens and industries for authoritative information pertaining to the state's geothermal resources. The report primarily outlines the characteristics, occurrences, and uses (present and potential) of low temperature (<150°C) thermal waters, with minor emphasis on high temperature (>150°C) waters. The information presented in this report is designed to expand the IDWR data bank, enabling the IDWR to better serve the public and private sector while enhancing the department's regulatory In addition, computerized well and spring responsiveness. data were supplied to the National Oceanic and Atmospheric Administration for the development of the first state geothermal map (Plate 1 in pocket) and to the U.S. Geological Survey for supplementing the geotherm data bank.

The general objectives of the study and report are as follows: (1) describe, in a single reference, the thermal water chemistry and quality from existing and newly acquired data on thermal springs and wells; (2) evaluate the statewide geothermal potential from the standpoint of direct heat application; (3) pinpoint specific areas and general uses for direct heat application; (4) provide basic data on low temperature resources for potential uses; (5) give recommendations about areas of the state that could receive large benefits from detailed study.

Most locations were field checked to confirm the reported thermal discharge. Several occurrences reported in other publications were looked for but not found. These are not included in this report. Others in remote areas were not field checked but are included and labeled "not field checked" in the basic data tables in the appendix.

WELL- AND SPRING-NUMBERING SYSTEM

The numbering system used by the IDWR and the USGS in Idaho indicates the location of wells or springs within the official rectangular subdivision of the public lands, with reference to the Boise base line and meridian. The first two segments of the number designate the township and range. The third segment gives the section number, followed by three letters and a numeral, which indicate the quarter section, the 40-acre tract, the 10-acre tract, and the serial number of the well within the tract, respectively. Quarter sections are lettered a, b, c, and d in a counter-

-2-

clockwise order from the northeast quarter of each section (figure 1). Within the quarter sections, 40-acre and 10-acre tracts are lettered in the same manner. Well 1S-17E-23aabl is in the NW1/4 NE1/4 NE1/4 of Section 23, T.1 S, R.17 E, and was the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 1S-13E-34bcb1S.

USE OF METRIC UNITS

The metric or International System (SI) of units are used in this report to present water chemistry and most other data. Concentrations of chemical substances dissolved in the water are given in milligrams per liter (mg/l) rather than in parts per million (ppm) as in some previous Water Information Bulletins. Numerical values for chemical concentrations are essentially equal, whether reported in mg/l or ppm for the range of values reported in this report. Water temperatures are given in degrees Celsius (^OC). Figure 2 shows the relation between degrees Celsius and degrees Fahrenheit.

Linear measurements (inches, feet, miles) are given in their corresponding metric units (millimeters, meters, kilometers). Weight and volume measurements are also given in their corresponding metric units. Area measurements are also listed in SI units. Table 1 gives conversion factors for these units.

	TABLE 1	
	ENGLISH METRIC CONVERSION FACTORS	
To Convert from	То	Multiply by
acres	hectares	0.405
inches	centimeters	2.540
feet	meters	0.305
yard s	meters	0.914
miles	kilometers	1.609
sq. miles	sq. kilometers	2.589
gallons	liters	3.785
ounces	grams	28.349
hectares	acres	2.471
pounds	kilograms'	0.454
tons (short)	tons (metric)	0.907
centimeters	inches	0.394
meters	feet	3.281
meters	yards	1.094
kilometers	miles	0.621
sq. kilometers	sq. miles	0.386
liters	gallons	0.264
grams	ounces	0.035
kilograms	pounds	2.205
tons (metric)	tons (short)	1.102

-3-

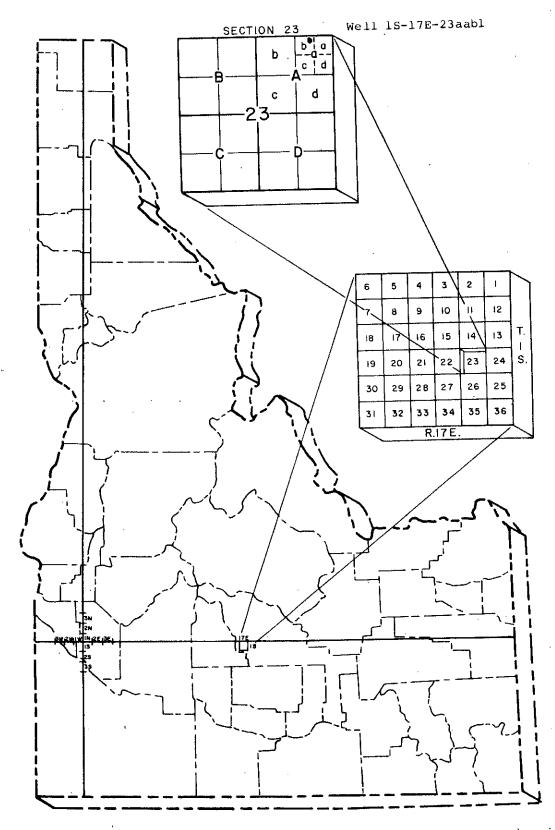


FIGURE 1. Diagram showing the well- and spring-numbering system for Idaho. (Using well 1S-17E-23aabl.)

-4-

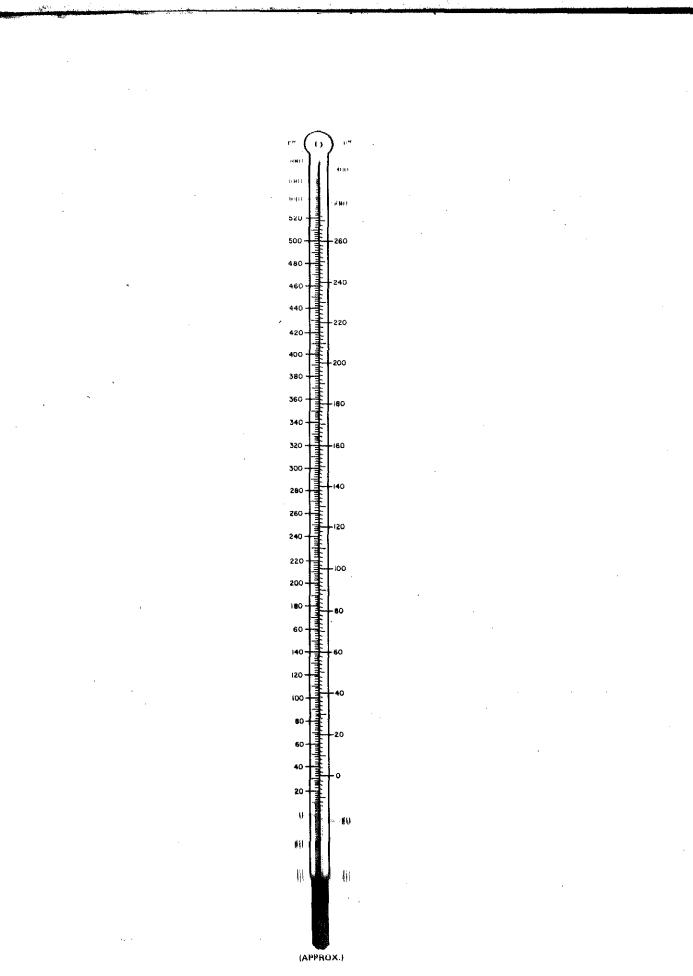


FIGURE 2. Temperature conversion graph.

CHEMICAL GEOTHERMOMETERS

In this report, the geothermal potential of various areas in Idaho has been evaluated from five factors, including several chemical geothermometers, water temperature at surface, geology, geophysical, and hydrology. As the chemical geothermometers are original interpretations, they are discussed to clarify their meaning. Much of the geology, geophysics and hydrology is from published reports and is not discussed here.

Preliminary evaluations of geothermal systems are being successfully conducted using chemical geothermometers. Τn the Raft River Valley of southeastern Idaho, the reliability of these chemical geothermometers has been tested by deep drilling. The quartz and sodium-potassium-calcium (Na-K-Ca) estimated aquifer temperatures (Young and Mitchell, 1973) and silica mixing model calculations (Young and Mitchell, 1973, unpublished data) agreed very closely (within 10° C) with temperatures found in depth (Kunze, This proven reliability in the Raft River Valley 1975). gives some measure of confidence in applying the same methods to other similar areas of the state.

The degree of reliance to be placed on a chemical geothermometer depends on many factors. The basic assumption is that the chemical character of the water obtained by temperature dependent equilibrium reactions in the thermal aquifer is conserved from the time the water leaves the aquifer until it reaches the surface. The concentration of certain chemical constituents dissolved in the thermal waters can, therefore, be used to estimate aquifer temperatures.

Aquifer temperatures, calculated from the quartz, Na-K-Ca chemical geothermometers and mixing models as well as the atomic ratios of selected elements found in the thermal waters of Idaho, are given in basic data table 2 in the appendix. These were calculated from values of concentration found in basic data table 1.

In basic data table 2, there are 10 columns which represent aquifer temperatures. These 10 columns of basic data table 2 were derived using different assumptions as to physical controls governing dissolved chemical constituents in thermal water. In most cases, it appears that the chalcedony (column T₄) or Na-K-Ca (column T₅) chemical geothermometers may be the most accurate for thermal water in Idaho. However, in many cases these differ by as much as $20-30^{\circ}$ C. Chalcedony generally estimates temperatures somewhat higher than Na-K-Ca, particularly for high pH waters issuing from granitic terrains. It is not presently known which is closest to the actual aquifer temperature. However, as drilling has confirmed the reliability of Na-K-Ca in Raft River Valley in Cassia County and for other reasons, the authors have more confidence stating that Na-K-Ca may be the more accurate. In any case, best correlation is obtained generally between Na-K-Ca and chalcedony chemical geothermometers. In several areas where high water temperatures at the surface (>65°C) have been measured, good agreement between quartz and Na-K-Ca chemical geothermometers may be high enough for wet steam or binary cycle power generation.

PRESENT AND POTENTIAL GEOTHERMAL USE IN IDAHO

Geothermal energy has been used in Idaho for a long time. Figure 3 is a map of Idaho showing locations and current uses of geothermal energy in the state. Uses have been made ranging from electrical generation using pelton wheels to catfish farming. Present uses of geothermal energy are tabulated in table 2 (modified from Nichols, et. al., 1972).

Geothermal energy has been used for space heating in Boise since 1893 and in Ketchum. Currently several greenhouse operations are conducted near Boise for fresh and cut flowers. Other greenhouse operations using geothermal energy are located at Weiser, Grand View, White Arrow Ranch near Bliss, Banbury Hot Springs area in the Hagerman Valley, and on the South Fork Payette River and at Raft River.

Irrigation has been a long-standing use of thermal water in Idaho, although most irrigators consider hot water a nuisance as it must be cooled before being applied to crops. Some report heavier first and last cuttings of alfalfa as the growing seasons may be somewhat extended; however, the effect of the heat may be quite minor as opposed to the effect of the water from an extra early and a late season irrigation.

Stock watering in winter is another beneficial use which creates increases in weight gain on less feed with geothermally watered livestock compared to cold watered livestock.

The Department of Energy's Idaho Raft River Project is designed to gather information on various uses and applications of geothermal energy, including binary cycle power generation, reinjection of geothermal fluids, space heating, and cooling, potato processing, manure and cattle feed processing, irrigation, and aquaculture. In addition, environmental related studies of subsidence, microseismicity, flora and fauna, water quality, and groundwater levels are being made.

Many resorts using thermal water are operated in Idaho. These are listed in table 2 and locations shown in figure 3.

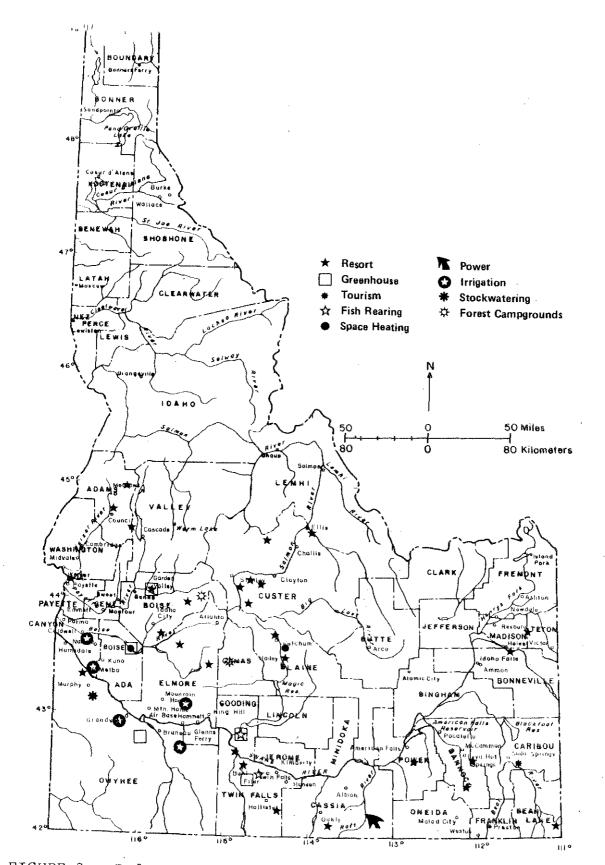


FIGURE 3. Index map of Idaho showing locations and present uses of geothermal energy.

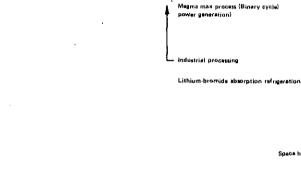
				2 DAHO - HOT WATER US Brockway & Warmick				(1979)
			Approximate	Approximate	Length of	Approximate	Water Su	pply
		Type of	Years in	Dollar Value	Season	Number of	Approximate	Temper-
Name of Facility	County	Development	Operation	1973	in Months	Employees	Discharge	ature 😁
Warm Springs Water District	Ada	Space heating	1800's	Public supply	12	5	6400 lpm @	
Edwards Greenhouse	Ada	Greenhouse	56	100,000	12	4	1400 lpm @	4
Hunt Brothers' Floral	Ada	Greenhouse	40	120,000	12	4	1100 lpm @	4
Zim's Resort	Adams	Resort	51	120,000	4	6	380 lpm €	63-6é
Starkey H.S.	Adams	Resort	1900	70,000	4	4	490 1pm @	56
White Licks H.S.	Adams	Baths & camping		1,000	Summer		110 Ipm @	60-6ē
Downata H.S.	Bannock	Resort	20	120,000	Summer	'	1900 Ipm @	
Lava H.S.	Bannock	Resort & health spa	75	1,500,000	12	20	5700 Ipm @	45
Bear Lake H.S.	Bear Lake	Resort	80-100	60,000	4-5	3		48
Easley Store & Plunge	Blaine	Resort & camping	30	Church prop.	3	-	70 ipm @	
Brandt's H.S.	Blaine	Motel & pool space	1800's	180,000	12	1	3800 lpm @	
	Blaine	heating Resort	40-50	100,000	12	2	3480 Ipm @	52
Claredon H.S.		Resort	40	100,000	12	Z	1900 ipm @	
Twin Falls H.S.	Boise		1800's		-			
Warm Springs Resort	Boise	Resort		120,000	Summer	4	1100 lpm @	
Donlay lodge H.S.	Boise	Greenhouse	9	200,000	12	6	265 lpm 6	
Haven Lodge H.S.	Boise	Space heating & resort	20	300,000	12	2	75 Ipm @	
Wards Greenhouse	Boise	Greenhouse	9	100,000	12	4	5700 Ipm @	
Terrace Lakes Resort	Boise	Space heating & resort	13	1,500,000	12	20	1900 Ipm €	75
Kirkham H.S.	Boise	Forest campground		U.S. Forest Ser.	Summer		950 lpm @	65
Bonneville H.S.	Boise	Forest campground		U.S. Forest Ser.	Summer		1375 ipm @	23
Baumgartner H.S.	Camas	Forest campground		U.S. Forest Ser.	Summer		75 ipm @	4.1
Oakley H.S.	Cassia	Resort & health spa	15	10,000	12	2	40 Ipm 🤤	
Sunbeam H.S.	Custer	Bath house		U.S. Forest Ser.	Summer	2	1700 lpm @	
Snake River Boy Scout	Custer	Camp & pool			. 3		40 Ipm 🤅	35
Council Beardsley H.S.	Custer	Resort & pool	92	20,000	12	3	5700 ipm @	43
(Challis H.S.) Campground H.S.	Custer	Forest campground	5	10,000	Summer		330 Ipm @	5ć
Robinson Bar	Custer	Resort	20	60,000	Summer		260 lpm @	
	Custer	Resort	5	270,000	Summer		250 ipm @	
Middle Fork Lodge	Custer	Resort		130,000	Summer		A	
Idaho Rocky Mtn. Ranch	Custer	Resort		10,000	Jummer		380 [pm @	
Sawtooth Land Corp.		Resort & space	 50-60	100,000	Summer		950 ipm @	
Paradise H.S.	Elmore	heating	J0-00	-	S LA INNER		• •	
White Arrow Ranch	Gooding	Greenhouse, space heating, fish farming	10	100,000	12	15	3100 Ipm €	65

-9-

				Approxime	Approximate	Length of	Approximate	Nater Sicc +	
Neare of Facility	County	Type of Development	Years tr Operation	Dollar Value 1973	Season in Months	Number of Employees	Approximete Discharge	=πcər- ≘re ⁰(
eise hot Springs,	Jefferson	Resort & pool	BC	200,000	12	12	225 lpm §	49	
Canyon	Mad i son	Pool		50,000			*	44	
Meratorium Cachers Greenhouse	Owyhee Owyhee	Greenhouse Pool	7 80	30,000 80,000	12 12	2	1700 ipπ ≣ 130 ipπ ≝		
Received Lot	Owyhee	Stock Watering Pool	IL Z	270,000	12	10	1700 lpn ≇ 1000 lpn ≇	37	
noc∂æn Springs	Owyhee Power	Resort	65	30,000 100,000	5	8	1000 ipa≞ 5800 ipa ∉		
Neterorium	Twin Falls	Resort	Æ	100,000	8	4	450 lpn 🛓		
almon Falls H.S.	Twin Falls Twin Falls	Pool Health spa	-	50,000	12	2	≇ 1325 ∣p≋ €	67 54	
encury H.S.	Twin Falls Twin Falls	Resort Greenhouses	6[5	70,000 20,000	5 12	5	2300 lpn ≛ 1300 ipn ≛		
arty's Tropical Fish er-Soc-Pah H.S.	Twin Falls Twin Falls	Test project Resort	6	70,000	6		1500 [pr. # 115 [pr. #		
Nerser H.S. Michaele City Well	Washington Washington	Resort & greenhouse Pool	e 1902`≞ Z	130,000 City property	12 Summer		20 lpr.≇ 7600 lpr:≇	70	

Table 2. Geothermal Development in Idaho - Hot Water Uses (continue)

۶


.

The most famous is probably Lava Hot Springs, a state-owned natatorium and health spa.

Potential uses for geothermal energy in Idaho are many and varied. Figure 4 shows minimum temperatures necessary for agricultural and industrial uses in which geothermal energy has been used or proposed. Many of these uses are related to agriculture, forest products, or tourism--three of Idaho's principal industries. The greatest potential, as far as present knowledge of the resource in Idaho is concerned, is for space heating and greenhouse use. In rapidly growing areas, such as Nampa, Caldwell, Boise, Pocatello, and Twin Falls, thermal water of sufficient quantity might be discovered and used for space heating large buildings and new subdivisions. Groundwater heat pumps generally would give a large energy savings over present heat sources if the water temperature was less than desirable for direct space Groundwater heat pumps used both for heating heating use. and cooling also have a large potential even in areas that have a normal cool groundwater temperature.

The area of greatest polential for greathouse operation is the Bruneau-Grand View area where high yield irrigation wells tap thermal aquifers where water temperature ranges from 20-84°C. The area is far from markets and major transportation routes but so is most other farmland in Idaho. Winter crops could conceivably be grown in this area for use in Idaho rather than shipping crops in from states with more favorable climates.

Table 3 and figure 5 show 14 areas in Idaho where potential exists for power generation where subsurface temperatures might be greater than 140° C, based on the Na-K-Ca and quartz chemical geothermometers. The Blackfoot Reservoir area was chosen on the basis of geology. The 140°C temperature was chosen as the lower limit as it appears that technology and rapidly escalating energy costs may make this limit economically attractive in the foreseeable future. Five locations appear to have aquifer temperatures high enough for wet steam generation. The highest estimated aquifer temperature expected from any of the 14 listed areas appears to be 175°C at Big Creek and Crane Creek hot springs areas in Lemhi and Washington counties. The upper limit given for Battle Creek-Squaw Hot Springs area in Franklin County may or may not be valid, because of uncertainties in interpretation due to travertine (CaCO₃) deposition at some spring vents. The Crane and Cove creeks to Weiser area have evaluation by the USGS. initial Blackfoot received Reservoir area and Battle Creek-Squaw hot springs areas have received initial evaluation by IDWR. The other areas need initial assessment work to more accurately determine their Many of these areas are remote and in thermal potential. rugged terrain. Assessment will, therefore, be somewhat Electrical power generation

Agriculture-related us Tropical fish, shrimp, altigator and crocodile farming Fish ferming and hatching

Hot water

Freeze-dry colfee, tomatoes .nn 280

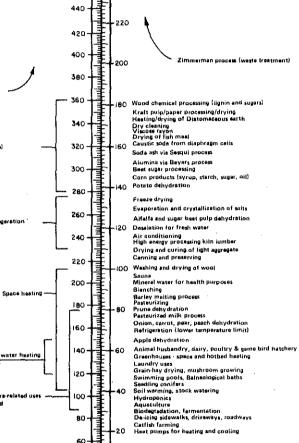
c٩

260

240

F٩

580


560 540

520 500

480

460

0

Cold storage 40 o 20 ∘∔≣ -20 -20--40-40 Frozen

(APPROX.)

60-

FIGURE 4.

Required temperatures for geothermal fluids.

	Location	т	easured Surface empera- ure ^o C		stimate Temp. °C Quartz	Princi- pal Land Owner	Type of Genera- tion	Area Number Floure	
Area	LOCATION			Ha=11-0a	yuai iz	Owner		гідые	
Battle Creek-Squaw H.S.	155-39E-8bdc15 & 155-39E-17bcd15	Franklin	84	250	150	Private	Wet steam	1	Could be mixed water geothermometers dif- ficult to interpret.
Big Creek H.S.	23N-19E-22c1S	Lemhi	93	175	175	USFS	Wet steam	2	Ridge top discharge, silica & carbonate deposition, boiling at surface.
Blackfoot Reservoir	65-41E-19bac1	Carlbou	42	?	?	Private, BLM, BIA	?	3	Picked on basis of favorable geology & geophysics.
Bonneville H.S.	10N-10E-31c1S	Boise	85	142	137	USFS	Binary cycle	4	Used for a steam bath and bathing by campers.
Crane Creek H.S.	11N-3W-76d61S	Washington	92	166	176	Private	Wet steam	5	Near boiling at the surface.
Cove Creek H.S.	10N-3W-9ccc1S	Washington	74	172	152	Private	Wet steam	6.	11 km southeast of Crane Creek H.S.
Deer H.S.	9N-3E-25bac1\$	Boise	80	139	147	Private	Binary cycle	7	Siliceous sinter deposits.
Indian Creek H.S.	17N-11E-15acd1S	Valley	88	137	142	USFS	Binary cycle	8	in wilderness area.
Magic Reservoir	1S-17E-23aab1	Blaine-Cama	s 72	174	139	Private	Wet steam	9	Chemistry of waters somewhat similar to Raft River.
Raft River	15S-26E-23bbc1	Cassla	92	147	135	BLM	Binary cycle	10	Plant under construc- tion. Geothermomete confirmed by drillin Na-K-Ca most accurat
Roystone H.S.	7N-1E-8dda1S	Gem	54	150	147	Private	Binary cycle	11	Presently a natatoriu
Vulcan H.S.	14N-6E-11bda1S	Valley	84	147	135	USFS Private	Binary cycle		•
White Licks H.S.	16N-2E-33bcc1S	Adams	65	145	145	USFS Private	Binary cycle		Bath houses for campers.
Weiser H.S.	11N-6 W- 10cca1	Washington	78	141	156	Private	Binary cycle	14	Presently a natatoriu with greenhouse oper tion.

e

.

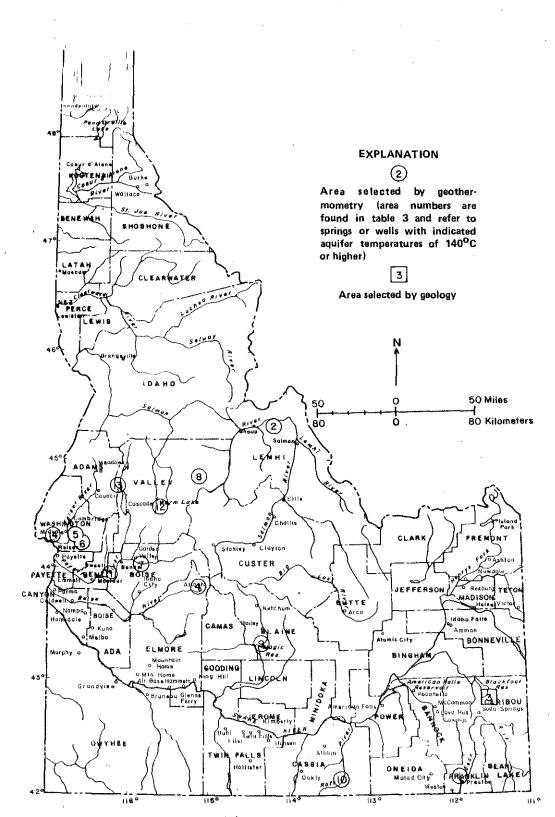


FIGURE 5. Index map of Idaho showing areas most favorable for power generation based on surface manifestation, geology and geotherometery. (Modified from Young and Mitchell, 1973.)

difficult and expensive, but if geothermal energy is going to make an impact on Idaho's electrical power base, and it appears to have potential to do so, the initial assessment will have to be made.

ORGANIZATION OF DATA

This report has been organized into four subregions within the state boundaries due to thermal waters in the separate subregions having different characteristics or modes of occurrence. Individual counties within a specific subregion are discussed in separate chapters. Figure 6 shows the approximate subregion boundaries and the counties they encompass.

Basic data tables containing information on the known springs and wells comprise a major section in the appendix of this report. The appendix also contains preliminary environmental assessments of several geothermal resource areas.

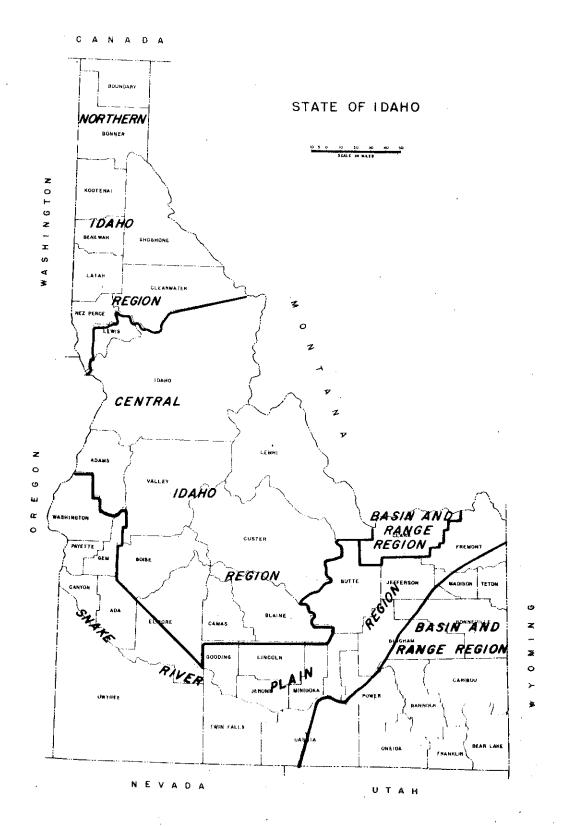


FIGURE 6. Index map of Idaho showing locations of counties and subregions covered in this report.

GEOTHERMAL POTENTIAL OF THE NORTHERN IDAHO "PANHANDLE" REGION INCLUDING SHOSHONE AND NEZ PERCE COUNTIES

There are no known thermal anomalies located in the eight counties that make up the Northern Idaho Panhandle area with the exception of some hot rock material deep in the mines in Shoshone County (figure 7) and one warm well in NezPerce County (figure 8). Generally very little is known of the geothermal potential of this area. Specific information known and relating to the geothermal potential in NezPerce and Shoshone counties follows.

SHOSHONE COUNTY

Shoshone County, located in the Panhandle area, is known for its silver, lead, and zinc deposits.

The generalized geologic framework of the area consists of Precambrian metasediments of the Belt Supergroup formations. These formations have undergone slight metamorphism and are composed primarily of quartzites, argillites, shales, and impure limestones.

The Belt metasediments (undifferentiated) consist of the Prichard, Burke, Revett, St. Regis, Wallace, and Spruce formations with the ore being mainly contained in the lower Burke and upper Prichard formations.

The structure of the area is relatively complex with two major fault trends; one trending northwest-southeast and the other trending northeast-southwest.

Mining has taken place in the Coeur d'Alene mining district since the middle 1800's. Currently the Bunker Hill, Sunshine, Crescent, Galena, and Star Morning mines are just a few of the deeper active mines located in Shoshone County. Most of the mines in the area are relatively water barren and diamond drilling and/or mining excavation has not encountered a significant geothermal anomaly. Any water needed for drilling or mining purposes is piped into these mines from surface sources.

Thermal gradient studies of the rock temperatures in the mines show temperatures increase from a normal temperature at the surface to those exceeding 40° C at deeper levels within the mines.

In the Star Morning Mine, rock temperatures were recorded to be 42°C at the 7300 ft level. In the Galena

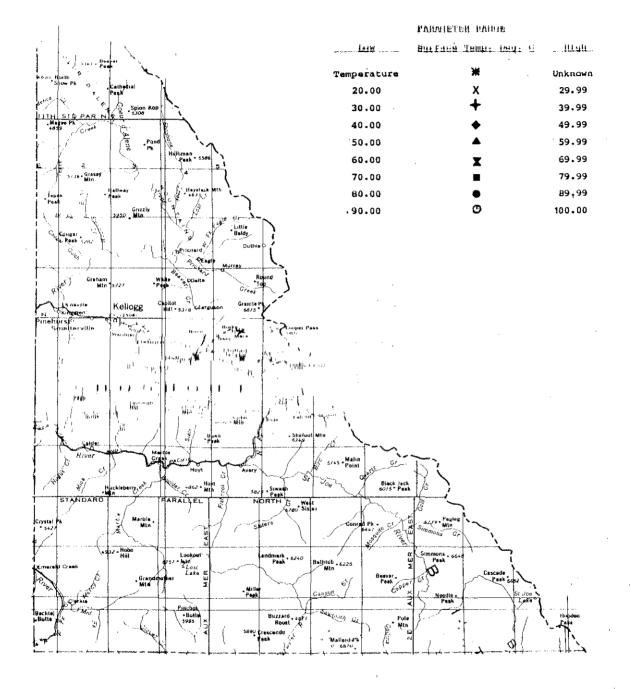


FIGURE 7. Index map of Shoshone County showing locations of known thermal water occurrences with surface temperatures above 20°C.

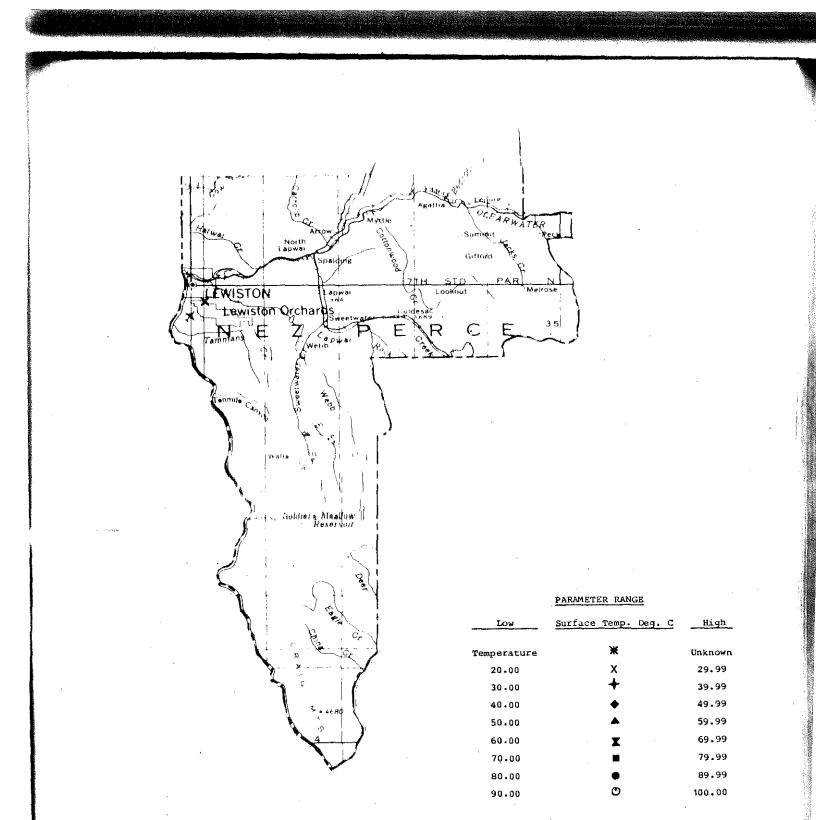


FIGURE 8.

. Index map of Nez Perce County showing locations of thermal water occurrences with surface temperatures of 20°C or higher. Mine, rock temperature at the 1600 ft level is 22° C and increases with depth.

Surface water brought into a mine is subsequently heated through use to the existing rock temperature at the level at which it is utilized. Excess water that accumulates is then pumped out of the mine and discharged at the surface or used in a surface facility.

For the last three years, the Bunker Hill Mine has expelled excess water at the surface at rates of 4393 liters per minute (1/m) to 7153 1/m at temperatures near 22°C. The Crescent Mine expels excess water at the rate of 719 1/m at temperatures' near 37°C. The Galena Mine in 1978 pumped excess water out of the mine at the rate of 397 1/m at temperatures near 24°C. Waters expelled from the Galena Mine are very low in dissolved solids, have a pH of 7.6 \pm 0.2 and are reused in the beneficiating plant. See figure 7 for mine locations.

Certain areas of these mines at some future date may have the potential to store and naturally heat a sufficient amount of water to be used for large scale thermal space heating.

Presently, any excess water that is pumped out of the mines not being utilized in their surface facilities could possibly be utilized for local space heating.

NEZ PERCE COUNTY

Little interest has been expressed in the geothermal potential of Nez Perce County and nothing has been previously written on its potential. One thermal well, however, has been drilled near Lewiston by the city of Lewiston (figure 8). This well has a surface temperature of 20°C, discharges 4500 l/min and is 183 m deep. No chemical analysis is available for the well and, consequently, it is impossible to determine the possibility of hotter water at This well and other wells drilled in the future depth. however, be used at this temperature for could, space heating and cooling using groundwater heat pumps provided sufficient flow rates are available. A water sample from this well should be chemically analyzed and aquifer temperature estimates should be made. It is possible that more and hotter thermal water might be found in the Lewiston area.

GEOTHERMAL POTENTIAL OF THE CENTRAL IDAHO REGION INCLUDING IDAHO, ADAMS, VALLEY, LEMHI, BOISE, CUSTER, NORTHERN ELMORE, CAMAS AND NORTHERN BLAINE COUNTIES

The vast region of central Idaho, including the Idaho batholith, is discussed as a separate section due to similarities in geology, geochemistry, structurally related occurrences, and the depositional features thermal springs in this region have in common.

Most of the thermal water found in this region appears springs, which range in temperature from 20-93°C. as Locally, several wells have encountered thermal water. It is commonly known that these thermal springs and wells are located along the major and minor streams and rivers in the area. They thus emerge at the lowest possible elevation, although many are found in the upper reaches of drainages. An example are 18 thermal springs that occur along the Middle Fork of the Boise River along a 45 km stretch between Arrowrock Reservoir and Atlanta. However, a more detailed examination reveals that thermal springs in this region appear rather evenly spaced along narrow arcuate zones or trends, some of which cut across drainage divides (figure 9 in pocket). Other zones follow major drainages, as in the Boise and Payette river systems. In some cases, mostly along the longer zones, the spacing tends to increase reqularly in one direction. In some cases, where zones intersect, as at Indian Creek and Middle Fork Salmon River, two springs occur near the zone intersections. The arcuate zones range in length from 20 to 80 km and appear to be very narrow. These arcuate zones are most numerous and well defined in the central batholith region in Idaho. Well drilling and spring locations in other regions of Idaho have revealed similar zones. The regular spacing of springs along these zones appears to result from the regular spacing of linear features associated with them. Why the springs occur at nearly the same point on separate parallel lineaments is unknown but probably is the result of another lineament or structure (not visible on Landsat images) which cross the regularly spaced linears. The springs occur at the intersections.

Springs along these arcuate zones tend to occur (1) near the confluence of streams and/or rivers, such as at Pistol Creek Hot Springs (16N-10E-14dbclS) and Little Pistol Creek Hot Springs (16N-10E-14dbclS); Riggins (24N-2E-14dbdlS), Loon Creek (17N-14E-19bdblS) and Hailey Hot Springs (2N-18E-18dbblS); or (2) near where a drainage is diverted around a large promontory or rock outcropping which projects into the

-21-

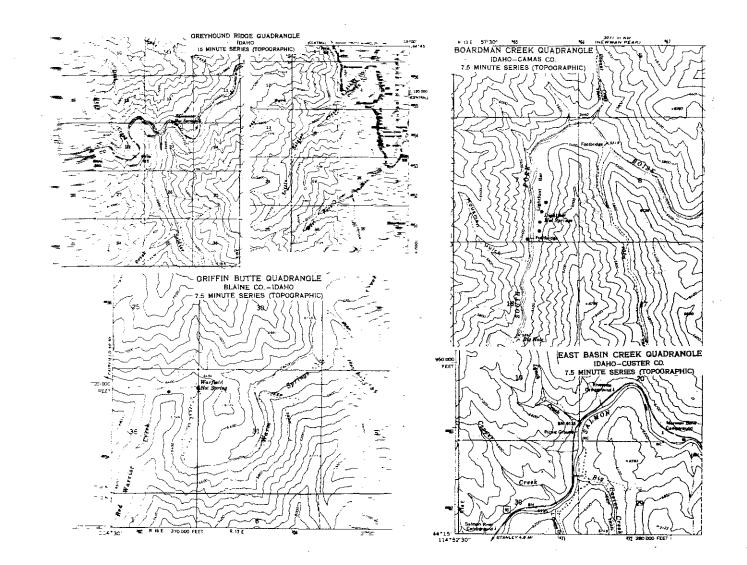
stream and around which the stream was forced to make a horseshoe or U-shaped bend. Mormon Bend (11N-14E-20aab1S), Riverside (16N-12E-16cbb1S), Sheepeater (15N-10E-24bbb1S), (16N-12E-8bbbls),Sunflower Flat Thomas Creek Ranch (16N-12E-17dad1S), Lightfoot Hot Springs (3N-13E-7dcalS) and Warfield (4N-17E-31bbclS) Hot Springs are examples of the second type of occurrence (see figure 10). Τt is conceivable that many undiscovered thermal springs issue from the bottoms of river channels where the flowing water masks the thermal water.

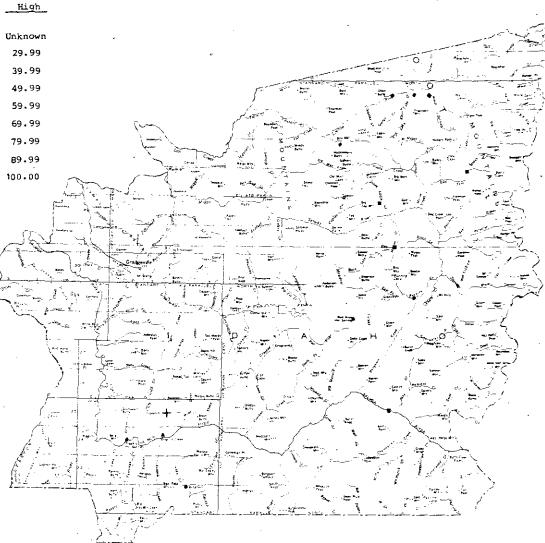
Figure 9 (in pocket) is a superposition of linears from Day (1974) and circular features of Haskett (1974) on a spring and well location map of Idaho. This figure shows that many of the thermal springs and wells are associated (found on or very near) with large linear features that are seen on high altitude U-2 and satellite photos. Few of Day's linears are found to fit the curvilinear zones defined by the spring occurrences, but data strongly suggest structural control for most thermal water in the region. A1 though the exact nature of the linears is not known, they could represent joints or faults or some other type of rock fracture. One theory of the origin of these thermal springs that they occur where ancestral joints, formed by is shrinkage or contraction of deeply buried, cooling igneous or metamorphic rock complex intersects faults, or other fractures allowing circulation of meteoric (rain and snow) water to depths where the water is heated by hot rock. The hot water being less dense than the colder water rises along the same or other joints, faults or fractures to form a Thus, most of the thermal springs in this thermal spring. region of Idaho probably represent deep circulation of meteoric waters to depths where the water is heated by contact with hot rock in a region or along zones of above normal geothermal gradient or heat flow.

These types of occurrences appear typical. Perhaps the localized geothermal anomalies--those associated with high intensity shallow seated heat sources (intrusions)--might be those which are not associated with arcuate belts or zones. Alternatively, at least some of the zones could represent fractures or other structures into which magma has intruded to shallow depths producing high intensity shallow seated heat sources.

IDAHO COUNTY

Thirteen thermal springs are known to occur in Idaho County (figure 11). They are fairly uniform in temperature, ranging from 41 to 59°C. They are not limited to any one locality or rock type, but are found sparsely distributed over a large area. Four springs, Wier Creek (36N-11E-13bcclS), Colgate Licks (36N-12E-15abdlS), Jerry Johnson




FIGURE 11. Topographic maps showing typical central Idaho thermal spring occurrences mear sharp river bends. Black fors indicate spring locations.

ي ج

ģ

FIGURE 11. Index map of Idaho County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

	PARAMETER RANGE			
Low	Surface Temp. Deg. C	High		
Temperature	*	Unknown		
20.00	X	29.99		
30.00	+	39.99		
40.00	♦	49.99		
50.00	▲	59.99		
60.00	X	69.99		
70.00		79.99		
80.00	•	89.99		
90.00	O	100.00		

- 24-

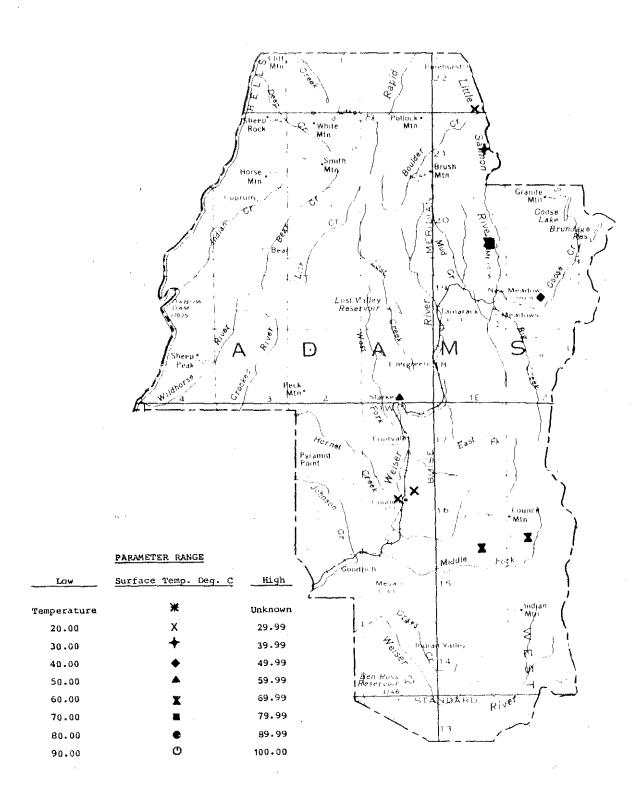
(36N-13E-18add18), and an unnamed apting ocean within a small area in northeastern Idaho County on or near the Lochsa River. Most of the other springs are in remote locations, wilderness or recreational areas, accessible only by pack trail. This, along with restricted use of these areas, precludes large scale development. Riggins (24N-2E-14dbd1S), Burgdorf (22N-4E-1bdc1S), and Red River Hot Springs (25N-12E-3ddd1S) are popular resort areas and boast improvements, although the Red River Resort recently burned down and the Burgdorf Resort pools have been officially closed by the district health officials. Jerry Johnson Hot Springs is used for informal bathing by campers and backpackers.

Most thermal springs in Idaho County occur within granitic rocks or near contacts of other rock types with granitic rocks. All are associated with known faults or linear features. The best defined arcuate trend in the region is represented by Stanley (34N-10E-6caalS), Stewart (32N-11E-4caalS), Martin (31N-11E-24dcdlS) hot springs and Running Springs (29N-12E-14abblS) in east-central Idaho County (figure 9 in pocket).

Water quality chemical data from thermal water occurrences in Idaho County are given in basic data table 1. These analyses provide a chemical comparison of thermal water in the area and were used to calculate selected chemical-constituent ratios and to estimate aquifer temperatures.

Chemical analyses are available for only six of the fourteen hot springs found in Idaho County. All of the analyzed springs are low in total dissolved solids, ranging from 582 mg/l at Riggins Hot Springs to 133 mg/l at Wier Creek Hot Springs. The pH of these waters is alkaline, ranging from 8.1 to 9.0, except for Red River Hot Springs. These springs have a flouride content of 23 mg/l whereas other sampled springs in the county have a flouride content of less than 6 mg/l. Typically, the waters in Idaho County are similar to most other thermal waters throughout central and southwestern Idaho that issue from granitic rock or areas thought to be underlain by granitic type rocks.

Aquilier temperatures calculated from the milling and Na-K-Ca chemical geothermometers and mixing models, as well as selected atomic ratios, are given in basic data table 2. Maximum subsurface temperature expected from wells drilled in the area of springs for which chemical analyses are available probably would not exceed 100° C and may be most closely approximated by the chalcedony or Na-K-Ca temperature, columns T₄ and T₅, basic data table 2.


ADAMS COUNTY

Seven thermal springs and two wells are known in Adams County with measured surface temperatures exceeding 20°C (figure 12). The two wells are located near the town of Council. Both are fairly low temperature at 22°C. Several other wells in the Council area have above normal tem-17°C peratures of up to (10°C above mean annual Well 16N-1W-15bacl is 35 m deep and was temperature). drilled within 0.4 km of the Hornet Creek-Weiser River confluence. The other well, 16N-1W-llacdl, was drilled to a depth of 64 m near the valley-mountain boundary fault zone No chemical analyses are available near Grossen Canyon. from these wells. Samples should be collected to help determine their geothermal potential.

Starkey Hot Springs (18N-1W-34dbblS), an attractive resort area, discharges 500 l/min of 56⁰C water near the confluence of Warm Springs Creek and Weiser River where the Weiser River bends north and abruptly turns south again in the steep-walled canyon surrounding Fort Hall Hill. Starkey Hot Springs appears structurally typical of the thermal spring occurrences in central Idaho. Aquifer temperatures indicated by Na-K-Ca and chalcedony chemical geothermometers are 70 and 77°C, respectively. These temperatures could have uses up to and including the lower temperature limit of refrigeration (see figure 4). Dissolved solids and flouride concentration are low, being 348 mg/l and less than 1 mg/l, The pH is 8.6. The chemistry of the water respectively. suggests a source rock not similar in chemical or mineralogical constituents to granitic rocks.

Council Mountain Hot Springs (15N-1E-2bdblS) is located 2.5 km up Warm Springs Creek from its confluence with the Middle Fork Weiser River southeast of Council. It issues at 68°C and 190 1/min from Quaternary alluvium near granitic rock. No other information is available on this thermal spring. Its location appears atypical of most springs in central Idaho.

White Licks Hot Springs (16N-2E-33bcclS) is located in the Middle Fork Weiser River drainage and issues from Quaternary alluvium near Miocene basalt and Cretaceous granitic rocks. Ross (1971, p. 9) reported that White Licks Hot Springs occurred on a relatively short north trending fault and had an abnormally high mineral content. Water issues from numerous spring vents at 63 to $65^{\circ}C$ (Young and Mitchell, 1973, p. 9) and has a slight sulfur odor. The quartz and Na-K-Ca chemical geothermometers estimate aquifer temperatures of 142 to $145^{\circ}C$, the lower limit of binary cycle power generation, might be found in the area by deep drilling.

FIGURE 12.

Index map of Adams County showing locations of thermal water occurrences with surface temperatures of 20°C or higher. Zims Resort (20N-1E-26ddalS) issues at 65° C and about 380 l/min from alluvial fill near the fault contact between Tertiary basalt and Cretaceous granitic rock. Dissolved solids are fairly low for this part of Idaho at 666 mg/l and the flouride content is 2.3 mg/l. Good agreement between Na-K-Ca and chalcedony chemical geothermometers indicate aquifer temperature may be about 83 to 84° C.

Krigbaum Hot Springs (19N-2E-22ccalS) near Meadows, issues from a northeast trending normal fault in Cretaceous granitic rocks near Miocene basalt from two separate spring vents at 40 and $42^{\circ}C$ at 150 l/min. The chalcedony and Na-K-Ca chemical geothermometers indicate subsurface temperatures of 91 and $96^{\circ}C$, respectively.

The other springs are located on the Little Salmon River north of Meadows Valley (22N-1E-34dadlS and 21N-1E-23abalS). The springs have fairly low temperatures (26 and 30°C) and low discharges.

The chalcedony and Na-K-Ca chemical geothermometers seem to be more consistent in Adams County (at least for springs and wells for which analyses are currently available) than anywhere else in the state.

The geophysics which have been done in Adams County are reported on by Donaldson and Applegate (1979). They reported that:

... the preliminary map (figure 13) of southern Idaho shows the Council-Cambridge area being dominated by a distinct gravity high with a residual magnitude of nearly 40 mgal (milligal) near Council (figure 14). The gradient of the anomaly is enhanced to the east where the dense basalts lie adjacent to relatively low density intrusives. This steep gradient indicates a sharp contact between basalt and batholith rocks and a faulted contact is certainly possible. The gravity profile as a whole indicates that these plateau basalts are considerably thickened in this area. The anomaly may represent a local embayment on the plateau-basalt depositional surface or perhaps subsidence and filling during the volcanic activity.

Bond (1975) shows many faults in this area and Witkind (1975) classifies several faults as active (figure 15). The faulting patterns (Bond, 1978) suggest that alluvial-filled river cut valleys in this area may be fault controlled. Unfortunately, the gravity data is very sparse and does not define the valley margins or allow any estimation of their depths or structural controls.

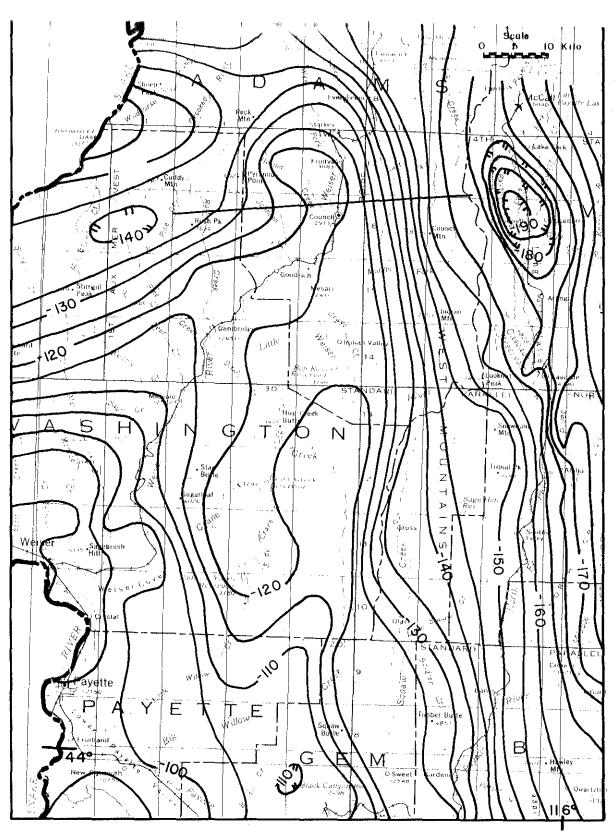


FIGURE 13. Gravity map of Council-Cambridge area, contour interval is 5 milligals. (Mabey, Peterson, and Wilson, 1974).

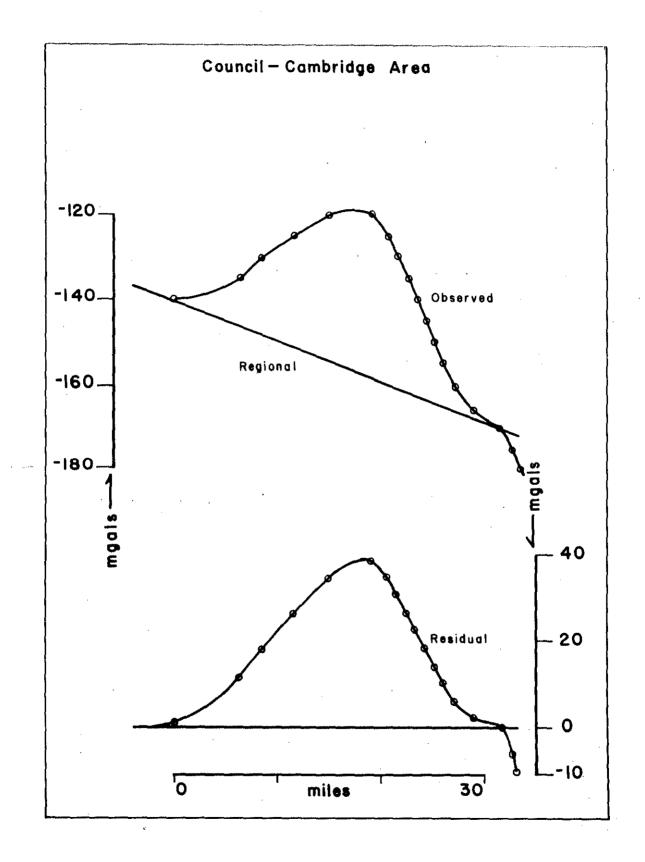
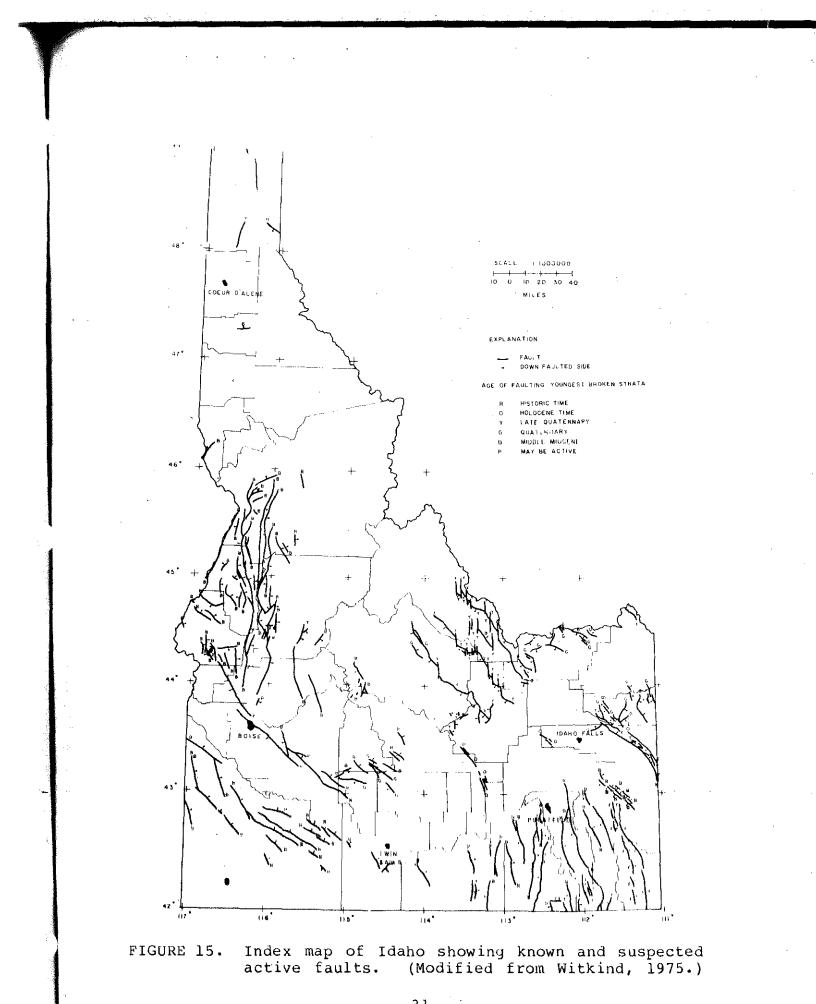
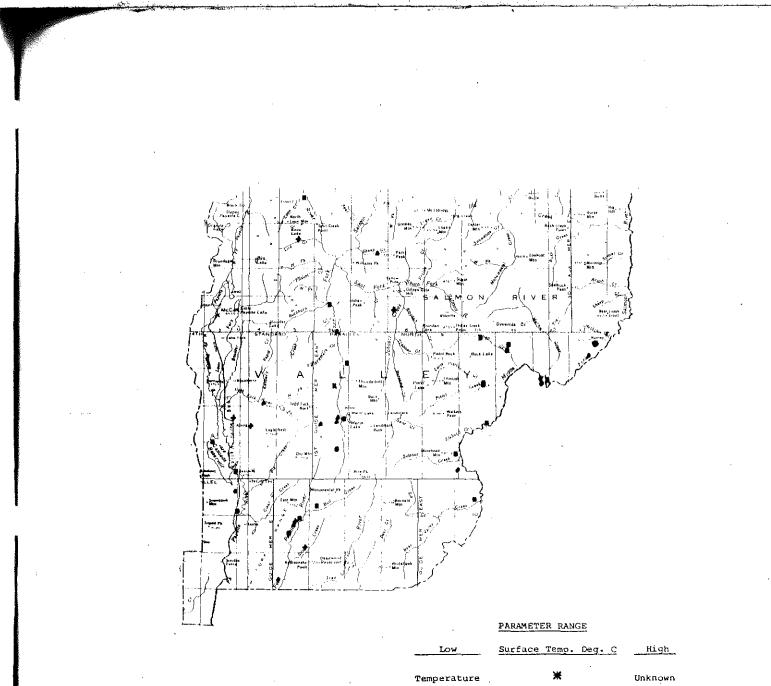



FIGURE 14. Gravity Profile near Council (from Donaldson and Applegate, 1979).

VALLEY COUNTY

Occurrences of thermal springs in Valley County are similar to occurrences in Idaho County but they appear to be more numerous (figure 16). Many are accessible by graded and drained gravel roads in the more remote locations and some occur near major transportation routes. Others are in wilderness areas accessible only by pack trail or river travel. Many are used by game animals as salt licks due to minor amounts of sodium (Na) and chlorine (Cl) ions in the water.


Chemical analyses are available for only 20 of the 41 known thermal water occurrences in Valley County. Temperatures range from 20°C at Dollar Creek Warm Springs (16N-6E-14ccclS) to 88°C at Indian Creek Hot Springs (17N-11E-21blS) in the Idaho wilderness area. Dissolved solids are very low, the highest being 412 mg/l and the lowest reported to be 192 mg/l. The waters may be classed as sodium carbonate or sodium bicarbonate type waters according to the dominant chemical species dissolved in the water.

Two areas in Valley County that might be candidates for power generation sites are Indian Creek Hot Springs and Vulcan Hot Springs (14N-6E-11bdalS), provided quartz is the mineral controlling silica content in the thermal waters. As indian Creek Hot Bprings is in the idaho wilderness area, however, it is not likely to be developed. The two aptings exhibit very similar chemical qualities. Bubauface tem peratures appear to be in the libber range, according to the Na-K-Ca chemical geothermometer and may be as high as 145-150°C, according to the quartz chemical geothermometer (columns T₅ and T₁, basic data table 2.)

Another noteworthy thermal spring is Boiling Springs (12N-5E-22bbclS) on the Middle Fork of the Payette River. This spring, according to Ross (1971, p. 10), is perhaps the best studied thermal spring in Idaho. The water contains several metallic ions, including mercury. Ross (1971, p. 10) stated that:

Boiling Springs is only one of eight thermal springs in this area. All flow from granitic rocks along shear zones paralleling the river. Springs along the Middle Fork of the Payette River seem to be along an extension of the same fault that acts as a conduit for springs along the South Fork of the Salmon River.

Although called Boiling Springs, surface temperature is only 85°C. Subsurface temperatures appear to be not much higher, only 89°C according to the chemical geothermometer.

Low	Surface Temp. Deg. C	High		
Temperature	*	Unknown		
20.00	Χ.	. 29.99		
30.00	+	39.99		
40.00	•	49.99		
50.00	A	59.99		
60.00	X	69.99		
70.00		79.99		
80,00	۲	89.99		
90.00	O	100.00		

FIGURE 16.

Index map of Valley County showing locations of thermal water occurrences with surface temperatures of 20⁰C or higher. Cater and others (1973 p. 383-389) discussed the thermal springs in Valley and Custer counties along the Middle Fork of the Salmon River and stated:

Thermal springs in the Idaho primitive area are in an area of ...volcanics and tectonic activity. Most rocks are Cretaceous Idaho batholith, Eocene Challis volcanics and Eocene granite. Rock types do not appear to influence the distribution of the springs. Tertitary mafic dikes near the thermal springs indicate a possible mutual relationship to deep-seated heat sources.

The igneous rocks are not porous, but numerous surface fractures and faults are apparently extensive, providing the channel ways for convective systems that permit surface waters to reach deep-seated heat sources and return to the surface at greatly elevated temperatures. All springs are on numerous small faults and fractures within a few feet of major streams along probable faults. Most faults and fractures strike N. 45° W; dips are normally greater than 45° .

With the exception of Indian Creek Hot Springs, subsurface temperature in the Middle Fork Salmon River area probably will not exceed boiling as shown by the chalcedony and Na-K-Ca chemical geothermometers (basic data table 2, columns T_4 and T_5). Wilderness area classification precludes large scale development of any of these thermal springs.

Wilson and others (1976) studied the geothermal potential of the Cascade area in Valley County. They stated:

Field and laboratory investigations show the existence of a geothermal resource in the Cascade area of west-central Idaho which may have development potential for non-electrical uses. Numerous high angle faults cut the Idaho batholith in this area; displacements on some of these faults are as great as 3050 m and many of them have associated X-ray analyses of samples alteration zones. collected from these zones indicate substantial hydrothermal alteration. Fault controlled hot springs have temperatures at the surface of up to 71°C.

Microseismic monitoring in the area suggests that east-west trending faults are active, supporting the plausibility of an accessible geothermal resource.

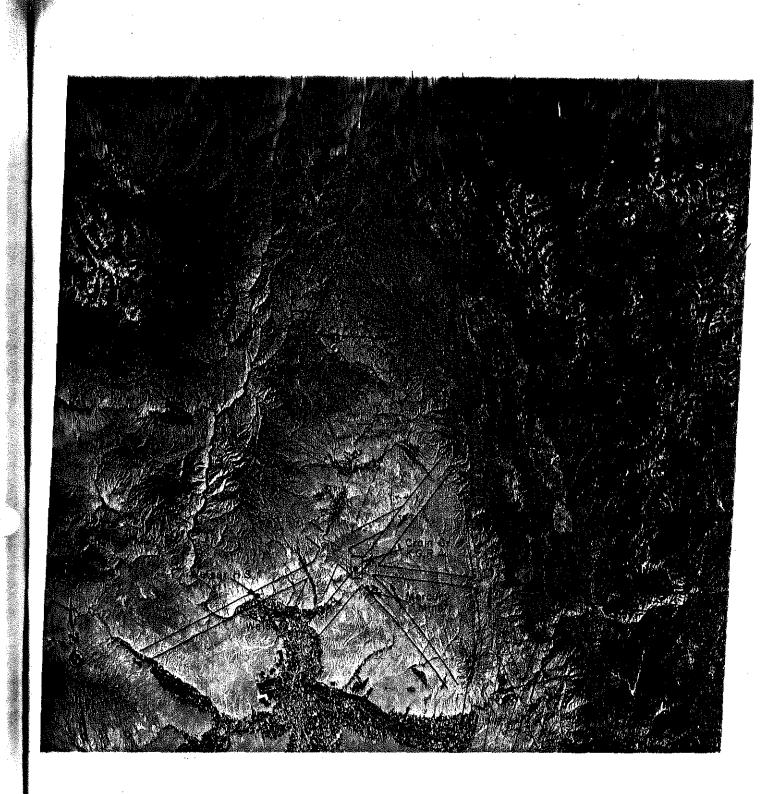


FIGURE 17. EROS false color infrared Landsat EDISE image of part of west-central Idaho and eastern Oregon showing selected linear features and thermal water locations with surface temperatures above 20°C. Note: Linear features occur between the black lines.

The domentic groundwater supply for most of the nied 18 from very shallow wells, most of which are developed in the upper 200 feet of the valley floors and derive their water from joints rather than from fault systems. Preliminary data indicate no connection between the thermal systems and the water supply for the area.

The Na-K-Ca and chalcedony chemical geothermometers suggest aquifer temperatures may be as high as 46 to 66° C near the city of Cascade.

Thermal water is associated mostly with granitic rocks of the Idaho batholith.

Earth Resources Observation Systems (EROS) digital image enhancement system satellite image (figure 17) of the Cascade-Long Valley area shows that Cascade lies near the intersection of major linear features. These may control the occurrence of thermal water in the area. Other thermal water occurrences in west-central Idaho and selected linear features associated with them are also shown on the image.

LUMIT COUNTY

Eleven thermal springs have presently been documented in Lemhi County (figure 18). About half are in remote (primitive or recreation) areas which precludes development. Chemical data have been collected for only four of the eleven thermal springs located in Lemhi County.

The hottest thermal spring in the county and one of the hottest in Idaho is Big Creek Hot Springs (23N-18E-22cad1S) which has a surface temperature of 93°C (boiling). It is located high in the Hot Springs Creek drainage (over 330 m above the Salmon River, the major drainage in the area) near Panther Creek at the top of a divide (ridge top discharge). Quartz and Na-K-Ca chemical geothermometers both indicate subsurface temperatures are 160-175°C. Both siliceous and carbonate deposition is found near active vents. Water is presently used by big game hunters as a steam bath. Big ... Creek Hot Springs appears from available data to date to be one of the best prospects in Idaho for power generation.

Bennett (1977) reported on the geology and geochemistry of the Blackbird Mountain-Panther Creek region in Lemhi County, Idaho. He stated (p. 4):

The Panther Creek region is located in the Salmon River Mountains. The area is characterized by flattopped mountains and moderate to steep V-shaped canyons. This entire section of Idaho is quite striking from the air as concordant elevations give

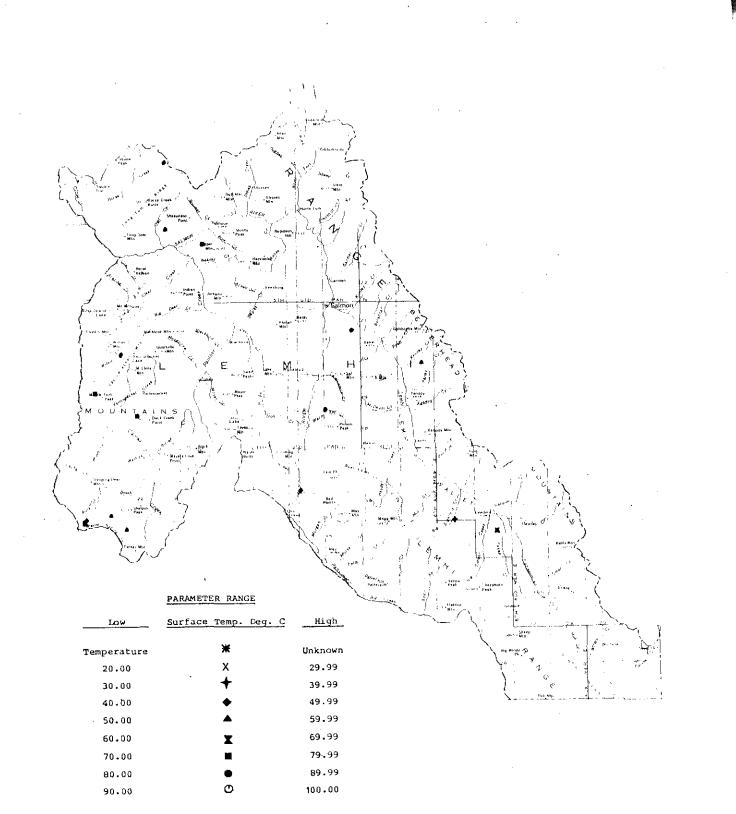


FIGURE 18. Index map of Lemhi County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

the appearance of a field plain stretching from the Bighorn Crags (Tertiary pluton) which rise above the general remnant surfaces. Elevations rangefrom 976 m in the Salmon River Canyon to over 2,700 m in the western part of the study area.

Bennett further stated (p. 8):

The rocks in the Blackbird Mountain quadrangle are, for the most part, Precambrian metasediments and intrusives which have undergone several episodes of folding and faulting. Large scale thrust faulting, block faulting, and Tertiary igneous activity (both intrusive and extrusive) have added to the complexity. Lack of good stratigraphic control greatly complicates the interpretation of the geology; indeed, even the gross ages of the main units remains questionable.

Bennett's linear map of the area is included here as figure 19. He noted five major trends:

- a. There are three prominent sets of linears, a northwest set, a northeast set and a northnorthwest set.
- b. A set of linears which outlines the eastern edge of the Crags pluton may represent a curvilinear fracture system associated with emplacement of the pluton. These linears trend northwest along Roaring Creek, northsouth just east of Cathedral Rock and northnortheast along Yellowjacket Creek.
- c. Many of the major drainages appear to coincide with linear segments such as the Panther Creek-Napias Creek lineament.
- d. Linears appear more concentrated in the area of Blackbird Creek, Musgrove Creek and Porphyry Creek. In this area, the intersection of northeast and northwest linears forms a boxwork pattern. Several of the northeast linears are confined to a belt bordered by the Panther Creek-Napias lineament to the east and the headwaters of Blackbird Creek, Musgrove Creek and Porphyry Creek to the west.

e. Comparison of figures 20 and 21 shows that the -150 gamma contour, which may represent the western limit of the Leesburg stock, coincides with linear segments just east of

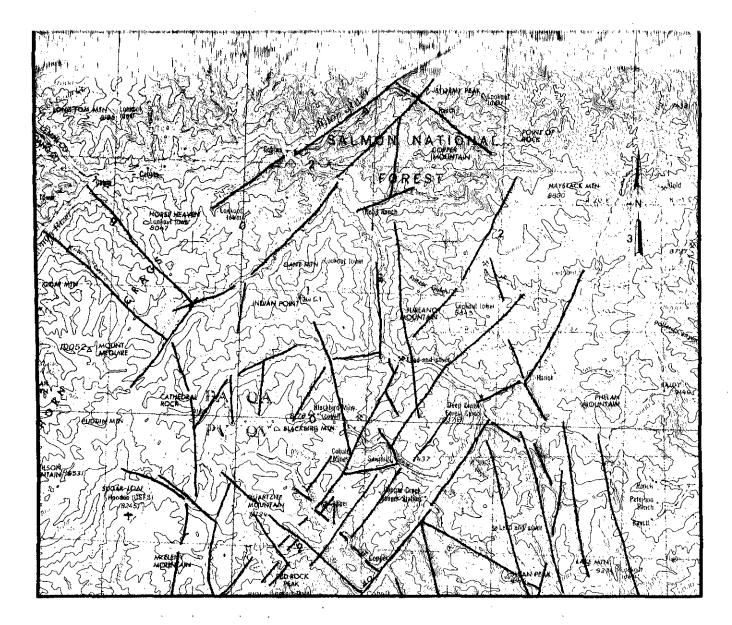


FIGURE 19. Linear map compiled from Landsat, false color, infrared imagery. Topographic base is from Elk City AMS map (scale 1:250,000). Bennett, 1977, p. 33. From

the Panther Creek and along Napias Creek and Moccasin Creek.

Of interest to this study are the linears that intersect in the vicinity of Big Creek Hot Springs. The Hot Springs Creek part of the Clear Creek-Hot Springs Creek lineament has been mapped as a fault (figure 19). The north trending lineament approximately follows the Augen-Greiss-Yellowjacket Formation (figures 19 and 20).

Of interest to this report is Bennett's aeromagnetic map of the area as shown in figure 21. Bennett reported that:

A positive magnetic anomaly (maximum +150 gamma) is expressed northwest of Leesburg on Camp Creek.

Bennett believed this represented the magnetic expression of the Leesburg Stock. Bennett reported that:

The small part of the stock exposed along Arnett Creek extends from the +50 gamma contour across the 0 gamma contour. The -100 gamma line which surrounds the +150 line (south of Haystack Mountain) marks the western limit of silver, lead and molybdenum anomalies which are probably related to the stock. The -150 gamma contour near Jureano Mountain extends along the Leesburg fault and may mark the western limit of the stock in the subsurface.

The area enclosed by the -210 gamma line over Gant Mountain and the surrounding -200 gamma line are most likely expressions of the augen/ellipsoidal gneiss unit and its subsurface extension to the northwest beneath the undifferentiated metamorphic rocks. In fact, most of the area which is less than -150 gammas, within the study area, appears to be related to the outcrop patterns of the augen gneiss.

Big Creek Hot Springs lies on the -170 to -200 gamma trough. This trough follows the general trend of the Hot Springs fault.

The land is administered by the U.S. Forest Service (USFS). Until leases are issued, prospects such as Big Creek Hot Springs cannot contribute to our energy supply. The area is remote but not roadless. The nearest sizable market for electricity would be Missoula, Montana; however, recent electric wheeling legislation could allow development by utilities located out of the area.

Salmon Hot Springs (20N-22E-3abdlS), 10 km south of Salmon, has a surface temperature of 45°C, and is the

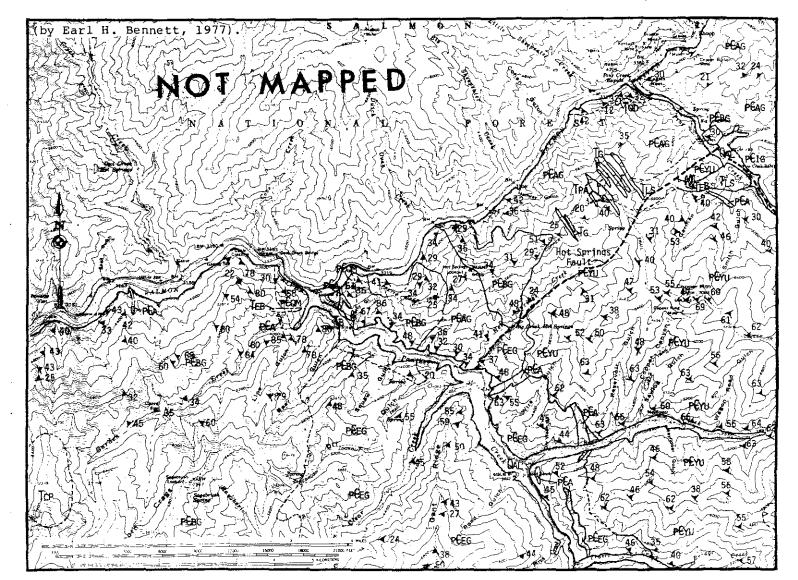


FIGURE 20. Geologic map of the Big Creek Hot Spring area in Lemhi County, Idaho

- EXPLANATION -РЕОМ QAL Alluvium Quartz monzonite orthogneiss Qls Landslide deposits Augen Cneiss Complex: TERTIARY QGL Glacial terrace deposits PEAF Augen gneiss (PCAG)/Ellipsoidal gneiss P€iG (PEEG)/gnaiss intermediate between Qт Terrace gravels **P**CEG PEAG and PEEG - PEIG PEA Amphibolite dikes Later Tertiary ash ΤA Hoodoo Quartzite PEHU, upper unit may TI Interbeds be equivalent to Ruppel's (1975) Apple Creek ₽€н∪ Formation. PCHL, lower unit is probably Tcv Undifferentiated Challis Volcanics PEHL equal to Ruppel's (1975) Big Creek Forma-Тра tion. Porphyritic andesite PRECAMBRIAN (Y) QUATERNARY Ted Undifferentiated Tertiary dikes Yellowjacket Formation PEYU-upper ₽€YU dark gray, impure quartzite mymber and Тев Basait dikes PEYL PEYL-lower phyllite member. TG Gabbroic dikes "Mixed unit" consists of quartzites schists, ₽€ Q8 phyllites and argillites, which are probably TOD Orbicular quartz diorite Yellowiacket Formation at a higher metamorphic grade, Тср Crags pluton Garnet schist, Probably Yellowiacket TLS Late Cretaceous - Tertiary Leesburg ₽€GS Formation units at a higher metamorphic etock grade. Undifferentiated schists and other meta-₽€вс morphic rocks - Probably Yellowiacket Formation units at a higher metamorphic grade. 45 4 Strike and dip of bedding _____ Constact - dashed where approximate, -?-?-?-?queried where uncertain or inferred Vertical beds - A A A _ Thrust fault, teeth on upper plate Strike and dip of foliation Fach - dashed where approximate, queried where Vertical foliation inferred. May in part be thrust faults - ? - ? - ? - ? -30 Strike and dip where foliation parallels bedding -The Shoup and Ulysses Mtn. quadrangles (area north of 45º 15' north latitude) have a contour interval of 80 feet. The Blackbird Mtn. and Note: Leesburg quadrangles (area south of 45° 15' north latitude) have a contour interval of *30 feet,

-43-

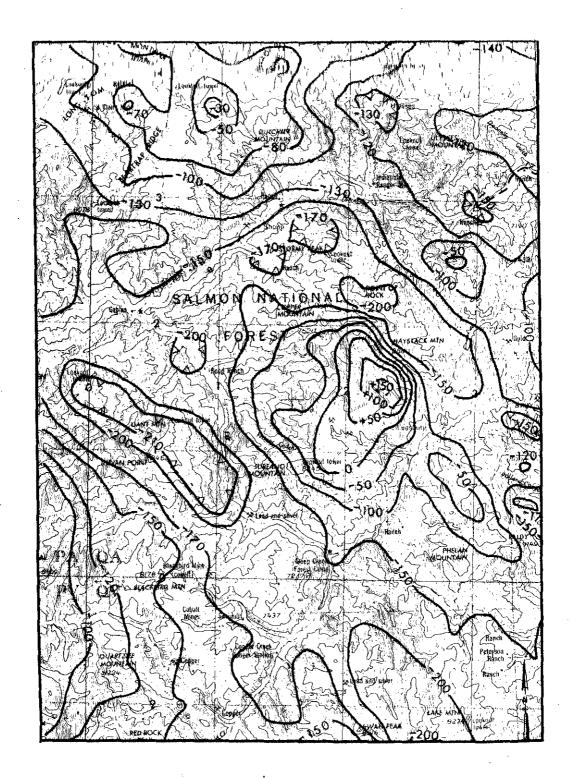
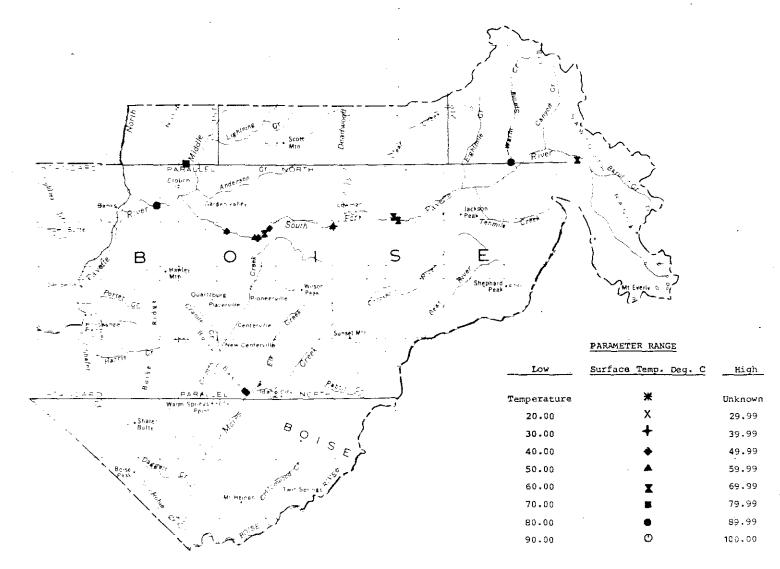


FIGURE 21. Aeromagnetic map of the study area (modified from U.S.G.S., 1975). Map is drawn with a 6.17 gamma/mile north and a 3.92 gamma/mile east regional trend removed. Magnetic contours are overlain on topography from the Elk City AMS map (scale 1:250,000). From Bennett, 1977, p.28.

nearest of any thermal springs in Lemhi County to a meaningful population center. Aquifer temperatures at Salmon Hot Springs appear to be only 50° C by the chalcedony chemical geothermometers (basic data table 2) although the Na-K-Ca chemical geothermometer indicated temperatures may be as high as 204°C. This discrepancy could be caused by mixing of hot and cold water or precipitation of calcium in the subsurface. There is excess travertine deposition by the spring. This site might have potential for space heating in or near Salmon.

(20N-24E-34ccclS)Springs issues Sharkey Hot from Oligocene silicic volcanic rocks along a northwest trending fault. It is actively depositing small quantities of carbonate material and apparently formerly deposited silica. It discharges 30 1/min. Measured surface temperature is 52°C. Maximum subsurface temperature is thought to be best represented by the chalcedony chemical geothermometers at Sharkey Hot Springs is somewhat removed from popula-104°C. tion centers but is accessible by an improved road.


A spring (16N-21E-18adclS) located on the Salmon River discharges 25 l/min and has a surface temperature of 46° C. It issues from the alluvial material probably overlying Precambrian quartzite. This spring deposits small quantities of carbonate material locally. Subsurface temperatures may best be represented by the chalcedony chemical geothermometer at 57° C.

BOISE COUNTY

Thermal springs in Boise County are most numerous along the South Fork of the Payette River (figure 22). Garden Valley lies at the confluence of the South and Middle Forks of the Payette River and is popular as a summer home resort Several thermal springs and at least one thermal well area. Two thermal springs exist are in the Garden Valley area. One, Stope Warm Springs (6N-5E-33abclS), near Idaho City. occurs in an abandoned mine adit. The other, Warm Springs (6N-5E-33adclS), has been developed into a popular resort. Idaho City is also a popular summer home area where use could be made of thermal water for space heating.

Little is known of the characteristics of thermal water as only six chemical analyses are available from 19 known thermal occurrences in Boise County. More sampling of thermal water occurrences should be undertaken to more fully assess the area's geothermal potential.

In general, the dissolved solids are low except for flouride and sulfate concentrations in those thermal waters sampled; generally, the water is a sodium bicarbonate type. FIGURE 22. Index map of Boise County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Bonneville Hot Springs (10N-10E-31bcclS) is the hottest thermal water in Boise County at $85^{\circ}C$ and has a $1400 \ 1/m$ discharge issuing from a fault in granite (Ross 1971). Bonneville Hot Springs may have potential for binary cycle power generation, as the quartz and Na-K-Ca chemical geothermometers estimate temperatures of 137 and $142^{\circ}C$.

Deer Hot Springs (9N-3E-25baclS) might also have potential for binary cycle power, as quartz and Na-K-Ca chemical geothermometers estimate temperatures of 147 and 134°C. Deer Hot Springs has a surface temperature of 80°C and discharges 76 1/min.

Other thermal springs are much cooler having surface temperatures between 46 and 67° C and subsurface temperatures between 60 and 104° C, according to the Na-K-Ca and chalced-ony chemical geothermometers. The Na-K-Ca chemical geothermometer indicates subsurface temperatures cool in a fairly systematic way from a high of 142° C at Bonneville Hot Springs in the upper reaches of the South Fork Payette River to a low of 63° C near Danskin Creek Hot Springs (8N-5E-lbcclS).

Sacajawea Hot Springs (10N-11E-31aad1S) in the upper reaches of the South Fork Payette River drainage has not been sampled, but has a surface temperature of 68°C and reported discharge of 380 1/min.

Twin Springs (4N-6E-24bcblS), a developed resort, is so named because a thermal and nonthermal spring occur in close proximity and is located in the lower reaches of the Middle Fork of the Boise River above Arrowrock Reservoir. The thermal spring discharges water at 67°C. Subsurface temperatures may be as high as $104^{\circ}C$, according to the chalcedony chemical geothermometer. The Na-K-Ca chemical geothermometer predicts $60^{\circ}C$, unexplainedly $7^{\circ}C$ below measured surface temperatures.

CUSTER COUNTY

Thermal springs in Custer County (figure 23) are similar in occurrence to springs in most of the rest of northcentral Idaho occurring near drainage confluences or near ridge points that protrude into the stream. The thermal waters are generally low in dissolved solids and have high pH values. About half are on lands administered by the USFS and many could be developed for recreational uses. One, Stanley Hot Springs (10N-13E-3cablS), has now been covered over.

Generalities on thermal spring occurrences along the Middle Fork of the Salmon River were given earlier in the section on Valley County. These are in remote areas, so

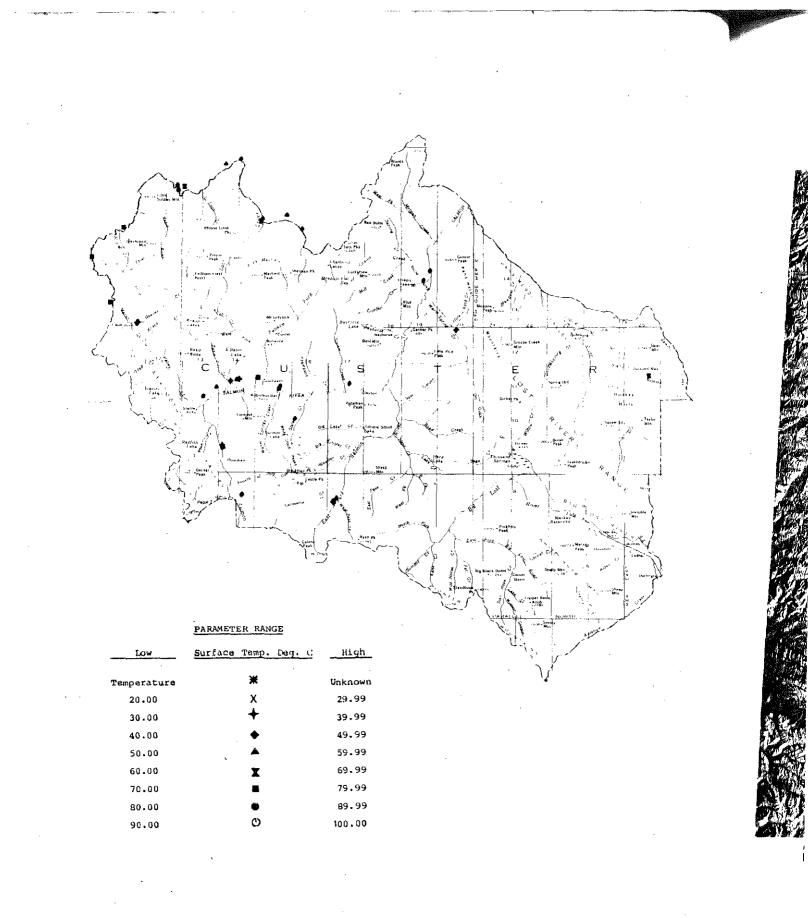
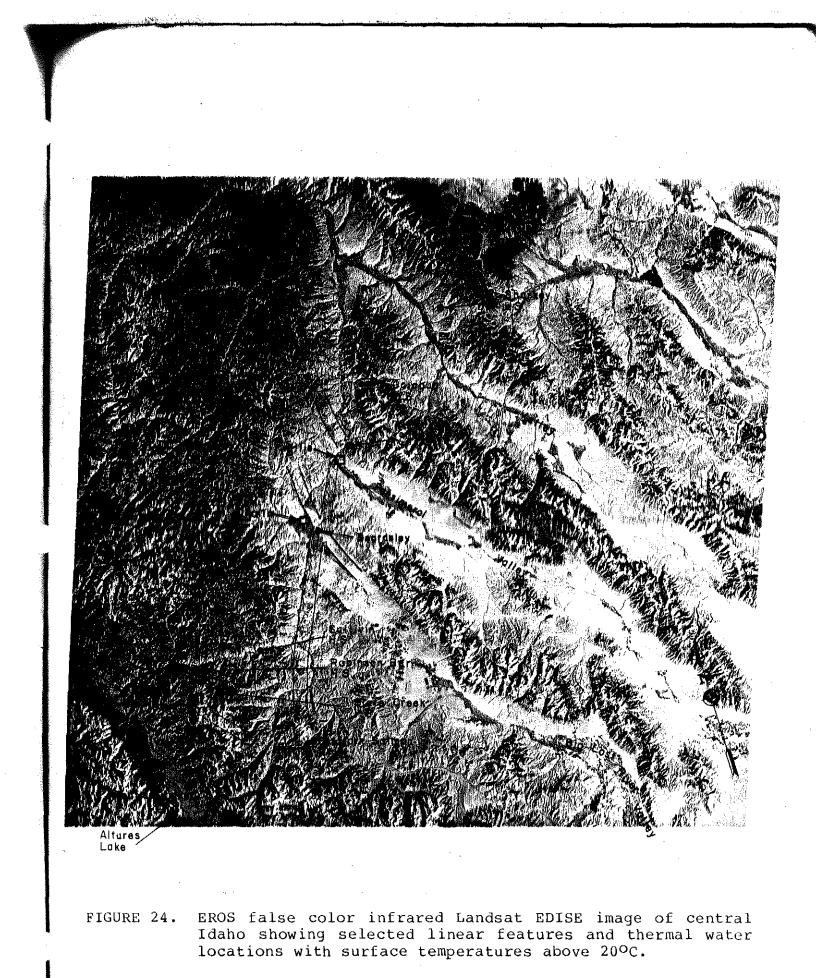



FIGURE 23.

23. Index map of Custer County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

FI

large scale development for industrial purposes is not Springs along the main Salmon River between Smiley likely. Creek and Salmon generally lie within recreation area boundaries on both private land and land administered by the USFS. Some of these springs have potential for recreational Several are presently used as such and others have uses. been previously used for such purposes. In areas that are being developed for recreational home sites, springs could be utilized for space heating. Some of these springs might be used similar to the way springs in Boise County are used by the Idaho Department of Fish and Game as a heat source for game bird production, particularly wild turkeys and As most of the area is far from markets and few grouse. good transportation facilities exist, most other uses appear to be excluded, although locally small scale uses, such as greenhouse operations, might be feasible.

Figure 24 is an enhanced Landsat false color infrared image of part of Central Idaho showing locations of selected thermal water discharges and linear features. The common occurrence of springs and lineaments is not striking on the figure. Nevertheless, several major linear features are shown near the thermal springs or wells. The chemical geothermometers are highly variable for Custer County. Highest aquifer temperatures appear to be near 104°C in the area of Basin Creek, Mormon Bend and Sunbeam Hot Springs.

NORTHERN ELMORE COUNTY

Thermal springs in northern Elmore County (figure 25) are distributed along the major drainages -- the North, Middle, and South Forks of the Boise River. These occurrences along the drainages are similar to other springs in central Idaho.

Ross (1971, p. 13 and 14) states that:

More than a dozen thermal springs occur along the lineament that marks the main Boise River and its Middle Fork tributary. All the springs issue from granite, in areas transected by granitic and mafic dikes. Between Twin Springs (4N-6E-24bcblS) in Boise County and Weatherby Mill well (6N-9E-35acal) springs average one every 2 miles. A single spring (6N-11E-35dcalS) is northeast of Altanta along the same lineament.

The 29°C water from the flowing well at Weatherby Mill is considered by local residents too mineralized to drink, although total dissolved solids are similar to those in the other springs.

Approximately a dozen thermal anomalies (figure 25) occur along the upper reaches of the South Fork of

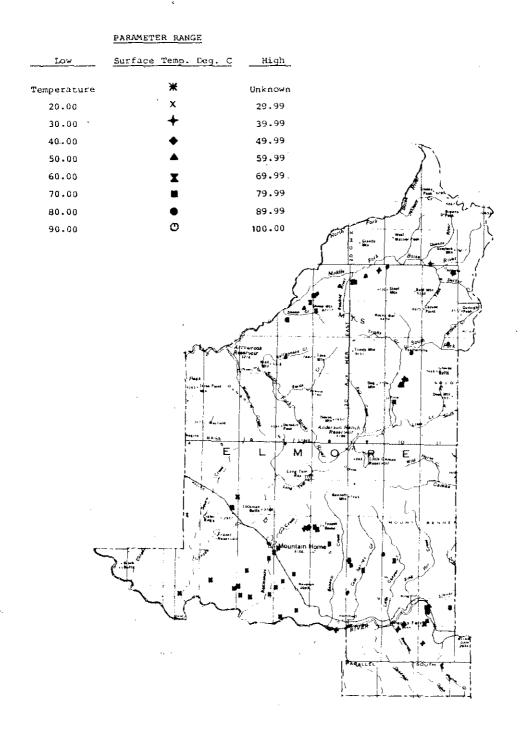


FIGURE 25. Index map of Elmore County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

the Boise River and its tributaries. All are in granitic rock, much of which is cut by mafic and pegmatitic dikes.

Paradise Hot Springs (3N-10E-33bdblS) utilizes 60°C water in a swimming pool at a resort. A mile south, Bridge Hot Spring (2N-10E-5acalS) and related seeps flow more than 150 gpm, also at 60°C. A warm spring (3N-10E-10abalS) and several warm wells are at Featherville. The 46°C water at Baumgartner Hot Spring (3N-12E-7dcd1S) is used for bathing facilities at a Forest Service campground. Lightfoot Hot Spring (3N-13E-7dcalS) apparently was used at one time for domestic heating and for irrigation of a small meadow. Maximum temperature is 62⁰C.

Highest temperatures along the South Fork of the Boise River are at the east and west extremities of the regions.

The chemical geothermometers indicate some of the hotter of the low temperature thermal water in Idaho might be found in northern Elmore County. The Na-K-Ca and quartz chemical geothermometers indicate temperatures as high as 126°C might drilling be found by at Neinmeyer Hot Springs (5N-7E-24bddlS). At Latty Hot Springs (3S-10E-31ddb1S), temperatures might be as high as 137°C. Most of the other springs in the area show subsurface temperatures below 80°C, according to the Na-K-Ca chemical geothermometer.

Most of these thermal springs are on lands administered by the USFS and several more probably could be developed by the USFS for recreation purposes. Those that occur near vacation homesites (table 4) could probably be developed for heating, provided flows could be space augmented by Some of them could be used by the Idaho drilling. Department of Fish and Game as a heat source for game bird production.

CAMAS COUNTY

Camas County (figure 26) contains several thermal springs and wells. Many are in the unpopulated Soldier Mountain area to the north of Camas Prairie. These occurrences are similar to the rest of the thermal springs in central Idaho. They are limited to the South Fork of the Boise River and its tributaries in northern Camas County. Located here are Worswick (3N-14E-28caalS), Preis (3N-14E-19daclS), Wardrop (1N-13E-32abblS) and Lightfoot (3N-13E-7dcalS) hot springs. Worswick Hot Springs is probably the most extensive thermal spring in Idaho covering more than 10 acres and having dozens of vents, according to Ross (1971).

	TOWNS AND		Spring or Well Surface	TABL IN CENTRAL IDAHO WITHIN *Best Estimated Subsurface Temperature ^O C			OF A 20 ⁰ C OR H			OR WELL (1978)
- ·				-	Min. Max.	Dissolved	Water	Surface		
Town	County	Location	ture ^o C	Na-K-Ca	Chaicedony	Solids	Use	Population	Owner	Remarks
Atilanta	Elmore	5N 11E-3			^			·		No chemical anal- yses available, summer home sites.
Cascade	Valley	14N-3E-36abd1	43	46	66	193	Municipal pool	916	City of Cascade	
Challis	Custer	14N-19E-23ddd19	5 40	60	68		Natatorium	850	Private	Summer home site
layton	Custer	*11N-17E-276dd15	5 41	58	99**	640	Natatorium Recreation	41	Private	Summer home site
Council	Adams	16N-1W-15bac1	22				Irrigation	923	Private	
Ellis	Custer	16N-2E-18adc1S	46							Springs in Lemhi County.
Feather- ville	Elmore	3N-10E-10aba1	43				Space heating		Private	Summer home site
Garden Valley	Boise	8N-5E-10bdd1S	55	74	80	237	Space heating, private swim- ming	-	Private	Summer home site
lailey	Blaine	2N-18E-18dbb1S	59	83	100	272	Space heating	1,840	Private	Heated Hiawatha Hotel.
ldaho City	Boise	6N-5E-30acd1S	41	**		.	Natatorium	194	Private	No chemical anal yses available, summer home sit
Ketchum	Blaine	4N-17E-15aac1S	71	88	101	324	Space heating	1,780	Private	Heats several co dominiums.
leadows	Adams	19N-2E-22cca1S	43	91	96 **	489	Unused	 .		Public water sup
Stanley	Custer	10N-13E-3cab1S	41	47	76	210	Unused	52	Private	Bath house & poo
Narm Lake	Valley	15N-6E-14cdb1S	55	62	83	258	Unused			Near summer home

*Minimum and maximum subsurface temperatures are based on the chemical geothermometers from basic data table 2. Both are given to call the reader's attention to the uncertainties involved in their interpretation. Maximum temperatures should be viewed with some skepticism. The geothermometers are useful in initial assessment of geothermal areas to establish priorities for further work in these areas.

**Minimum temperature is chalcedony temperature. Maximum temperature is Na-K-Ca temperature.

-54-



FIGURE 26. Index map of Camas County showing locations of thermal water occurrences with surface temperatures of 20°C or higher. Most flow at temperatures near 76° C. Total discharge from the entire spring is over 1500 l/min. Ross (1971, p. 14) reported that the entire area, which is brecciated, bleached, and silicified, was the probable intersection of several fault zones.

Mitchell (1976c) reported on the geothermal potential of southern Camas County and described the geochemistry of the thermal springs in this area. He reported (p. 15) that:

Thermal water occurrences in the Camas Prairie area are not limited to any one locality or rock type but are found sparsely distributed over a large area (figure 26). The occurrences seem more abundant, however, in the western reaches where Hot (1N-13E-32abclS), Barron's Springs Ranch Hot . (1S-13E-34bcblS), Spring Springs No. (1S-12E-16cbalS-cablS) and several warm artesian wells are located. These springs issue from alluvial valley fill deposits. The wells were drilled into valley fill alluvium.

Elk Creek Hot Springs (1N-15E-14adalS) are located in the eastern part of the study area and issue from fractures in Cretaceous granitic rocks near Eocene(?) to Miocene(?) Challis volcanic rocks.

Several other reported thermal waters (notably warm artesian wells) were not flowing at the time they were visited and samples could not be collected for analysis. Thermal water deposits were absent at all visited springs and wells except for very minor evaporative incrustations around discharge pipes of some of the wells. Discharges of the various sampled springs and most wells were low. Measured surface temperatures range from 26 to 72° C and average 53° C. In general, groundwaters in this area are about 10° C above mean annual temperature.

Mitchell further stated (p. 17):

In general, the thermal waters of the Camas Prairie area can be classified as sodium bicarbonate (NaHCO₃) type waters although the dominant element found in Hot Springs Ranch (1N-13E-32abclS) water is silica rather than sodium. With the exception of Magic Hot Springs well (1S-17E-23aabl) these thermal waters are typified by:

 High silica contents (50-90 mg/l) compared to low total dissolved solids of less than 365 mg/l;

- 2. High pH (7.8-9.2);
- High carbonate compared to most thermal water in Idaho;
- High fluoride contents compared to most thermal and cold groundwaters in Idaho;
- Low calcium (Ca), magnesium (Mg), potassium (K), and chloride (Cl) contents.

Typically, these thermal waters are chemically similar to thermal waters found discharging from Cretaceous granitic rocks, or areas believed to be underlain by these type rocks elsewhere in Idaho (Ross, 1971, p. 23), (Young and Mitchell, 1972, unpublished data, and Young and Whitehead, 1975a, p. 30).

The cause of this chemical "fingerprint" for these waters is not well understood. At least three hypotheses might explain some of the observations.

- 1. Abundance of certain elements may reflect the availability of the elements in various minerals found in the granitic rocks and the minerals' solubility in heated water or steam. For example, the high fluoride content might be traced to the abundance of fluorite or fluorasolubility patite, and its at reservoir temperature, and pH, or to fluoride, concealed in interlattice silicate structures of hydroxyl bearing minerals such as the micas or amphiboles, which are found in the granitic rocks.
- 2. High fluoride waters may reflect an appreciable quantity of magmatic waters or volcanic gasses. Observations of gasses from volcanoes indicate magmatic waters should generally be high in volatiles such as fluoride, ammonia and boron.
- 3. High fluoride waters might be explained by enrichment of fluoride in a steam phase separated from water having a lower fluoride content (volatile enrichment).

The first explanation of the high fluoride content is considered by this author to be the best hypothesis because of:

1. The widespread occurrence of fluoride-rich thermal waters in Idaho;

- 2. Their close association with granitic rocks or areas believed to be underlain by granitic rocking
- 5. Lack of fumarolic, gayaon, and related goother mal activity (which would indicate volattic enrichment processes are actively taking place);
- 4. Low concentrations of other volatiles, i.e., ammonia and boron, chemical constituents found in volcanic gasses, and which are also capable of enrichment in separated steam. In nearly all geothermal systems investigated to date, isotopic studies have not revealed any magmatic or juvenile water contributions to these systems.
- 5. Thermodynamic calculations indicate that thermal waters from Elk Creek Hot Springs (1N-15E14adalS), which issue directly from fractures in granitic rocks, are in equilibrium with fluorite at the measured spring temperatures. Fluorite is known as an accessory mineral in certain granitic rocks in Idaho.
- 6. In general, granitic rocks are known to contain relatively much fluoride, mostly in fluroapatite, but, in some cases, a fluoride concealed in interlattice spaces of hydroxyl bearing minerals such as the micas or amphiboles where it substitues for hydroxide due to size and charge similarities.

The geochemical data suggested to Mitchell (1976c, p. 22) that the thermal waters in the Camas Prairie area are from low temperature systems.

The chalcedony equilibrium chemical geothermometer $(T_4, basic data table 2)$ or Na-K-Ca chemical geothermometer $(T_5, basic data table 2)$ are considered the most reliable and representative of actual aquifer temperatures in most cases because of these considerations:

1. Thermal waters issuing from granitic terrains are generally considered to be supersaturated with silica with respect to quartz (Holland 1967, p. 393). Therefore, the quartz equilibrium chemical geothermometer (T_1 and T_2) and mixing models (T_9 and T_{10}) may not be valid because of excess silica in many of these springs and wells.

∘h∦.

2. In no case does amorphous silled control silled concentration in the thermal water. The belowmeasured surface temperatures and in some cases below-zero temperatures predicted by the amorphous silica chemical geothermometer indicate that the thermal waters are considerably undersaturated with silica with respect to this phase. No exceptions to this generalization were noted from basic data table 2 in the Camas Prairie area.

- 3. No unusual conditions are suggestive of mixed hot and cold waters, such as cold spring seeps in the vicinity of the hot springs or wells, were observed.
- 4. Discharges were, in general, very low throughout the area, indicating little, if any, mixing of hot and cold waters. Exceptions to the low discharges are found only in drilled holes.
- 5. The low Na-K-Ca predicted aquifer temperatures are in general agreement with measured surface temperatures, indicating little mixing of hot and cold water, or that equilibrium conditions have been maintained since the waters have left the thermal aquifer. The low predicted Na-K-Ca aquifer temperatures show fair agreement with the chalcedony equilibrium aquifer temperatures.
- 6. The low chloride and certain other element concentrations found in these thermal waters could be the result of mixing. However, mixing would dilute certain other chemical constituents found in relatively high concentrations such as fluoride and carbonate.
- 7. Walton (1962, table 2, p. 35) reported higher calcium concentrations in cold groundwaters in the area than were found in the thermal waters. Dilution of thermal waters with cold groundwaters would mean the premixed thermal waters would have to be nearly devoid of calcium in order for the mixed water to show the calcium concentration found in the thermal waters. Thermal water devoid of calcium from granitic rocks is considered unlikely.
- 8. The extremely widespread geographical area in which these type waters are found would make it highly unlikely that such uniform mixing conditions could exist as to recognize these

waters by merely looking at unsynthesized geochemical data.

- 9. Arnorsson (1970, p. 537, 1975, p. 761) found that chalcedony generally controls allos concentration in reclaudic thermal waters when aquiter temperatures are below 100-110°C. Chalcedony equilibrium aquifer temperatures are below Arnorsson's upper limit. Chalcedony equilibrium is, therefore, indicated if this criterion is applicable to the Camas Prairie.
- 10. The depths postulated as necessary to give rise to the measured surface temperature are reasonable for the origin of these waters.

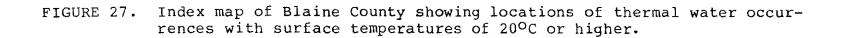
Mitchell (1976c, p. 25) concluded:

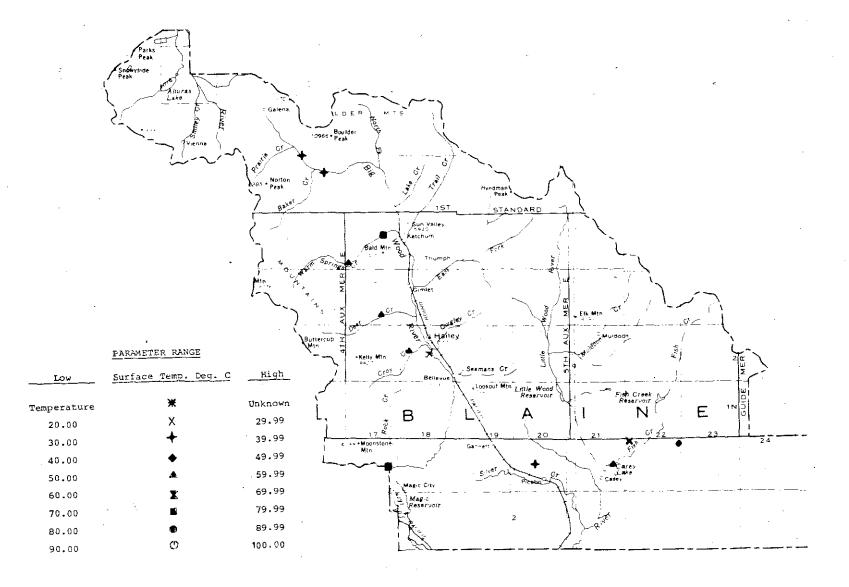
The Camas Prairie thermal waters are probably meteroic waters circulating to shallow (approximately 1,200 m) depths along fractures or fissures within the granitic rocks underlying and along the margins of the Prairie. Heated waters are discharging upward into the sediments of the Prairie, perhaps through faults or fissures within the underlying granite concealed by valley fill. Some water subsequently discharges to the surface, forming springs. The source of the heat related to the granitic rocks is unknown.

The possibility of a large thermal aquiter or reservoir within the sediments filling the basin is negligible due to the apparent shallow depth of the valley fill materials as shown by the two wells penetrating the entire thickness of sediments near the basin center. Any possibility of a large thermal reservoir could lie in large faults in highly fractured granitic rock underlying the Prairie. Fracture permeability may allow sufficient circulation and recharge to allow large volumes of water to be withdrawn if the fault system could be penetrated by drilling. Hot and cold groundwaters at depth probably are not mixing to any apparent degree. The thermal waters ascending from shallow depths could be cooling by conduction during their ascent to the surface.

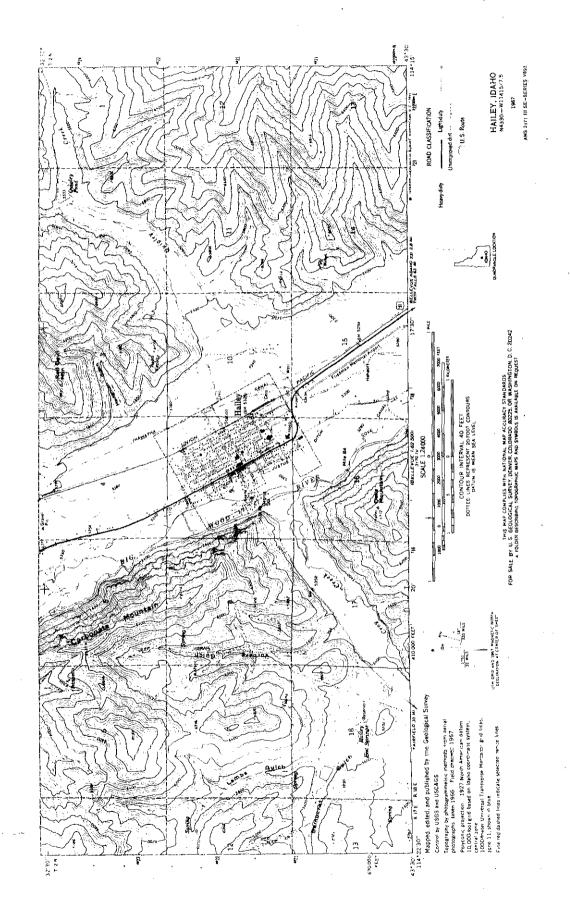
Maximum temperatures encountered in drilling to 900 to 1,500 m are probably only about 100°C. Temperatures of this magnitude would be sufficient to have some industrial applications. These industrial applications and approximate temperatures necessary for them are shown in figure 4.

NORTHERN BLAINE COUNTY


Northern Blaine County (figure 27) is another region in Idaho where geothermal resources have been an energy source of long standing. Fifteen thermal springs are known in northern Blaine County. Several wells have been drilled near some of the thermal springs that yield hot water as at Magic Hot Springs (1S-17E-23aabl), Hailey Hot Springs (2N-18E-18dbblS), Clarendon Hot Springs (3N-17E-27dcblS), Guyer Hot Springs (4N-17E-15aaclS) and Easley Hot Springs (5N-16E-10dbclS).


Easley Hot Springs is being used as a natatorium. The drilling of a well at Magic Hot Springs increased the temperature by 36°C from 38 to 74°C. These waters have been used to space heat small cabins. At Magic Hot Springs Landing, chemical geothermometers indicate aguifer temperature could be near 175°C, which would make this area a candidate for power generation using methods similar to those planned for Raft River in Cassia County. Even a small power plant at this site could furnish much of the power needs for this rural area of Idaho. Cascading uses could be made of the power plant effluent.

In Blaine County three warm water wells occur near the northern margin of the eastern Snake River Plain near Carey, and three more occur 3 km northwest of Picabo. Condie Hot Springs (1S-21E-14ddclS) occurs near Carey Lake.


The Hailey area is located in south-central Idaho on the Big Wood River drainage. The geologic framework of the area consists of undifferentiated Paleozoic and Mesozoic marine sedimentary rocks. Hailey Hot Springs is located about 3 km from Hailey (population 1,840, 1976) on Democrat Gulch, a tributary to Croy Creek which in turn is a tributary to the Big Wood River with confluence at Hailey (figure 28). Sufficient thermal water might possibly be withdrawn from near Hailey Hot Springs to space heat the entire town of Hailey. The surface temperature of the spring is 59°C. The chemical geothermometers suggest a temperature of 78 to 97°C might be encountered by deeper drilling. It is not known at what depth this temperature might be encountered, but it may be as deep as 900 to 1200 m.

Hailey Hot Springs' structural setting is typical of the hot springs in central Idaho; that is, many do occur near the confluence of streams, indicating fault or similar structural control. Fault controlled geothermal systems may provide a significant resource in Idaho for local use, as has been found at Raft River and Boise. Hailey Hot Springs occurs on the curvilinear zone connecting Clarendon Hot Springs, Warfield Hot Springs, and Easley Hot Springs (see

-62-

-63-

figure 9 in pocket and figure 29). Hailey Hot Springs was formerly used to heat the Hailey Hiawatha Hotel, an approximately 560 m^2 (square meter) structure which recently burned.

It is not known at present which structure or structures control the occurrence of thermal water at Hailey Hot Springs (Big Wood structure, Croy Creek-Quigley Creek structure, or Democrat Gulch structure). To confirm the size and exact location of the geothermal reservoir for space heating the town's buildings and residences, it will be advisable to evaluate, in some detail, reservoir characteristics and determine the amount and characteristics of geothermal water which could be withdrawn for use. This would be done by drilling observation wells, running well tests and perhaps drilling exploration holes to see if existing water flows could be augmented, or a new source found closer to Hailey.

Donaldson and Applegate (1979), reporting on geophysics in the Hailey-Ketchum area, stated:

Gravity in the Ketchum-Hailey area is dominated by a strong regional gradient controlled by the transition from the Snake River Plain gravity high to the gravity low over the Idaho batholith. Any detailed interpretation from gravity in this area would necessarily involve increasing the amount of data and carefully removing the strong regional gradient.

Witkind (1975) (figure 15) has identified an active fault in the lower Wood River Valley which is terminated about 7 km north of Hailey. Distortions in the regional gradient contours are, however, suggestive of faulting further up the valley and faults are indicated on the Idaho State Geologic Map (Bond, 1978).

A relatively small-amplitude, low-frequency magnetic high roughly centered over Bald Mountain and an associated low to the north may be indicative of a buried igneous unit (see figure 30). A strong elongate high and associated low centered about 15 miles NE of Sun Valley appears to be a near surface phonometry.

Guyer Hot Springs (4N-17E-15aaclS) near Ketchum on Warm Springs Creek is another area where thermal water is presently being used for space heating. Guyer Hot Springs occurrence is very similar to that at Hailey Hot Springs and lies along a suspected curvilinear zone connecting Hailey, Clarendon, Guyer and Easley hot springs. Warfield Hot

FIGURE 29. EROS false color infrared Landsat EDISE image of south-central Idaho showing selected linear features and thermal water locations with surface temperature above 20°C.

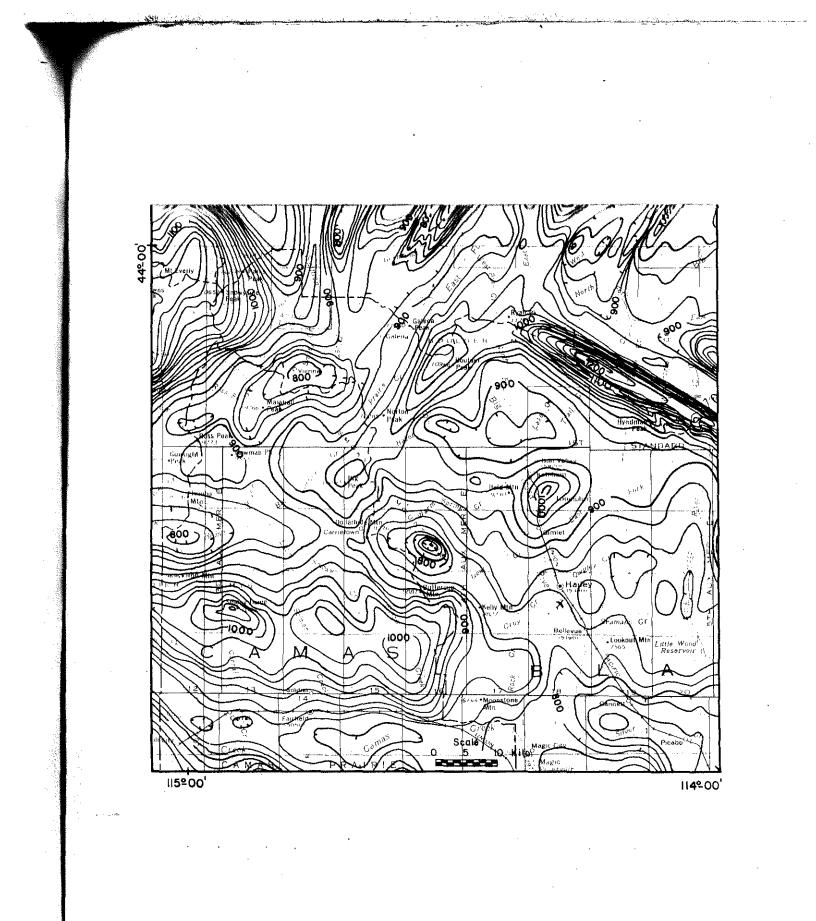


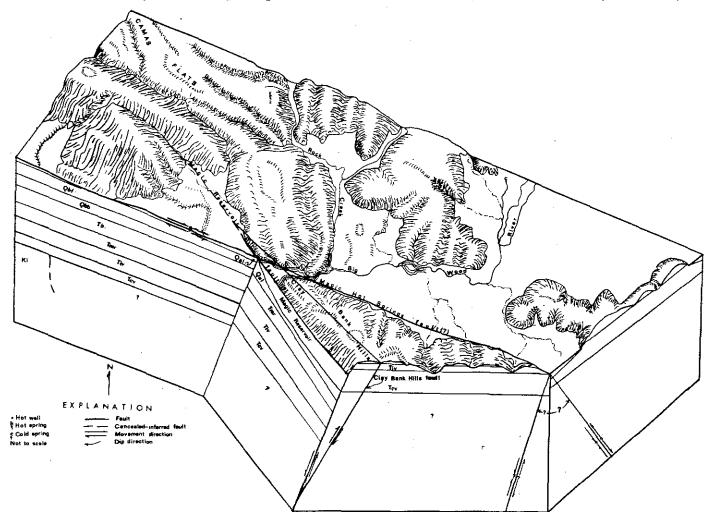
FIGURE 30.

Magnetic anomalies near Bald Mountain (right of center) and NE of Sun Valley (upper right) (U.S. Geological Survey, 1971). Springs is further up Warm Springs Creek from Guyer and will probably be used to heat vacation homes near Ketchum in the future.

Magic Hot Springs Landing was reported on by Mitchell (1977) who stated that water from Magic Hot Springs well (1S-17E-23aabl) near the north shore of Magic Reservoir contained 978 mg/l dissolved solids, 105 mg/l silica, and was higher in chloride than other thermal water in the area. Mitchell stated (p. 23):

This well was drilled in 1965 above the site of a warm spring which subsequently ceased to flow. Surface temperature of the spring water before drilling of the well was 36° C (Ross 1971, p. 56). When measured in the fall of 1973 the well had a surface temperature of 72° C. In 1975, during attempts to cap this well, artesian pressures reached 30 psig (pounds per square inch gauge), then started dropping. The owners were in fear of losing the well and removed the newly installed valve. These efforts increased surface temperature by 2° C to 74° C and discharge to approximately 250 liters per min.

The indicated disequilibrium conditions (Na-K-Ca chemical geothermometer differs from measured surface temperatures by more than 20⁰C) could mean a possibility of mixing of the thermal with nonthermal groundwaters. The proximity of the well to Magic Reservoir leads one to suspect that cold leakage from Magic Reservoir water could be entering the thermal water conduit system that supplies Magic Hot Springs well. Mixing model calculations indicate that the hot water component of this mixed (?) water may have reached temperatures as high as 200°C with cold water making up about 70% of total water. Even if mixing is not taking place the 150-175°C temperatures predicted by the other chemical geothermometers are close to that temperature now considered necessary for a binary cycle geothermal power plant. The high chloride content (greater than 50 mg/l) would indicate that this system would probably be a hot water rather than a dry steam system.


The marked difference in chemistry between Magic Not Springs well waters and other thermal waters in the Camas Prairie area would indicate: (1) Magic Not Springs well waters have been at higher temperatures than the other thermal waters in the area, and/or (2) the aquifer or reservoir rocks for Magic Hot Springs well waters are mineralogically and/or chemically different from the aquifer or reservoir rock for the rest of the Prairie area. Although in many instances it is possible, using geochemical methods, to determine the aquifer or rock type from which thermal waters are in equilibrium, available data does not indicate which rock type could constitute an aquifer. The geology of the area would, however, suggest the aquifer to be either Quaternary alluvium, Middle Pliocene basalts of the Idaho Group, Lower Pliocene Idavada volcanic rocks, Eocene or Miocene Challis volcanic rocks, Cretaceous granitic rocks, or perhaps a combination of two or more of these.

The heat source for these waters could either be (1) an intruded sill or stock, related perhaps to the Holocene basalt flows found south of Magic Reservoir, or (2) a regionally high geothermal gradient and heat flow. Brott and others (1976) have determined that geothermal gradients and heat flow along the margins of the Snake River Plain are higher (about 3 HFU) than the regional norm which would indicate a regional heat source rather than a localized anomaly.

Mitchell (1976) further stated (p. 15) that Magic Hot Springs:

... well was drilled near the intersection of two curvilinear features that are probably faults. These faults may represent the controlling structure for the occurrence of thermal water in this particular part of the study area. Landsat false color infrared satellite imagery shows one of these lineaments as extending northwesterly, from near the southern tip of Magic Reservoir, along its eastern shoreline, and into the Soldier Mountains as the northern margin of the study area. The other feature extends at a slight northwesterly angle along the northern margin of the Claybank Hills and (Malde and others, into the Soldier Mountains. 1963, show a fault lying somewhat east of and nearly parallel to the Magic Reservoir (?) fault. Their mapped fault passes through the Claybank Hills and lies very near Magic Hot Springs well.) A hypothetical block diagram showing the possible control of Magic Hot Springs well is shown in figure 31.

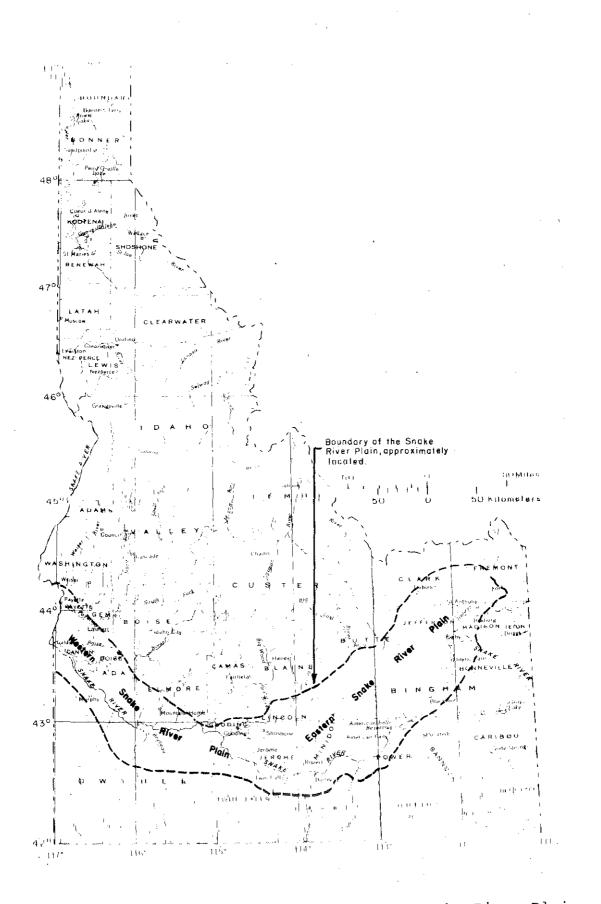
FIGURE 31. Idealized block diagram of Magic Reservoir Area in Camas and Blaine counties depicting theoretical structural control for Magic Hot Springs well. In reality, the faults depicted may represent more broadly defined zones of faulting rather than single plane surfaces as represented on paper. The trend of these features are fairly well known, but the direction of movement of the Magic Hot Springs fault is unknown. (From Mitchell, 1976c.)

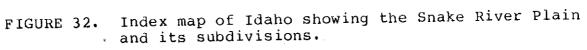
-70-

SUMMARY OF CENTRAL IDAHO REGION

Most thermal water in central Idaho occurs as springs, although several well drillers have accidentally discovered thermal water while drilling for cold water. Most of these fault therefore, springs appear to be controlled, prospecting for new thermal water areas would probably be most profitable along the major drainages near large river bends, near stream confluences, near gaps in suspected curvilinear zones connecting existing known thermal springs or along major lineaments. Significant amounts of thermal water may yet be undiscovered as it may be discharging directly into river bottoms where it cannot be observed. A thermal scanner could conceivably be used for river bottom prospecting.

Several of the larger towns, notably Cascade, Hailey, Ketchum and Council, occur within 5 km of a thermal water discharge. These towns should probably receive first priority in initial assessment surveys, as they contain the greater population concentration (see table 4 for a complete listing). Many of these and smaller communities could heat public buildings and schools with geothermal water. Some may have small industries that could utilize geothermal fluids. Geothermal water could also be used for space heating in recreational home areas. Recreational uses could be increased, particularly by the USFS. Game bird hatcheries might be established at some sites by the Idaho Department of Fish and Game.


GEOTHERMAL POTENTIAL OF THE SNAKE RIVER PLAIN REGION INCLUDING WASHINGTON, PAYETTE, GEM, CANYON, ADA, SOUTHERN ELMORE, GOODING, JEROME, MINIDOKA, OWYHEE, TWIN FALLS, NORTHERN FREMONT, BUTTE AND WESTERN CASSIA COUNTIES


The Snake River Plain region of Idaho is endowed with certain geologic features that favor the occurrence of geothermal energy. The Snake River Plain is one of the largest and possibly least studied (in terms of origin) structural features of the North American continent. It extends some 480 km in a broad arcuate plain from Weiser near the west-central border of Idaho, southeastward to Burley, thence northeastward to its abrupt termination with the western rim of the Island Park caldera in eastern Idaho adjacent to Yellowstone Park. In width, the plain varies from 32 km in the west to 90 km in the east (see figure 32).

The Snake River Plain is generally divided according to surface and shallow subsurface geology into the northwestward-trending western Snake River Plain and a northeasterntrending eastern Snake River Plain for purposes of dis-The dividing line between the two subregions, is cussion. approximated by the Salmon Falls Creek-Snake River area in western Twin Falls and Gooding counties. Elevations varv uniformly from a low of 700 m near Weiser to a high of 1,830 m near the Island Park caldera rim. The gently undu-lating plain is flanked on the east, southeast, and northeast by transverse mountain ranges and valleys. Other structural features, faulting, lineament, and joint patterns surrounding the plain are generally parallel to (in the western Snake River Plain) or transverse to (in eastern Snake River Plain) the borders of the plain.

The Snake River enters the plain from the southeast through a mountain valley in the eastern part of Idaho. The Snake River flows along the southern margin of the plain until it reaches the western border of Idaho, then abruptly swings across the plain, exiting through Hells Canyon. Smaller streams and rivers enter the plain from adjacent mountains and valleys.

The plain proper represents the surface of a thick sequence of silicic, andesitic, and basaltic lava flows interlayered with volcanic ash, tuff and sedimentary material. Estimates of the thickness of this sequence varies from 3,000 to 9,000 m. Volcanic cinder cones and buttes puncture the thick pile of volcanic and sedimentary material throughout the entire plain in many places. Many of these volcanic and sedimentary units are water saturated.

One of the largest fresh groundwater bodies known, the Snake Plain aquifer with more than 1.2×10^9 cubic meters of water withdrawn annually, underlies a large portion of the eastern Snake River Plain.

The Snake River Plain is also one of the more youthful geologic features in Idaho. It apparently had its inception in Pliocene time some 3-15 million years ago. Volcanism has continued sporadically through Holocene time (the present epoch). This volcanism and associated deformation has apparently migrated from west to east, as age dating of volcanic rocks by Armstrong and others (1975) has shown decreasing ages of rocks from west to east. This widespread deformation and volcanism, both rhyolitic and basaltic, are fundamental features of geothermal provinces.

Brott and others (1976) determined that heat flow throughout the Snake River Plain is consistently 0.5 to 3 HFU (heat flow units) higher than in areas of normal heat flow. The higher values are found along the margins of the Although few heat flow measurements could be plain. obtained above the Snake Plain aquifer due to the aquifer's masking effect, Brott and others (1978) showed that elevation changes from west to east in the plain could be due to thermal expansion of underlying hot rocks. Consequently, the rocks beneath the eastern Snake River Plain where elevations are highest should be much hotter than those beneath the western Snake River Plain. This concept is strengthened by Armstrong's rock age dates.

Although the eastern Snake River Plain may ultimately have higher geothermal potential than the western Snake River Plain, most thermal water wells have been drilled in the western Snake River Plain. These wells extend in a belt some 65 km wide and 270 km long, which stretches from Raft River in the extreme south-central part of Idaho, northwestward to Weiser in the west-central part of Idaho (Plate 1 in pocket). Another, shorter and narrower belt, about 80 km long and 15 km wide, extends northwestward from Weiser through the Council-Cambridge area to Meadows. This belt contains numerous wells with surface water temperatures exceeding mean annual temperature by 5-10°C and several up to 20^OC (see map, Plate 1). Thermal springs generally seem confined to the margins of the Snake River Plain as do thermal wells in the eastern Snake River Plain, or are found along the Snake River.

Three areas in Idaho where thermal aquifers may exist are located within the large western Snake River Plain thermal zone. These are the Lake Lowell-Nampa-Caldwell area, the Blue Gulch area west of Buhl, and the Bruneau-Grand View area in northern Owyhee County. Others may exist, but well drilling has not revealed their extent to date. Some evidence indicates these aquifers may be recharged through large faults in the subsurface.

Discussion of the geothermal resources in the western Snake River Plain region follows on a county basis. No geothermal resource was found in Lincoln County.

WASHINGTON COUNTY

Washington County contains several areas where there are thermal water discharges (see figure 33). Weiser Hot Springs (11N-6W-10acblS), northwest of Weiser, has long been utilized for swimming, balneological bathing, and greenhouse operations as well as small scale space heating. Several small diameter wells yield enough water at the site of a former hot spring to carry on the above operations. Another location which indicates promise of electrical generation capability is the Crane Creek Hot Springs (11N-3W-7bcblS) area northeast of Weiser.

Young and Whitehead (1975, p. 31-32) summarized the geothermal potential of these areas.

The Weiser area comprises about 518 sq km in southwestern Washington County and includes two subareas having thermal water: the Crane Creek subarea, which is about 19 km east of Weiser, and the Weiser Hot Springs subarea, which is about 8 km northwest of Weiser.

Although the surficial geology of the Crane Creek and Weiser Hot Springs geothermal subareas is somedifferent, the stratigraphy what general is similar. Volcanic and sedimentary rocks of Permian and younger age, granite of Cretaceous age, or the older basalts of the Columbia River Group of Miocene and Pliocene age may underlie the Weiser However, the scant data available indicate area. that the reservoir rock is most likely composed of the older basalts of the Columbia River Group. Miocene and Pliocene (?) sedimentary rocks, termed the Payette Formation, overlie older basalts and are, in turn, overlain by a younger sequence of basalts of the Columbia River Group. For the most part, sedimentary rocks of the Idaho Group of Pliocene and Pleistocene age overlie the younger basalts. Alluvium and colluvium of Pleistocene and Holocene age cover much of the older rock units, particularly in the lowlands and valleys.

Gravity surveys indicate that the Weiser area is at the northwest end of a large regional gravity high that is associated with the western Snake River

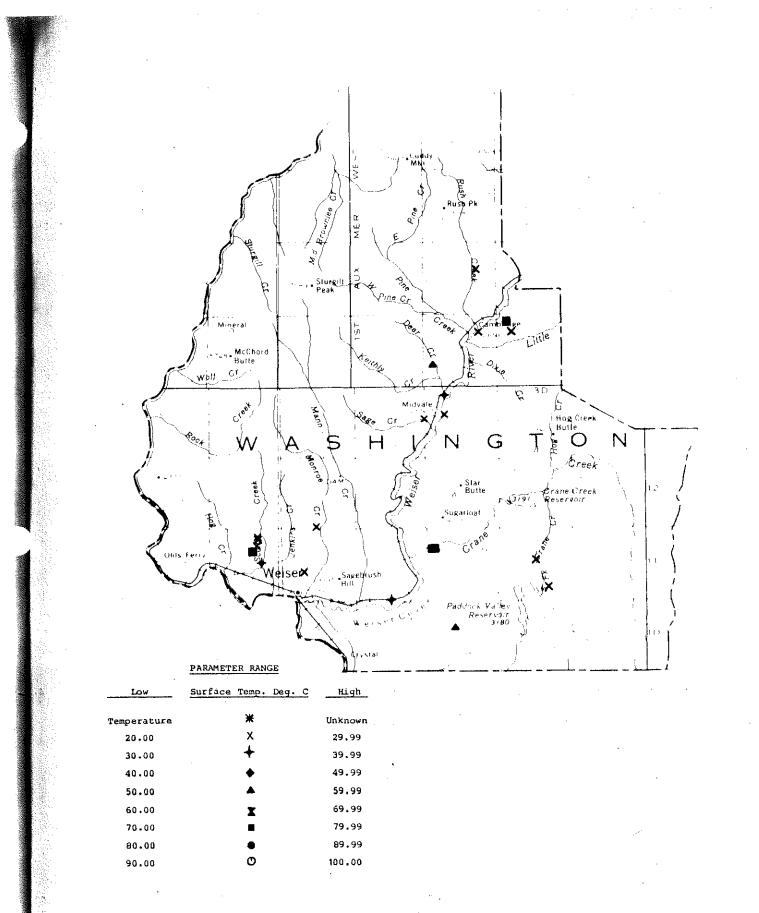
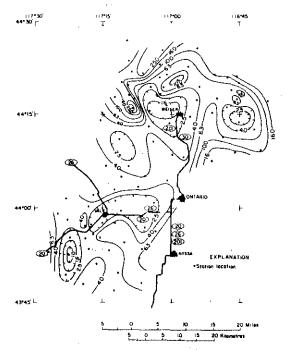
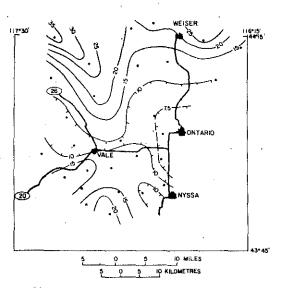


FIGURE 33. Index map of Washington County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

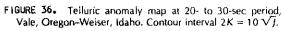


FIGURE 34. 27-Hz apparent-resistivity map (telluric line northsouth), Weiser, Idaho-Vale, Oregon. Contours in ohm meters.

FIGURE 35. Map of 27-Hz apparent resistivity (telluric line east-west), Weiser, Idaho–Vale, Oregon. Contours in ohm meters.

(Hoover and Long, 1975.)

also on the same trend. This high is related to the rocks comprising Malheur Butte, next to which the sounding was made. This is a small prominent plug whose emplacement may be structurally related to this same northeast trend.

Because of the low resistivities in the basin, the depth of AMT exploration does not extend below the sediments in most places. We attribute the anomalies to hot, saline waters and alteration within the sedimentary section. It is interesting that the electrical trends do not coincide with the surface structural trends. Leakage of the geothermal system to the surface, however, is probably along faults in the sedimentary section. This same observation has been made in other regions - most clearly in the Surprise Valley, California KGRA where north-trending basin-and-range faulting is prominent, yet the trend of the data relating to the geothermal system implies a northwest direction.

A telluric survey was made in the Vale, Oregon, area and the data are shown in figure 36. The correlation of this map with the AMT data is not as direct as in Island Park, which might be expected. The AMT survey is sampling principally the young basin sediments, while the telluric data sample a larger part of the crust and may be reflecting basement topography. A low saddle in the telluric data, however, is seen just north of Vale with a trend to the east and northeast. The lowest values on the telluric map are on the eastern edge near the towns of Ontario and Nyssa.

Young and Whitehead (1975, p. 31-32) stated further that:

A ground-temperature survey made in the Weiser Hot Springs subarea apparently outlines an area of high heat flow centered or near the Weiser Hot Springs, and it also correlates very well with high boron concentrations measured in water samples collected in the area of the survey.

Most of the thermal waters sampled in the Weiser area are of a sodium chloride sulfate or sodium sulfate type. Dissolved-solids concentrations ranged from 1,070 to 1,140 mg/l for thermal water in the Crane Creek subarea and from 225 to 852 mg/l in the Weiser Hot Springs subarea. Thermal water sampled in the Crane Creek subarea had noticeably higher concentrations of chloride and boron than did thermal water sampled in the Weiser Hot Springs subarea.

Measured groundwater temperatures randed from 1.0 to 92.0°C, and were highest at a spring in the Estimated aquifer tem-Crane Creek subarea. peratures, using the silica and the sodiumpotassium-calcium chemical geothermometers, ranged from 153 to 177°C in the Crane Creek subarea and from 3 to 157°C in the Weiser Hot Springs subarea. Estimated aquifer temperatures for samples from wells at the Weiser Hot Springs ranged from 141 to 157°C. In the Crane Creek and Weiser hot springs subareas, respectively, estimated maximum temperatures at depth, using the mixed water method, ranged from 212 to 270°C and from 200 to 242°C with percentages of cold water ranging from 67 to 76 percent from 70 to 97 percent.

Analyses of hot-spring deposits from active and inactive-spring vents indicated that, although the mineral constituents in samples from both subareas are similar, the deposits in the Crane Creek subarea contain much greater amounts of sinter than those from the Weiser Hot Springs subarea. This indicates that the water depositing this material was at temperatures in excess of 180°C at depth.

The source of the heat for the thermal water in the Weiser area is believed to be a cooling young intrusive implanted at shallow depth in late Miocene or early Pleistocene time, or above-normal heat flow caused by the high temperatures at relatively shallow depth resulting from a general thinning of the earth's upper crust in this area.

Aside from the power generation possibilities in the Crane Creek area, the Weiser and Crane Creek hot springs represent areas where geothermal energy could be harnessed The Weiser area is on the for agricultural use as well. Union Pacific Railroad Mainline with a spur branch extending into the Crane Creek subarea to very near the springs. The entire Vale, Ontario-Weiser area is a rich, agricultural area where approximately one-third of the nation's onions Much of Idaho's fruit and sugar beets are also are grown. Uses such as onion, beet pulp, and grown in this area. Meat packers could make fruit drying suggest themselves. use of the thermal water for refrigeration.

Thermal waters also extend northeastward, in a belt from Vale, Oregon, through Weiser to Council-Cambridge in Washington County to the Meadows area in Adams County (see Plate 1 in pocket). Little is known about the Council-Cambridge area geothermally except that there are approximately eight wells ranging in temperatures from 20 to 30°C and one hot spring at 69°C. Discharge of wells ranges from 379 to 1500 l/m. The wells range in depth from 56 to 283 meters. Chemical analyses of discharge water from these wells should be made to establish priorities for further work in this area.

PAYETTE COUNTY

Little is known of the geothermal potential of Payette County. Nine thermal wells are known to have been drilled there and all are relatively cool, between 20 to 29°C (figure 37). Four are in the southwestern corner of Payette County north of Parma. Two more are up Little Willow Creek about 13 km northeast of Fruitland. Two occur about 5 km east of Fruitland and one occurs .4 km east of Payette.

Highest surface temperatures were measured up Little Willow Creek at 25 and 29° C from wells 9N-3W-21bdcl and 9N-3W-19ddal. Well head temperatures of 20° C have been measured from wells 9N-5W-35ccbl near Payette and 8N-4W-7ccdl near Fruitland.

No chemical analyses are available from any thermal wells in Payette County. Assessment of the resource should begin with sampling the hottest ones and those near Fruitland and Payette. It is possible that more and hotter water could be found in the Fruitland-Payette-Ontario area where several food processing plants are located.

GEM COUNTY

Four thermal anomalies are known in Gem County (see figure 37). Roystone Hot Springs (7N-1E-8ddalS) may have potential for binary cycle power generation. Roystone occurs near the intersection of a prominent north trending lineament that connects with the Dry Valley thermal anomaly north of Boise and a less pronounced northeast trending lineament (figure 17). These are visible on enhanced false color composite satellite images of the area. Surface temperature at Roystone Hot Springs is 55°C and discharge is 75 l/m. As estimated by the quartz and Na-K-Ca chemical geothermometers, subsurface temperature is 147 and 150°C, respectively.

A spring (7N-1E-9cdclS) about .4 km from Roystone Hot Springs has a 45° C surface temperature and may have an aquifer temperature between 84 and 106° C according to the Na-K-Ca and chalcedony chemical geothermometers.

A well 9.5 m deep has been drilled recently near Emmett in Gem County. This well has a surface temperature of 24^OC which is sufficient for space heating if groundwater heat pumps are used. No other data are presently available for this well, but its presence suggests that the Emmett area

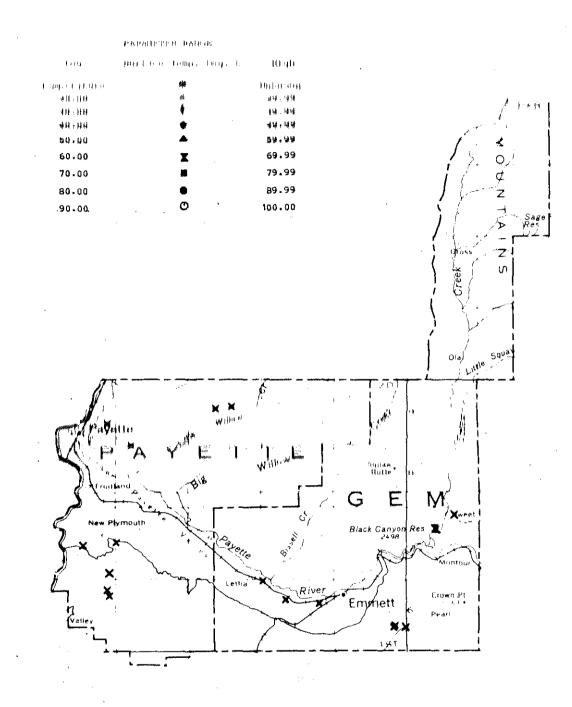
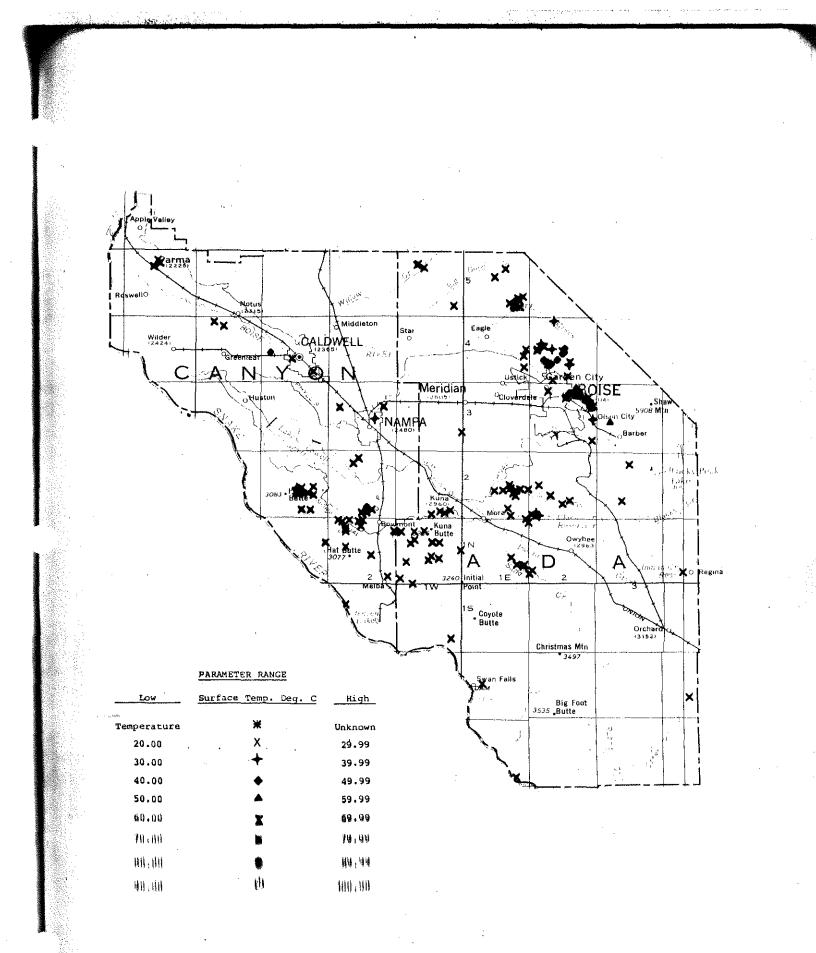


FIGURE 37. Index map of Payette and Gem counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.


may have potential for low temperature geothermal energy. A chemical analysis should be obtained from the well to see if subsurface temperatures might be substantially higher before other work is undertaken in this area.

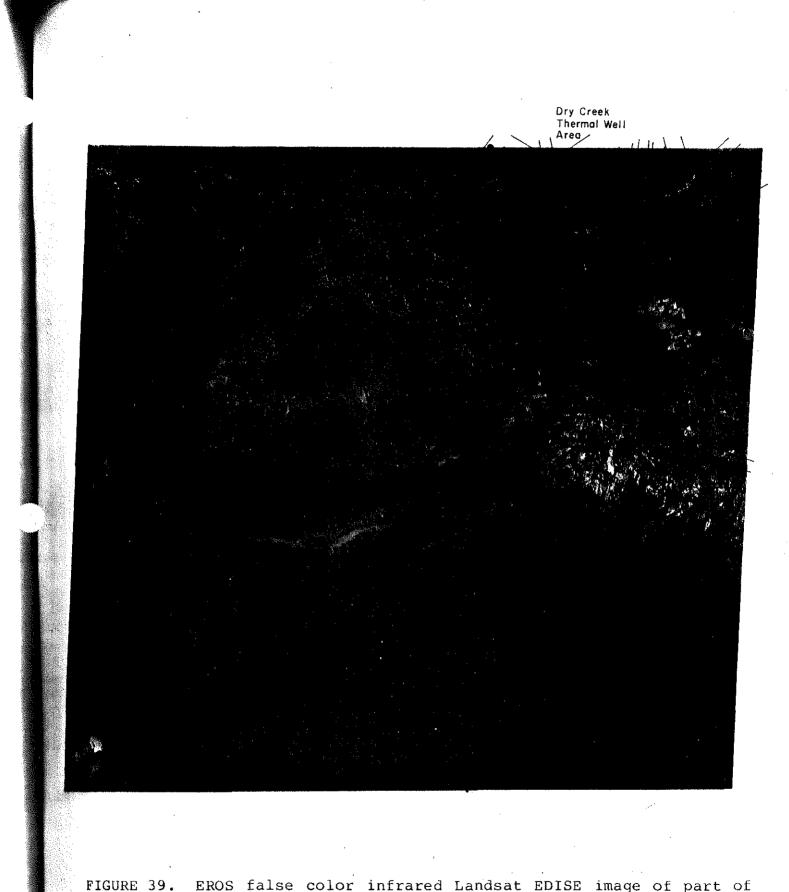
CANYON COUNTY

Little is known of the potential in Canyon County for low temperature geothermal use. Numerous low temperature (20-41°C) thermal wells occur in Canyon County. In a large area south and southeast of Lake Lowell, numerous 20-30°C wells have been drilled (figure 38) and are mostly used for irrigation. Water for the municipal swimming pool in Nampa is 31°C. A thermal well exists near the municipal pool in Caldwell (4N-3W-28aabl presently flowing and unused). The city of Caldwell owns at least one more well (4N-3W-35abd1) which provides 20°C water. A warm well (41°C) near the Simplot feedlot (4N-3W-19adcl) 3 km south of Caldwell provides water for cattle. This well was drilled as an oil and gas exploration well and reportedly produced "very hot water," but was perforated at 900 m to provide cooler drinking water for cattle. Other warm wells exist near (5N-5W-9adb1)5N-5W-4dcdls) Parma and and Melba (1N-2W-36caal) (24°C) owned by the respective cities and operated as municipal wells.

Figure 38 shows northeast-southwest alignment of thermal wells stretching from Parma to Nampa, passing through Caldwell, which might indicate a geologic structure of some length. This linear trend of wells has been mapped as a fault between Nampa and Caldwell (Bond, 1978). Due to obscuring cultural features, it is difficult to identify a lineament from the satellite photos, although one might possibly exist on or near the wells (figure 39). Several closely spaced wells in central Ada County fall along this trend (Plate 1, figure 9 and figure 38).

As Canyon County is a hub of industrial activity, primarily food processing, this area should be assessed early for low temperature geothermal resources. As the thermal water appears to be related to faulting in the area, structures that might control distribution of thermal water should be sought. Geologic mapping, gravity and magnetic surveys, and hydrologic studies of the area should be accomplished first to determine gross structural patterns. Reflective seismic and resistivity surveys could be designed and run from the previously mentioned data base to site several drill holes in promising areas near Nampa or (This has been started through the purchase of Caldwell. part of the IDWR-DOE oil exploration survey data as Nampa-Caldwell area study.) From here, stepout surveys or drilling should be undertaken in other parts of the western Snake River Plain to uncover other favorable geologic struc-

FLOURE J8.


1. Index map of Canyon and Ada dountles showing locations of thermal water occurrences with surface temperatures of 20°C or higher. tures where thermal water may be found. These types of exploration could lead to discovery of many valuable energy resources in this section of Idaho.

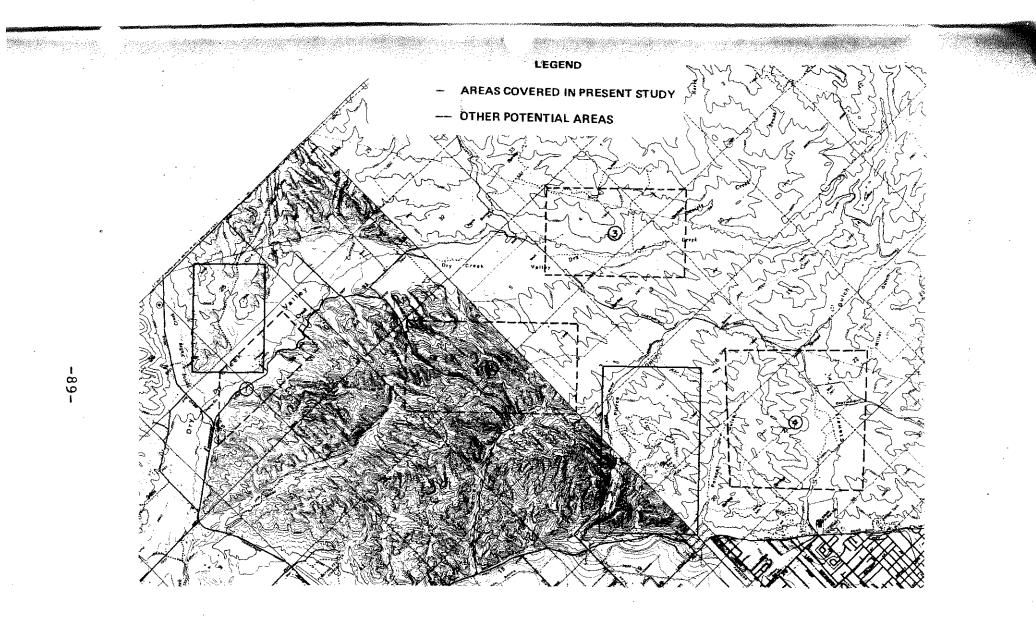
ADA COUNTY

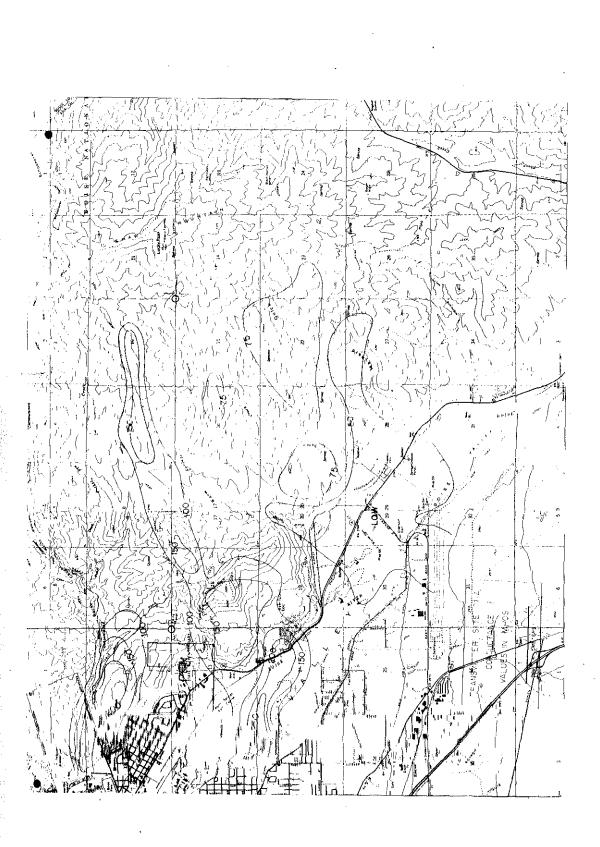
People in Ada County have long used geothermal energy. Several geothermal installations of note are currently operating in Boise. The Idaho Department of Transportation heats and air conditions its main office building on State Street using a groundwater heat pump system. The Idaho State Health Laboratory is currently using geothermal energy obtained from the Warm Springs Water District wells. Approximately 185 homes on and near Warm Springs Avenue have used geothermal energy (well head temperature 74°C) for their heat source since the turn of the century. Several greenhouses for cut and potted plants derive their heat from geothermal wells (well head temperature 47°C). Several domestic wells provide heat throughout the Boise Front area to individual homes. Plans for expansion of geothermal heating by the city of Boise are being made. The Capital Mall Complex is being looked at for possible conversion of state and federal buildings to geothermal energy for space heating and cooling.

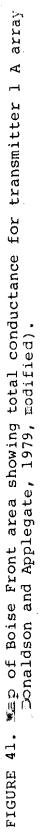
There are 119 wells (well head temperatures greater than 2000) known in Ada County (figure 38). The hottest ones are near the Boise Front, where they are associated with extensive, large displacement faulting. Weils drilled by Boise State University Geology Department, funded by DOM for the Boise City Project, were sited to hit the intersection of several known faults and lineaments at depth. These wells were highly successful, Preliminary tests by DOE indicate a sufficient resource for the anticipated development in downtown Boise. Another area of thermal water also lies near fault and lineament intersections. This is the Spring Valley-Dry Valley area northwest of Boise where thermal wells are located. several Here, the Dry Valley-Roystone Hot Springs lineament intersects the Dry Valley fault system. Other wells are located in the several gulches which cut the Boise Front at nearly right angles. Mink and Graham, 1977, in their study of the geothermal potential of the west Boise area, sited five areas along the Boise Front that they considered to have potential for low temperature geothermal use. These areas are shown in figure 40. In addition to these areas, others where thermal water is found near Boise are: Strawberry Glen Road area, Garden City area, Capitol Mall area, Old State Penitentary area, and Glenwood Street-Chinden Boulevard area.

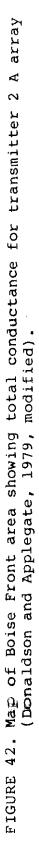
Donaldson and Applegate (1979) have conducted reconnaissance level resistivity surveys along the Boise Front to determine thermal water locations. They state:

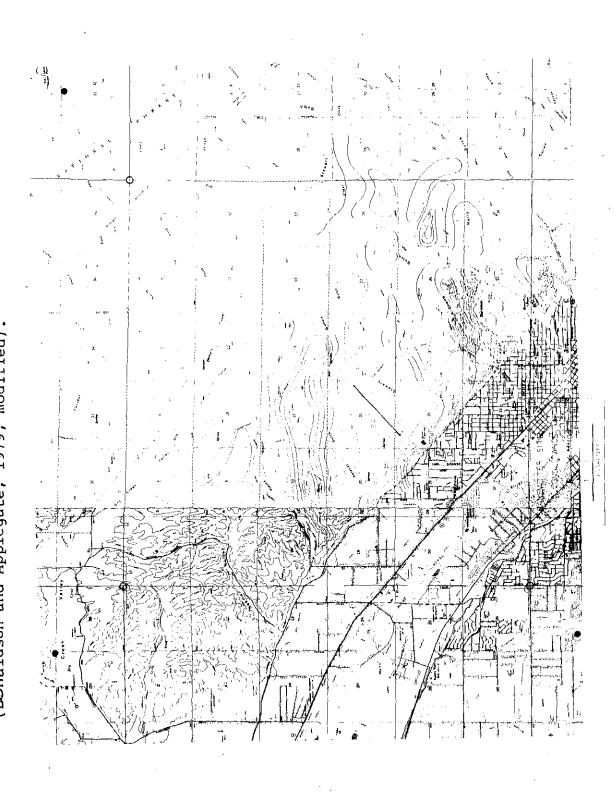
E 39. EROS false color infrared Landsat EDISE image of part of southwestern Idaho and southeastern Oregon showing selected linear features and thermal water locations with surface temperatures above 20°C.



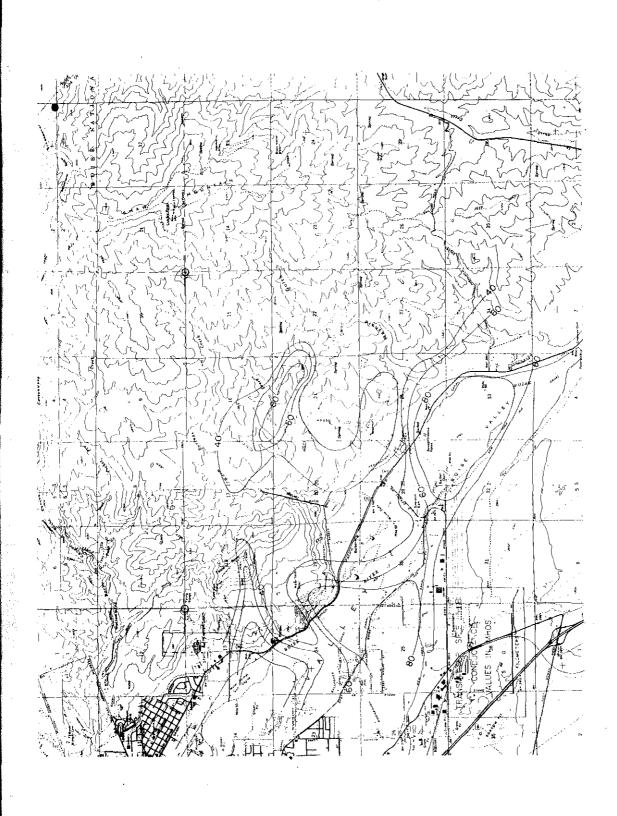

FIGURE 40. Topographic map of west Boise Front area showing locations of potential geothermal sites. (Modified from Mink and Graham, 1977.)

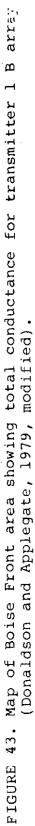

Of direct interest are the resistivity surveys (figures 41, 42, 43, and 44) which have outlined several anomalously conductive areas. The steep resistivity gradients associated with these anomalies probably reflect the presence of faults intersecting the major Boise Front fault at high angles. Such fault intersections, where they are proven to exist, offer very attractive geothermal prospects.

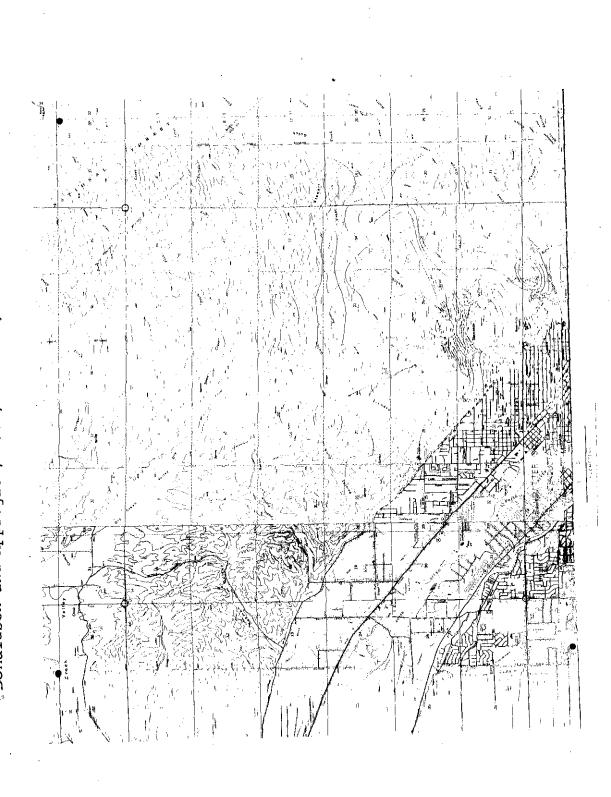

A large number of irrigation wells occur in central Ada County in the vicinity of Eight and Ten Mile creeks where well head temperatures in this part of Ada County are between 20 and 25°C. Another group occurs near Kuna in west central Ada County. There are several large linears that apparently extend from the Middle Fork Boise River drainage and appear to cross the Snake River Plain in the Eight and Tenmile creeks area. A long, more pronounced linear runs northwest-southeast up the axis of the western Snake River Plain and intersects the other linears south of Tenmile Knowledge of the type of geologic features these Creek. linears represent appears to be fundamental to obtaining much more information on geothermal occurrences in the western Snake River Plain region. A speculation is that they represent surface expressions of basement or other faults or rock fractures. They may act as conduits for thermal water. Recharge of these systems could be anywhere There could even be interbasin transfer of along them. groundwater along some of the regional linears and transfer could take place anywhere from one kilometer or less to tens of kilometers or more. Any holes drilled for the purpose of obtaining thermal water would have to be very carefully targeted to intersect faults or rock fractures where thermal In the alluvium and valley fill water may be circulating. sediments away from the mountain front faults, thermal water conduits would be difficult to locate. Analysis of large scale enhanced false color Landsat images may allow some of these faults to be found. A systematic program of reflective seismic profiling across the western Snake River Plain is highly recommended to determine the location and depth of any faulting in the area.


SOUTHERN ELMORE COUNTY

Numerous thermal wells and several thermal springs are known in southern Elmore County. Springs are scattered widely but are principally located along the northern margin of the western Snake River Plain northeast and east of Mountain Home. Some wells are located just west of Mountain Home and Mountain Home Air Force Base and several kilometers to the east of Mountain Home Air Force Base (see figure 25). The wells near Mountain Home and the Air Base are the coolest, being 20 to 25°C at the surface. Several wells in southern Elmore County are located near the Snake River.





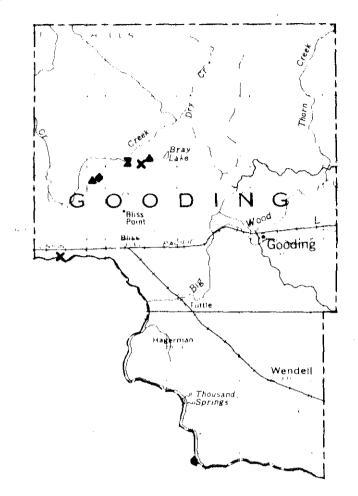

-92-

-93-

B array Map of Boise Front area showing total conductance for transmitter 2 (ponaldson and Applegate, 1979, modified). FIGURE 44 .

Some of the wells drilled near Mountain Home and east of the Air Base form linear patterns that could reveal structural control for the thermal water occurrence. The alignment is transverse to the western Snake Plain axis and, as in Ada and Canyon counties, thermal water occurrences could be at least partially controlled by faulting running across the However, the springs and wells that occur along the plain. plain margin seem to be influenced by structures running parallel to the western Snake Plain axis or northwest-southeast.

Mountain Home and Mountain Home Air Force Base are the two principal population centers in southern Elmore County where thermal water occurs and where greatest use could probably be made for it. Other towns are King Hill and Glenns Ferry. Low temperature $(20 - 30^{\circ}C)$ thermal wells are located within 5 km of the above sites. Prospecting for more thermal water in each of these areas might prove fruitful, and the prospect of hotter water at depth is possible. These areas should be further investigated to determine their full potential, beginning with chemical analyses of existing thermal well waters so an estimate can be made of the maximum water temperature through the use of chemical geothermometers.


GOODING COUNTY

Seven thermal anomalies occur in Gooding County (figure 45). Four wells and a spring occur along Clover Creek near the foot of the Mount Bennett Hills and another occurs near the Snake River. All are in western Gooding County and far removed from most population centers.

Chemical analyses are available on three of the seven thermal sites in Gooding County. White Arrow Hot Springs (4S-13E-30adb1S) is the hottest at 65° C. Agreement between the chalcedony and Na-K-Ca chemical geothermometers (108°C and 112°C, respectively) indicates subsurface temperatures are probably in this range. However, in drilling the well at White Arrow Hot Springs, the owner reports blue quartz was found in the hole. The quartz chemical geothermometer predicts temperature of 135°C. White Arrow is presently the scene of private agricultural research and commercial production of tomatoes in geothermally heated greenhouses. Halm HMANE (MAY HUMP, 1474) IMPORTED the HOMEN AUTOR Halm HMANE (MAY HUMP, 1474) IMPORTED the HOMEN AUTOR

Tomatoes are harvested at the White Arrow Ranch at Bliss from September through July, when temperatures range from 38 to $-2^{\circ}C$.

Tomato plants are very sensitive to extremes of temperatures; however, the secret at White Arrow

PARAMETER RANGE

Low	Surface Temp. Deg. C	<u>High</u>
Temperature	*	Unknown
20.00	Х	29.99
30.00	+	39,99
40.00	♦ 1	49.99
50.00		59.99
60.00	X	69.99
70.00	II	79.99
80.00	•	89.99
90.00	Q	100.00

1.5

FIGURE 45.

. Index map of Gooding County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Ranch is that they use a large natural hot spring to maintain optimum growing temperature during the winter in their two 12 by 40 m hothouses.

The water which comes from the ground at a temperature of 65°C flows into heat exchangers at the end of the building. Air is blown across them and through large plastic pipes and carried the length of the building. Hot water is also carried through some 3 km of black plastic pipe which provides further radiant heat.

In hot weather, the south end of the building can be opened and ventilation provided by six large exhaust fans. The temperature is further controlled by blowing air through large cooling pads through which cold water is dripped.

Throughout the year, according to owner Robert A. Erkins, the temperature can easily be maintained at between 18° and 28° C. Production is stopped in the summer months not by the weather, but because that is the season when there are plenty of tomatoes already on the market from growers using more conventional methods.

Just getting out of the experimental stage and into full production, White Arrow Ranch has been shipping about 600 pounds of tomatoes per week but, within the next month or two, expects to be shipping around 4,000 pounds per week. Erkins projects a crop of up to 30 tons of tomatoes annually from a quarter acre of space.

Some 3,000 Manapal tomato plants were planted for the first crop. Erkins said it was one of several hothouse varieties that could have been used.

Future plans include cucumbers and potted house plants. Land is already cleared and piping in for 12 more hothouse buildings, although their construction will not be completed until they are needed.

The key to the system is a free-flowing hot spring which provides heated water at a rate of 3000 1/min, much more than needed for any projected expansion. Erkins said his electric bill is not high, but dependable power supply is important to proper operation of the system. In the two existing buildings some 18 electric fans are used for heating and cooling. In addition, three electric pumps move the well and spring water used to water the tomato plants. (Water from the hot spring is not used for this purpose.)

Erkins requires only one employee to operate the first building. One of his most important functions is to walk through the structure three times a day with a gasoline-powered blower strapped on his back to pollinate the plants. Tomatoes are normally pollinated by wind, but there is none in the buildings.

One of the biggest problems, according to Erkins, was a lack of data. There have been other hothouses using natural hot water, but no one seemed to be able to provide much really expert information, so much had to be learned by experimentation.

Erkins and his wife have been in the trout farming business in Idaho for 23 years, but it is their first venture in tomato growing. White Arrow Ranch was originally settled in the 1800's, but had been deserted for some time before being purchased by the Erkins. It was named for an Indian tribe that had camped at the site and which was noted for making white arrowheads.

A well in Gooding County (4S-13E-28abbl) is $47^{\circ}C$ at the surface, with the Na-K-Ca and chalcedony chemical geothermometers indicating temperatures of $98-105^{\circ}C$ at depth. Uses similar to that of White Arrow could probably be made with this water. Another well (5S-12E-3aaal) is $57^{\circ}C$ at the well head; the Na-K-Ca and chalcedony chemical geothermometers predict maximum subsurface temperatures from $70-83^{\circ}C$ might be found in this area.

Little information is available from the other wells in Gooding County.

JEROME COUNTY

Royal Catfish Industries has used geothermal water to raise catfish in Jerome County (figure 46). The operation is now closed. Thermal water at 43°C is discharged from a thermal well (95-17E-29dbbl) located along the Snake River north of Twin Falls to supply water to the facility which 30 fish had rearing ponds. Subsurface temperatures predicted the chalcedony and Na-K-Ca chemical by geothermometers are 89 and 93°C respectively. No other thermal water is known in Jerome County and the potential for further prospects is unknown.

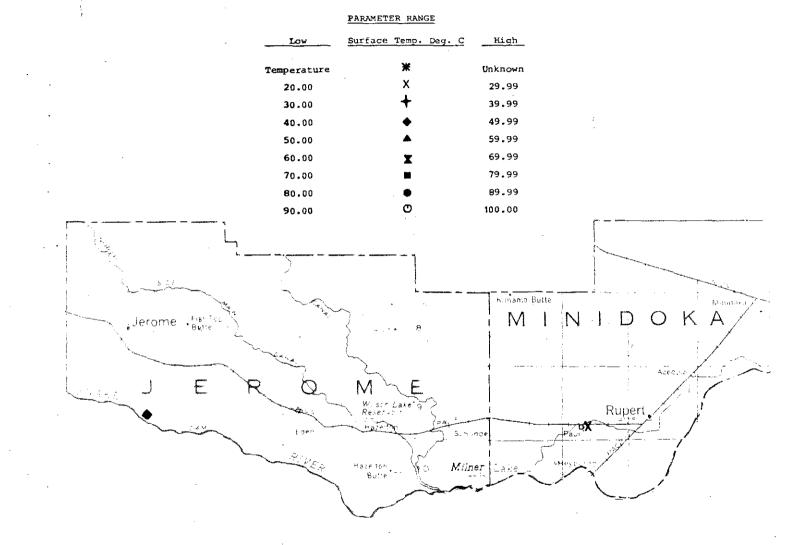


FIGURE 46. Index map of Jerome and southern Minidoka counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-99-

MINIDOKA COUNTY

information on the geothermal potential of Little Minidoka County is available. The area is underlain by the Snake Plain aquifer, which may mask thermal occurrences throughout the eastern Snake River Plain. A single thermal well (95-23E-28ccal) (figure 46), drilled for the city of Paul, encountered Pliocene and Pleistocene basaltic lava flows to a total depth of 137 m, discharges 22°C at 7570 1/min. Its occurrence suggests more and possibly hotter water might be found in the area. No chemical analysis is available, therefore, speculation about possible subsurface temperatures cannot be made. Uses up to and including groundwater heat pump space heating and cooling could be made of the thermal water at existing discharge A chemical analysis of the well waters should temperatures. be made to ascertain the possibilities of obtaining hotter water in the area through deeper drilling.

OWYHEE COUNTY

The Bruneau-Grand View thermal anomaly zone (figure 47) in southwest Idaho is the largest geothermal area in the western United States, rivaled in size only by the geopressured zones in the Texas-Louisiana Gulf Coast region. Renner and others (1975, p. 39) estimate that 1100 x 10^{18} joules of heat (above 15°C to 10 km of depth) are contained in rocks and water beneath an estimated 2250 sq. km of land area. Thermal water ranging in temperature from 20 to 84° C is extracted from more than 100 domestic, stock, and irrigation wells from two different types of aquifers sedimentary and volcanic rock. Many of the wells are artesian and range from 150 to nearly 1100 m deep. They are concentrated mostly in four areas - Bruneau River Valley, Little Valley, Grand View, and Oreana where farmland is available for agricultural use. Young and Whitehead's (1975, p. 44-45) assessment of the resource in this area is summarized.

The rocks in the Bruneau-Grand View area range in age from Late Cretaceous to Holocene. Rocks of the Cenozoic Era have been subdivided in four groups: (1) an unnamed sequence of rhyolitic and related rocks, (2) the Idavada Volcanics, (3) the Idaho Group, and (4) the Snake River Group. For convenience, these rocks units have been divided into two major groups according to their hydrologic properties: (1) the volcanic-rock aquifers that include the Idavada Volcanics, the Banbury Basalt of the Idaho Group and undifferentiated silicic volcanic rocks; (2) the sedimentary-rock aquifers, which include chiefly sedimentary units of the Idaho and Snake River Groups.

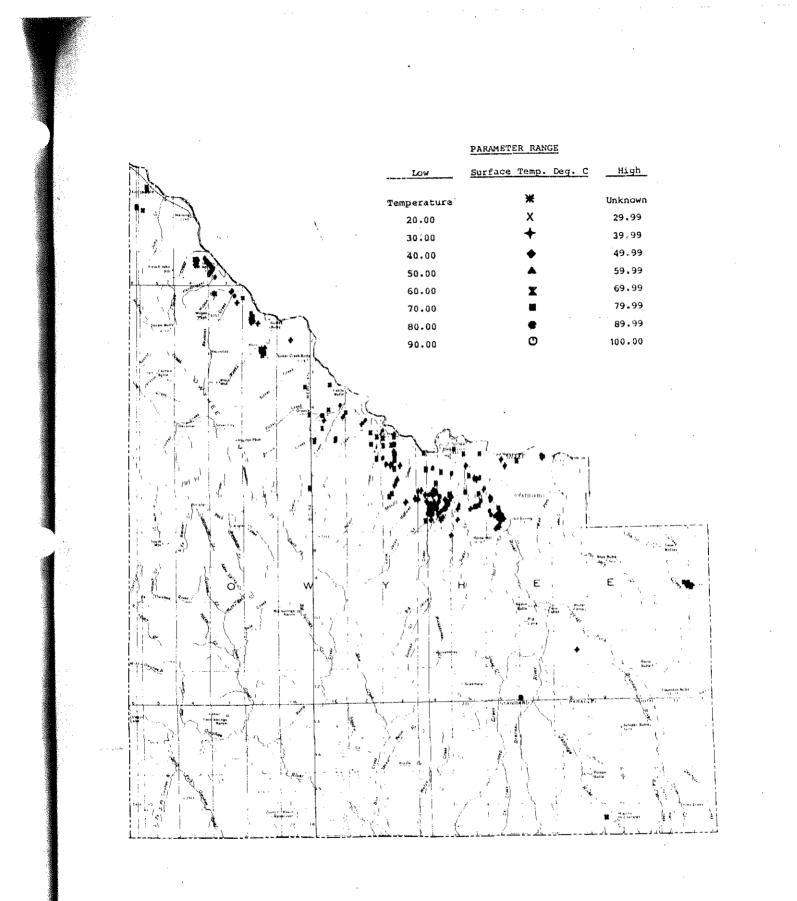


FIGURE 47.

. Index map of Owyhee County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Recharge to the volcanic-rock aquifer (except the Banbury Basalt) is thought to be chiefly from precipitation in the higher altitudes to the south and southwest of the study area where the rock units are exposed at the surface. Recharge to the sedimentary-rock aquifers and the Banbury Basalt is believed to be mainly by the upward movement of water from the underlying volcanic-rock aquifers.

The Idavada Volcanics or underlying rock units are believed to be the reservoir rocks for the thermal water in the Bruneau-Grand View area.

A system of northwest-trending faults has probably fractured and displaced rocks ranging in age from Pliocene to Pleistocene. Most of the faulting probably occurred in early Pliocene time, with progressively diminishing movements through Pleistocene time. Gravity and aeromagnetic surveys support the theory of a northwestward-trending subsurface structure.

An AMT (audio-magnetotelluric) survey of the Bruneau-Grand View area has revealed a large conductive anomaly in the region between Oreana and Grand View. The low resistivities observed, approaching 2 ohm-meters, imply a hot-water reservoir in which the reservoir rocks have been altered.

Sampled thermal water in the Bruneau-Grand View area is generally of a sodium bicarbonate type. In the study area, thermal water from the sedimentaryrock aquifers generally contains dissolved solids concentrations greater than 600 mg/l, is nearly neutral in pH, and usually contains less than 2 volcanic-rock mq/1flouride. Water from the aquifers generally contains less than 500 mg/l dissolved solids, has pH values higher than 8.0, and has flouride concentrations in excess of 8 mg/1. Chloride concentrations range from 2.7 to 79 mg/l for all sampled water with the values from the volcanic-rock aquifers usually less than 20 mg/1. Sulfate concentrations are much higher for water from the volcanic rock than for the water from the overlying sedimentary-rock aguifers. The chemistry from the volcanic-rock of the thermal water aquifers is very similar to that of thermal water flowing from the granitic rocks of the Idaho batholith.

(Note: Recent deep drilling in the area has revealed the existence of granitic rock underlying the silicic volcanic rock aquifers.)

Ratios of concentration of selected chemical constituents are used to distinguish water from the volcanic-rock and sedimentary-rock aquifers. The chloride-fluoride ratio is probably the best indicator with ratios generally less than 0.6 for water from the volcanic-rock aquifers. Chloride-boron ratios of the hotter water aquifers showed a marked decrease near Bruneau and Grand View because of increased boron concentrations.

Measured groundwater temperatures at the surface in the Bruneau-Grand View area range from 9.5 to 83° C with the higher temperatures (40 to 83° C) found in the water from the volcanic-rock aquifers. Temperatures of the water from the sedimentary-rock aquifers seldom exceed 35° C. The observed groundwater temperatures in the volcanic-rock aquifers seem to be related to the depth to the aquifers.

The gas in samples collected from water in the Bruneau-Grand View area consists primarily of nitrogen, oxygen, and methane. Methane was found primarily in samples from the sedimentary rock aquifers. Analysis of the gas in water from the volcanic-rock aquifers indicates that the gas is essentially that contained in meteroic water recharging the system.

Mineral deposition at wells and springs in the Bruneau-Grand View area is noticeably absent, largely because of the low dissolved-solids concentration in the water.

The source of heat for the deeply circulating thermal waters in the Bruneau-Grand View area is believed to be an above normal geothermal gradient. This above normal gradient could be related to a thinning of the earth's upper crust in this area.

The Bruneau-Grand View area represents a complex geothermal system consisting of several aquifers that may be interconnected by faulting and by wells that have been drilled through the overlying sedimentary rock aquifers into the volcanic rock aquifers. The complexity and intermingling of water from wells drilled into the various aquifers precludes accurate subsurface determinations for every well. Consequently, only aquifer temperatures are given in basic data table 4 (in basic data table 2 all available aquifer temperatures are given) for wells cased at least two thirds of their total depth and to those with surface temperatures of 40° C or above. These estimated aquifer temperatures suggest that the waters in the Bruneau-Grand View area have never been very hot (100 to 110°C) and in some cases may have come from depths where temperatures are even cooler (70 to 100° C). Deep drilling in the area has given conflicting results, although the most accurate seems to come from Phillips Petroleum's Lawrence D. No. 1 well (5S-1E-24adl) with a reported bottom hole temperature of 108°C at a depth of 2,672 m.

Young and Whitehead's study was limited to an area south of the Snake River. It is not known whether the aquifer systems extend north of the Snake River. Warner (1975) postulated the existence of a large northwest striking left lateral rift system near the present course of the Snake River, with clockwise or northwestward rotation of about 80 km of the northern block relative to the southern block. Rifting postdates formation of the sedimentary and volcanic rock aquifers of the Bruneau-Grand View area. If this rifting hypothesis is correct, the sedimentary and volcanic rock aquifers in the Bruneau-Grand View area have been rifted also, and the other "half" of this thermal anomaly may have been subsequently shifted northwestward to now lie somewhere between Boise and Weiser. Indeed, much thermal water has been found by well drillers in Ada, Canyon, Payette and Washington counties.

TWIN FALLS COUNTY

Thermal water in Twin Falls County (figure 48) is widely scattered occurring principally in the northeastern and eastern part of the county. There are 56 thermal water occurrences with surface temperatures of 20°C or above.

Miracle (8S-14E-31acblS) and Banbury (8S-4E-33cbalS) hot springs are resorts located along the Snake River in northwestern Twin Falls County. Several wells are also located along the Snake River north and west of Buhl.

A number of wells have encountered warm water in the Blue Gulch area northwest of Balanced Rock and west of Salmon Falls Creek. A fairly large warm water aquifer may exist here, judging from the number and spacing of thermal wells. A general alignment of wells and springs along the eastern margin of the thermal anomaly may indicate faulting or other geologic structure that may control thermal water here. A large northwest-trending linear feature (figure 29), which stretches from Mountain Home to Salmon Falls Creek (90 km), may also control thermal water here and feed the aquifer system. Wells generally average 190 m deep and well head temperatures average about $27^{\circ}C$.

A well 0.8 km east of Buhl may indicate some potential for low temperature geothermal use in the Buhl area. No other information is available on this well except that the well head temperature is 26°C.

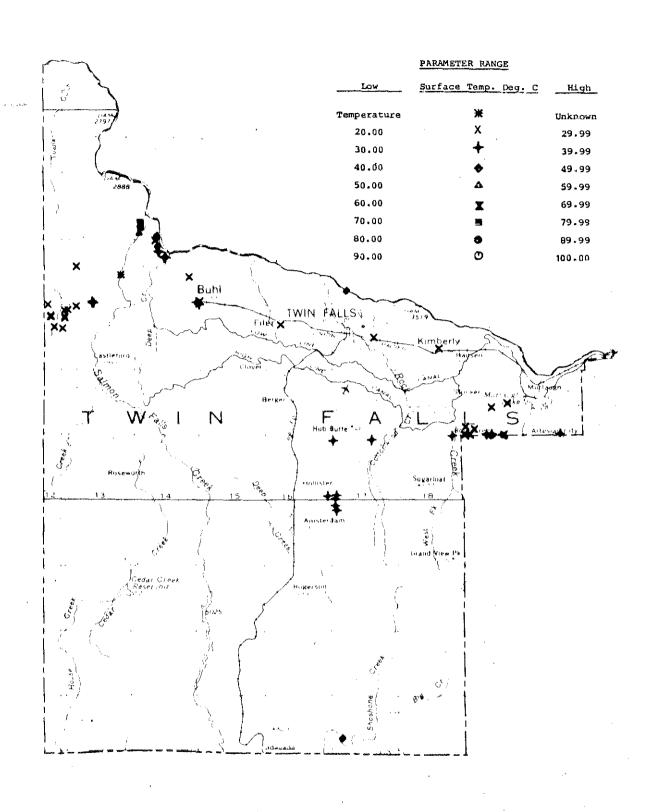


FIGURE 48. Index map of Twin Falls County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

The city of Filer owns a well (10S-16E-8cdal) having a well head temperature of 27°C. Another well temperature of 29°C exists on the outskirts of Twin Falls (10S-17E-14ccdl) and indicates a possible thermal source may exist in this area also. A well (10S-18E-26bbal) between Hansen and Kimberly is also 20°C and a large concentration of wells (10 in Twin Falls County and 20 in western Cassia County) exists east of Cedar Hill and southwest of Murtaugh Lake near These wells are aligned in a nearly east-Artesian City. west direction and occur near the foot of the South Hills. This may indicate a large fault could exist here. Most of the wells are in the 27 to 37° C range and range in depth from 150 to 365 meters.

Perhaps the first or only geothermally heated dog house in the world exists at Magic Hot Springs (16S-17E-30acalS) in southern Twin Falls County near a small private resort close to the Idaho-Nevada border. Here thermal water is used for recreation, balneological purposes and for space heating a number of cabins.

Nat-Soo-Paw Warm Springs (12S-17E-31bablS) is located 5 km east of Hollister and flows at 36°C surface temperature from Quaternary alluvium near Tertiary silicic volcanic rocks along a possible concealed fault. Nat-Soo-Paw has been a resort for many years. Several other thermal springs existed in the Hollister area but are now dry due to well drilling. Several wells in the area discharge thermal water of low temperature (from 20 to 38°C).

Donaldson and Applegate (1979) reported that:

The Twin Falls area lies on the boundary of the subdivision of the Snake River Plain into its eastern and western components. This may be significant if the division reflects a crustal break as has been suggested by Malde (1959) based on gravity and earthquake epicenters.

In this area gravity does not suggest any sharp structural features. The regional gradient toward the axis of the plain is dominant with the exception of a broad 5-10 mgal low centered about 23 km due east of Jerome (figure 49). A corresponding local magnetic low (figure 50) enhances the possibility that a structural depression exists. There are no active faults documented by Witkind (1975) in this subarea but Day (1974) has mapped lineaments from ERTS imagery which approximate the trend of the western plain in direction (figure 10).

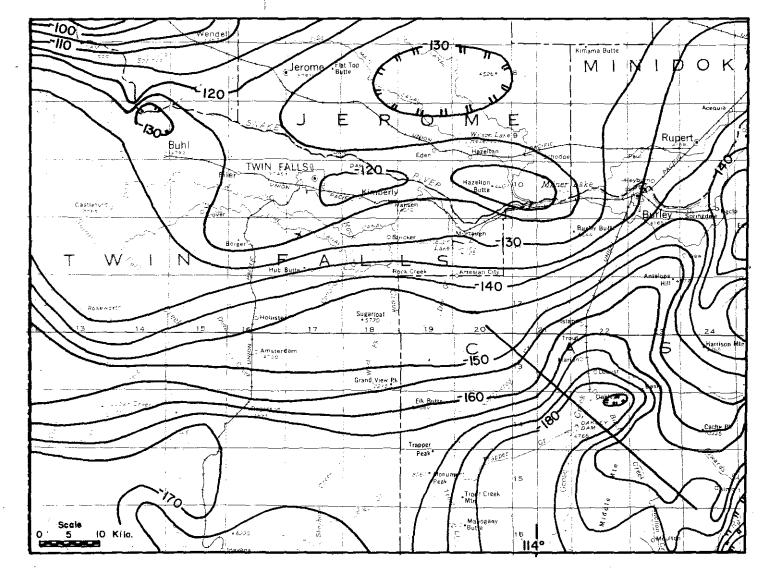

A series of warm wells in the southern portion of this area match quite closely the trends of 3 active faults reported by Witkind (1975).

FIGURE 49. Gravity map showing lows near Buhl (upper left), east of Jerome (upper center) and near Oakley (lower right). (Mabey, Peterson and Wilson, 1974.)

-107-

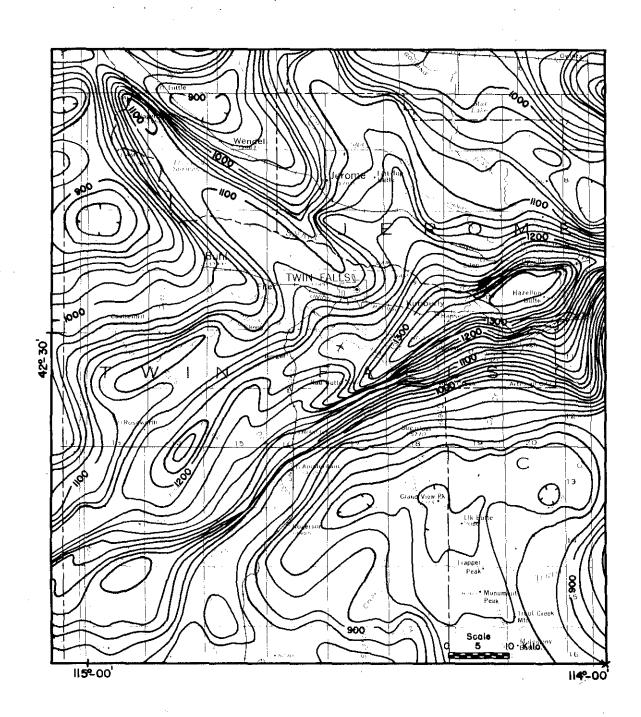


FIGURE 50. Aeromagnetic map showing low west of Jerome (upper right) (U.S. Geological Survey, 1971).

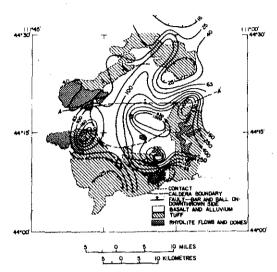
NORTHERN FREMONT COUNTY

Extensive geothermal leasing activity is ongoing in the Island Park basin in east-central Fremont County near Yellowstone Park (figure 51). Stearns and others, (1939, p. 28-29) recognized this basin as a caldera. Hamilton (1965, p. Cl) described the "Island Park caldera" as "an elliptical collapse structure 29 by 37 km in diameter that was dropped from the center of a shield volcano composed of rhyolite ash flows." Hamilton further described the caldera as:

...part of the Snake River-Yellowstone province of intense Pliocene and Quaternary volcanism of olivine basalt and rhyolite. In this province, as in other bimodal volcanic provinces, rhyolite and basalt erupted from vents interspersed in both time and space, and simultaneous eruptions of both liquids from the same or nearby vents are known to have occurred. In the Island Park caldera the eruptive sequence and geometry suggest that the large magma chamber contains liquid rhyolite overlying liquid olivine basalt.

Hoover and Long (1975, p. 1,062) stated:

Current geologic evidence suggests that а Yellowstone-type system does not exist at Island Park because the last major rhyolite body was emplaced about one million years ago and subsequent eruptions were of basaltic composition coming from the mantle along fractures in the older caldera Christiansen, oral commun., 1975). The (R.L. general absence of hot springs also suggests an old system. AMT and telluric surveys were made in August 1974 to study the possible existence of concealed hydrothermal activity.


The generalized geology of rock types in the caldera is shown in figure 52 with the 7.6 Hz north-south AMT data. The caldera stands out as an area of high resistivity, generally above 100 ohm-m surrounded by a region of intermediate values. Within the caldera local highs around 1000 ohm-m are associated with small rhyolite domes on the surface, and most hidden by later basalt flows. The AMT data shows the possibility of another rhyolite body on the western rim of the caldera which has been covered by tuff and rhyolite flows and may represent a source for some of these materials.

An east-west cross section is shown in figure 53. Included in the figure is a skin-depth

FIGURE 51.

Index map of Fremont County showing the locations of thermal water occurrences with surface temperatures of 20⁰C or higher.

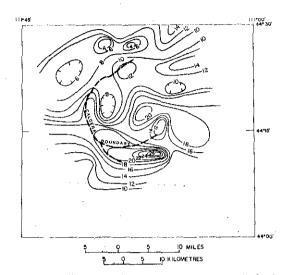


FIGURE 52. Map of rock types and 26 Hz apparent-resistivity (telluric line north-south), Island Park, Idaho. Contours in ohm-meters and logarithmic basis.

FIGURE 54. Telluric anomaly map at 20- to 30-sec period, Island Park, Idaho. Contour interval $2K = 10 \sqrt{J}$.

FIGURE 53. Comparison of skin-depth pseudosections and one-dimension inverted section with gravity and magnetic data across the Island Park area. Line of section (A-A') shown in Figure 6.

pseudosection obtained by contouring the apparent resistivities at their corresponding skin depths on the section, and a second section obtained by onedimensional inversion of the same sounding curves. The corresponding gravity and magnetic data show an edge of the body near station 11. The gravity data show a high associated with the caldera partly masked by the flanks of the extreme low associated with the Yellowstone region.

20

30

40

50

60

70

но

90

The telluric survey data appears in figure 54 which shows a high degree of correlation with the AMT Telluric data was obtained in the 20 to 30 data. second period range, which would give a skin-depth around 25 km in 1000 ohm-m material. The highresistivity material in the southeast part of the caldera is present at depth as indicated on the telluric map, and even the smallest high on the western edge can be seen as well. The telluric data also clearly shows the caldera as a region of high resistivity. This implies that the caldera has cooled, that there is little rock alteration, and that the area is not now a very promising The high resistivities in exploration target. Island Park basin clearly support Christiansen's inferences.

BUTTE COUNTY

Four warm wells are known in Butte County (figure 55) and are located near the northern margin of the Snake River Plain. Three are in Butte City, 5 km south of Arco, and another is between Arco and the Craters of the Moon National Monument.

One Butte City well (3N-27E-9abbl) $(35^{\circ}C)$ was originally drilled to a depth of 259 m in search of cold water. There was an increase in the temperature as the drilling went deeper so the well was backfilled to 145 m. Subsurface temperatures may be as high as 76°C at this location. Another Butte City well (3N-27E-9abb2) is 33°C and was drilled to a depth of 152.5 m. The chalcedony and Na-K-Ca chemical geothermometers indicate temperatures between 52 and 54°C might be encountered by deepening the well.

The oldest warm water well in this area (3N-27E-9aabl) was drilled in 1919 to a depth of 183 m and produced water in the 40°C temperature range. Another well (3N-25E-32cdcl) is 110 m deep and has a surface temperature of 43.5°C.

Butte City-Arco might be an area where use of thermal water for space heating could prove feasible. As other wells in the area have not encountered thermal water, it

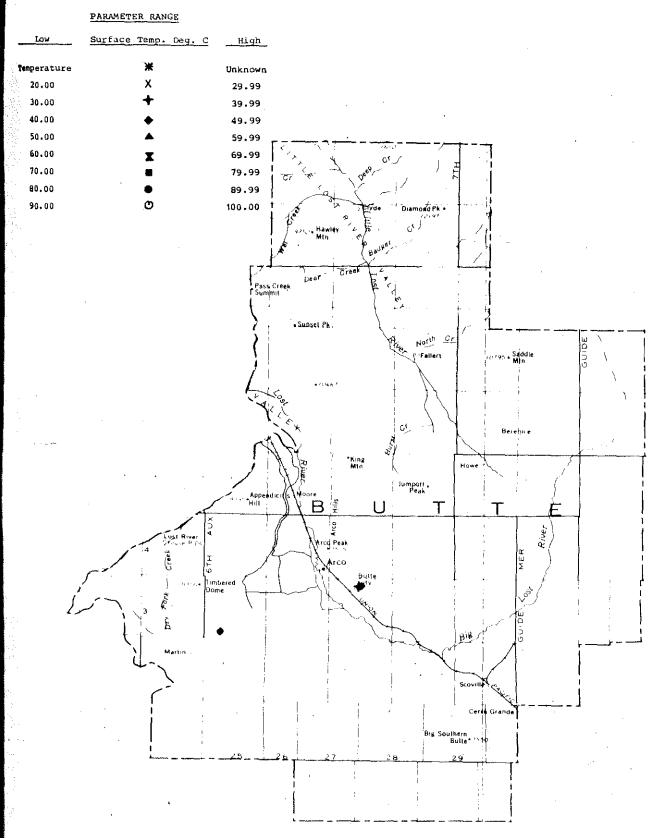


FIGURE 55. Index map of Butte County showing locations of thermal occurrences with surface temperatures of 20^oC or higher.

thermal appears these occurrences are structurally controlled (maybe drilled into faults along which the thermal water is rising). Any studies should be designed to delineate the faults and determine the extent of the resource along them. This could be accomplished by geophysical techniques, coupled with detailed geologic mapping, of the area around Butte City and Arco. Hydrologic and geochemical studies should be pursued in order to determine developmental effects on already existing groundwater supplies.

WESTERN CASSIA COUNTY

Several warm irrigation wells are located between Oakley and Burley west of the Albion Range in western Cassia County (figure 56). Measured surface temperatures range from 21 to 39°C and known well depths range from 76 to 585 m.

The largest concentration of wells in western Cassia County occurs near Artesian City. Drilling of irrigation wells in this area indicates the existence of a fairly large thermal zone, possibly fault fed at the base of the South Hills. Temperatures are fairly low, ranging from 24 to 38°C. This area might prove suitable for some type of large scale low temperature geothermal development, possibly related to agricultural use in the area.

Oakley Warm Springs (14S-22E-27dcb1S), 5 km south of Oakley, is used as a small natatorium. Warm waters issue from a fault in Paleozoic quartzite at 48°C and 40 1/min from two springs and a well. Subsurface temperatures predicted by chalcedony and Na-K-Ca chemical geothermometers are 89 and 92°C, respectively.

Donaldson and Applegate (1979) reported:

A gravity map compiled by the USGS (Mabey, Peterson and Wilson, 1974) reveals an anomaly in the vicinity of Oakley, Idaho. The anomaly is a relatively amplitude low which trends small basically north-south, broadens near the Utah-Idaho Border and narrows and shifts eastward north of Trapper Creek (figure 49). A southeast trending gravity profile was taken from map values (figure 57). Computations based on a 21 mgal anomaly and a density contrast of 0.4 g/cc (gram per cubic centimeter) results in a basin depth estimate of about 1250 m near Oakley. The profile indicates a regional gradient with gravity increasing toward the Snake River Plain and decreasing toward a neighboring gravity low southeast of Almo, Idaho.

The Oakley anomaly is not strongly definitive of structure and Witkind (1975) does not document

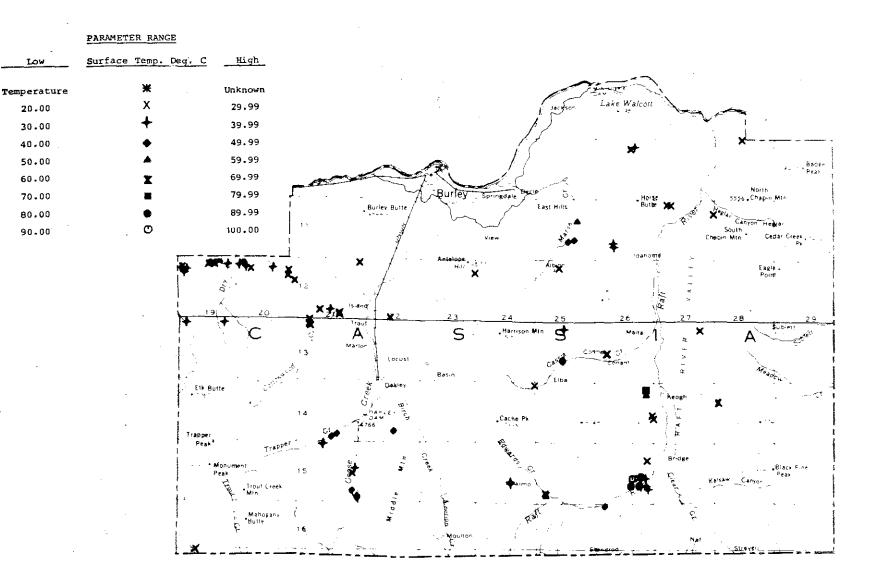


FIGURE 56. Index map of Cassia County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

-115-

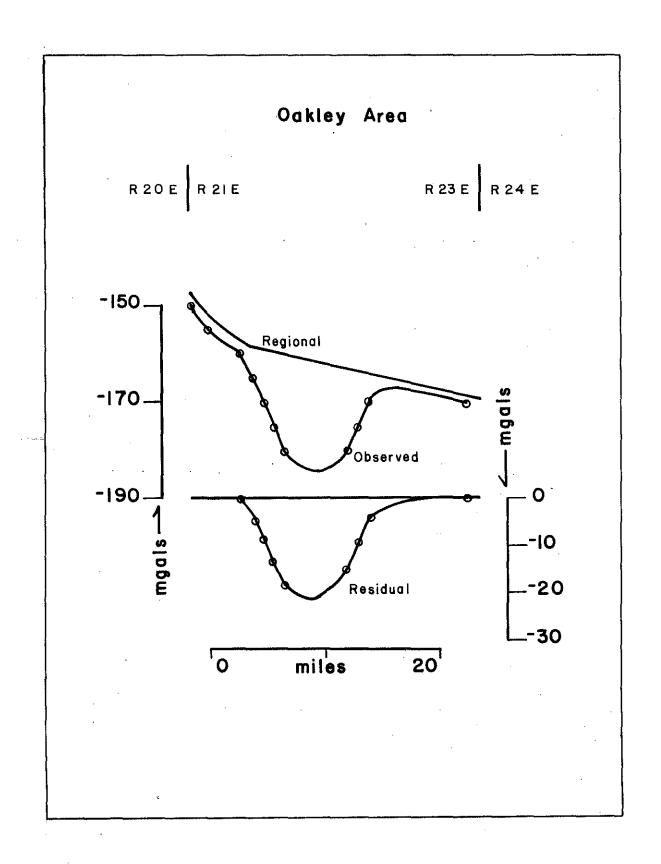


FIGURE 57. Gravity profile near Oakley (from Donaldson and Applegate, 1979).

known or suspected active faults which would control the nose of the anomaly to the northeast. He does identify a fault suspected of being active since mid-Miocene which lies about 11 km west of Oakley, trends northwest and appears to control a rather linear topographic break. The position of this fault does correlate very well with a coherent distortion of gravity contours as expected for movement downward toward the basin.

While faults are not documented to define the gravity suggested structure, Day (1974) has mapped lineaments from ERTS imagery which correspond very well to the location, shape and trend of the gravity anomaly (figure 9).

The basin depth estimate of about 1250 m near Oakley is a very conservative estimate based on calculations using a Bouger approximation. This approximation is generally quite accurate where basin width is several times the basin depth and results in increasingly conservative estimates as the width to depth ratio decreases.

Assuming a 1250 m deep basin structure with a basement rock thermal conductivity of 6.0 mcal/cm/ O C, a basin fill thermal conductivity of 3.0 mcal/ cm/ O C, and a heat flow of 3.0 HFU (see Brott, et al., 1976), one can calculate a predicted temperature of about 90 O C at maximum depth (Diment, et al., 1975). This maximum temperature estimate is conservative in the same sense that the depth estimate is considered conservative.

SUMMARY - SNAKE RIVER PLAIN REGION

Table 5 shows cities, towns, and recreational home areas in central Idaho that are near known thermal water. These towns probably could make use of thermal water for space heating of schools and public buildings if sufficient flow rates and temperatures could be obtained by drilling. The subsequent reuse of the warm water effluent through watersource heat pumps would give a greater and more economic use limited heat source. The hot of springs near а transportation lines might be used to establish suindustries suitable to thermal water found in the area. small In (see basic data table certain places fluoride 1) concentrations in the thermal water that exceed EPA's drinking water standard (to 2.4 mg/l depending on temperature) might lead to disposal problems. The areas near these towns would probably be evaluated without large capital outlays for exploration as the target areas are limited in size. In this area, those with the potential for the highest return in conventional energy savings should be These would include areas of largest evaluated first. population or of greatest industrial potential. Initial evaluations of the geothermal resource in the Boise Front area has already been conducted. Several successful exploration holes have been drilled. Other areas needing initial assessment work are Nampa-Caldwell, Twin Falls, Mountain Home, and Mountain Home Air Base. Weiser has received an initial assessment, but no drill sites have been selected. More work is needed there and near Payette to select possible drill sites.

Exploration programs including detailed geophysical studies, such as gravity, magnetic, resistivity, and reflective seismic surveys, as well as hydrologic studies including isotope and additional geochemical work should be pursued in areas near known thermal water to determine structure and select drill sites. These surveys probably should be conducted by federal or state people or by private entities with federal or state assistance as these studies are expensive and small private companies have little capital to invest in such programs. Large corporations with exploration money presently are not interested in what they feel are minor energy users and will not invest money to supply energy to one or even several users. However, combined users switching to a geothermal source in several of these areas could significantly affect the present energy consumption pattern in Idaho and help Idaho toward becoming more energy self-sufficient.

Town	CITIES AND	TOWNS IN THE S	SNAKE RIVER Spring or Well Surface Tempera- ture ^o C	TABLE R PLAIN REGION WITHIN *Best Estimated Subsurface Temperature °C		<u>5 KM (3 MI)</u> Total	Present	HER THERMAL	L SPRING OR	WELL (1978)
				Min. Na-KCa	Max. Chalcedony	Dissolved Solids	Water Use	Population		Remarks
Boise	Ada "	3N-2E-12cdd1	71	80	96	286	Space Heating	92,901	Private	One of several wells in Boise area. Depth ran 122-430 m.
Buhl	Twin Falls	9S-14E-36d						3,382	Private	No chemical anal- yses available.
Caldwell	Canyon	4N-3W-28aab1	28	54	70	203	irrigation Recreation	.15,643	City of Caldwell	Flowing well.
Cambridge	Washington	14N-3W-19cbd1S	26	65	76	312	Unused	451		
Emmett	Gem	6N-2W-14acc1	20				Domestic	3,943	Private	Plans are for space heating a shop. No chemica analyses avail- able.
Filer Glenns	Twin Falls Elmore	 55-10E-32bdb1	 38	67	 68*	 364	 Natatorium	1,420 1,387	Private Private	
Ferry Hanson	Twin Fails	105-18E-26bba1	20				Irrigation	450		
Hollister		12S-17E-31bab1	S_ 36	81	29	279	Natatorium	63	City of Hollister	Well located half way between Hans and Kimberly.
Homedale	Owyhee							1,601	Private	'
Kimberly	Twin Falls	105-18E-26bba1					Irrigation	1,780	Private	Well located half way between Hans and Kimberly.
King Hill	Elmore	5S-11E-7acd	32	63	65*	235	Domestic	·	Private	
Kuna	Ada	2N-1W-35caal	25				Irrigation	9 41	Private	96 meters deep 3,595 lpm.
Melba	Canyon						·	221	Private	
Midvale	Washington	13N-3W-8ccc1	23	46	68*	318	Public supply	447		Municipal well.
Mountain Home	Elmore	35-6E-26adc1	23				Municipal water supply	6,755	City of Mountain Home	City well 305 m deep.
Mountain Home Air- base	Elmore	4S-5E-25bbc1	24	47	62	114	Irrigation	6,000	Private	Well 162 m deep.
Murphy	Owyhee	 '						<u> </u>	Private	
Nampa	Canyon	 ·					Recreation	23,584	City of Nampa	Well No chemical anal- yses available.

-119-

Town	County	Location	Spring or Well Surface Tempera- ture ^Q C	*Best Estimated Subsurface Temperature 90		Total	Present		<u> </u>	······································
				Min. Na-K-Ca	Max. Chalcedony	Dissolved Solids	Water Use		Surface .	
								Population	Owner	Remarks
Parma	Canyon	4N-3W-35abc1	28	54	70		Municipal water use	1,879	City of Parma	Well 46 m deep.
aul	Minidoka	9S-23E-28cca1	22				Municipal Water use	91]	City of Paul	Well 137 m deep.
Win Falls		105-17E-14cdd1	29				Irrigation	23,616	Municipal well	
leiser	Washington	11N-6W-10cca1	70	145	152***	197	Natatorium, greenhouse	4,607	Private	Several small diameter wells.
lakiey	Cassia	14S-22E-7dcb15	5 47	90	90	29 5	Natatorium	698	Private	Warm spring.

Table 5. Cities and Towns in the Snake River Plain Region within 5 km (3 mi) of a 20^oC or Higher Thermal Spring or Well (continued)

*See first footnote, Table 4.

Minimum temperature is chalcedony temperature. Maximum temperature is Na-K-Ca temperature. *Minimum temperature is quartz temperature. Maximum temperature is Na-K-Ca temperature.

1

GEOTHERMAL POTENTIAL OF THE BASIN AND RANGE OF SOUTHEASTERN IDAHO INCLUDING EASTERN CASSIA, ONEIDA, FRANKLIN, BEAR LAKE CARIBOU, BANNOCK, POWER, BINGHAM, BONNEVILLE, MADISON, JEFFERSON, SOUTHERN FREMONT, CLARK AND TETON COUNTIES

Thermal springs and wells in the Basin and Range-Central Rocky Mountain Region (figure 6) generally share several characteristics - including high dissolved solids, high HCO₃ content and generally precipitation of CaCO₃ in the form of travertine. This area also is endowed with certain geologic characteristics that favor the occurrence of geothermal energy.

The eastern margin of the Basin and Range Province is within a long narrow curvilinear zone of earthquake activity stretching from Las Vegas, Nevada, on the south to Flathead Lake, Montana, on the north, known as the Intermountain Seismic Belt (Smith and Sbar, 1974). This zone is interpreted to be a boundary between subplates of the greater North American crustal plate, where differential movements between the Basin and Range and Colorado Plateau-Rocky Mountain provinces are taking place (Sbar and others, 1972). Plate and subplate boundaries are considered be excellent areas for prospecting for geothermal to resources. Youthful magmatic activity, areas of high heat flow, and thermal spring activity are known to occur along the Intermountain Seismic Belt. In Idaho, the approximate axis of the belt passes near Preston, in Cache Valley, through the Soda Springs area in Caribou County to Driggs in Teton County and into the Yellowstone Park area.

The Basin and Range Province in Idaho consists predominantly of block faulted mountain ranges separated by Intermontane basins arranged in an echelon pattern. Mountain front faults are considered to be normal faults by most authorities. Most of the block fault ranges tilt eastward, and valleys have been partially filled with eroded waste rock from adjacent mountains. Rock types here differ from most of the rest of the state, since they are mostly marine limestones, dolomites, shales, siltstones, and sandstones in age from Precambrian through Permian, ranging and Cretaceous, and younger land derived sediments. The rocks in general are older in the central part of the area and increasingly younger toward the edges of the become Province.

Thermal spring activity is widely distributed through the Basin and Range Province, and wells have encountered thermal water locally. Most springs are associated with known faulting or lineaments but not necessarily with valley-mountain range boundary faults. Most springs are near drainages and are therefore at low elevations. Thermal springs and wells in southeast Idaho exhibit the highest dissolved solids of any found in Idaho, presumably reflecting the soluble nature of the marine sedimentary bedrock. Thermal springs and wells are found in areas of no known adjacent igneous activity.

Thermal springs and wells in southeastern Idaho seem to occur along suspected curvilinear zones (figure 9) similar to springs in the central part of the state. The curvilinear zones may not be quite so well defined here as in the crystalline granitic terrain of central Idaho. One zone, stretching from Bear Lake Hot Springs to Blackfoot River Hot Springs near the north end of Blackfoot Reservoir, has an apparent gap between Georgetown and Soda Springs where no thermal springs appear. Actually, a cold water spring associated with voluminous travertine deposits does exist near the center of the gap. It is thought that this spring was once thermal.

The largest curvilinear zone, stretching from the southern Idaho border up to Big Springs in Island Park (near Yellowstone National Park), coincides with a lineament that stretches from the northern part of the Great Salt Lake, somewhat discontinuously, up to at least Brockman Creek warm springs.

Discussion of the geothermal potential of this region follows on a county basis.

EASTERN CASSIA COUNTY

The best known and most studied geothermal anomaly in Idaho is in the Raft River Valley (figure 56), a north trending basin and range valley in southern Idaho immediately south of the Snake River Plain. The Raft River KGRA (known geothermal resource area), was formerly known as the Frazier KGRA after C.W. Frazier who drilled the first hot water well there for irrigation and stock watering purposes. This well was drilled to a depth of 122 m and issued 95°C water. Later, another hot well (92°C), was drilled on the Crank property and is presently used for greenhouse heating. Many other thermal wells exist in the Raft River Valley ranging from 20 to 148°C.

The largest variety of geothermal testing and experimentation at any single location in the world is presently underway or developing (Chappell and others, 1978, p. 83) at the Raft River site. The principal experiments have been summarized by the above authors (p. 85) as follows: Soil Cooling Soil Heating Agriculture Aquaculture Agriculture Fluidized Bed Drying Gas Air Conditioning Component Testing Tube & Shell Heat Exchanger Direct Contact Heat Exchanger 60-KW Turbine-Generator Environmental Reservoir Engineering Heat Dissipation (Pond Cooling) Supply Well Mixing Tests Injection Testing Aerated Geothermal Water Corrosion Cooling Tower Chemistry of Brine as Makeup Water Sulfide Oxygen Scavenge Test Asbestos Cement Pipe Downhole Pump Test 500-KW Turbine-Generator Direct Contact

Many reports describing results of these experiments are available and listed as the ANCR & TREE reports in the Selected References.

Geophysical studies (Mabey and others, 1978, p. 1,470-1,478) have been conducted to infer the structure and general lithology underlying the valley (figures 58-60).

The thermal waters are believed to be derived from a deep fault and may be similar to other basin and range occurrences in Idaho. From several deep well tests in the Raft River Valley, a certain degree of reliability has been proven relating to the chemical geothermometers. The quartz and Na-K-Ca predicted aquifer temperatures (Young & Mitchell, 1973 and mixing models in unpublished data) agreed very closely (within 10°C) with temperatures found at depth (Kunze, 1975). Indeed, the Na-K-Ca chemical geothermometer predicted temperatures almost exactly as were found. This proven reliability in the Raft River Valley gives some measure of confidence in applying the same methods to other similar areas of the state.

To date, seven deep wells have been drilled to depths of 1,525 m into indicated fault zones, and large quantities of thermal water near 150°C have been encountered. From further well tests, it appears that the geothermal system is capable of sustained production of sufficient water to run a 50 megawatt power plant, although present plans are limited to 10 megawatts. The power generation system will be a binary cycle system.

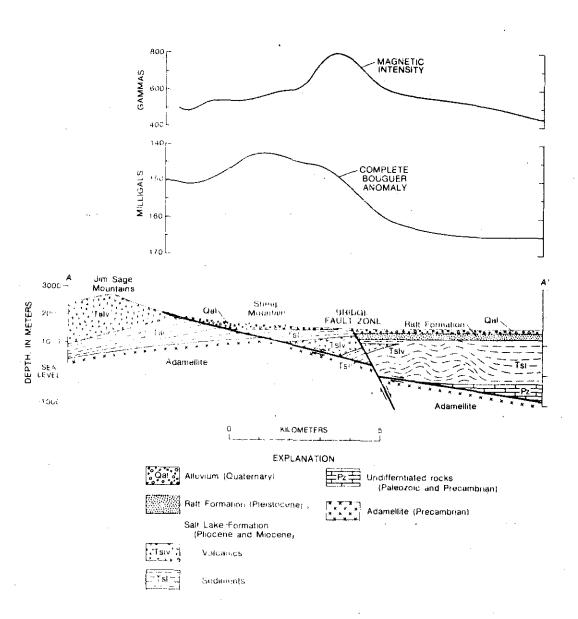


FIGURE 58.

Interpreted section across the west side of the southern Raft River Valley. (From Mabey and others, 1978.)

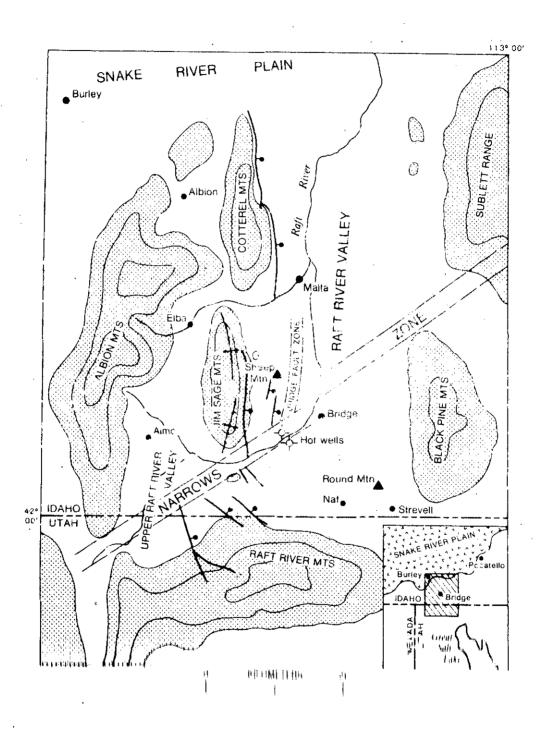


FIGURE 59.

Map of the Raft River Valley region, Utah and Idaho, showing major topographic features and faults. (From Mabey and others, 1978.)

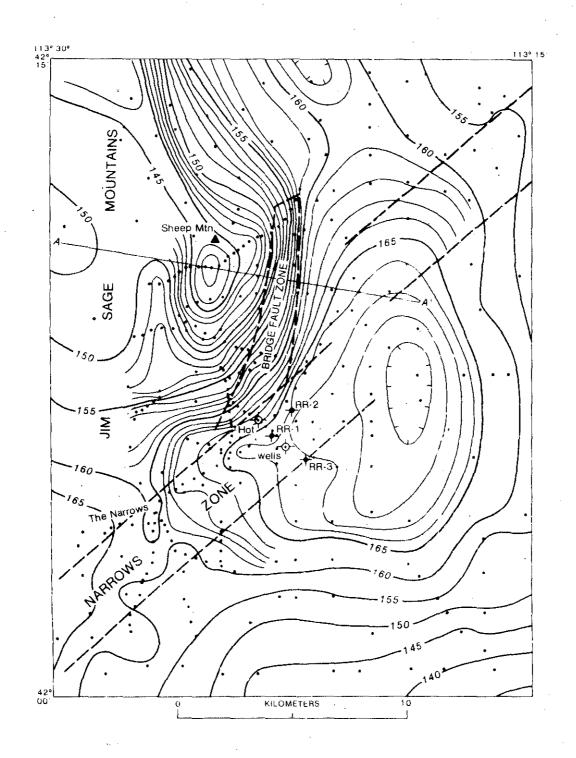


FIGURE 60. Complete Bouguer gravity anomaly map of the southern Raft River Valley. Contour interval is 1 and 5 milligals. Deep drill holes are shown and numbered. Dots are gravimeter stations. (From Mabey and others, 1978.)

Other springs and wells exist in the Raft River Valley and Cassia County, some of which are located along arcuate trends, as in north-central Idaho.

Oakley Warm Springs (14S-22E-27dcbl) located near Oakley in an adjoining valley west of Raft River issues at 47°C from Paleozoic quartzite and is developed as a small resort. The other wells documented in Cassia County are for irrigation or domestic uses and are in rural locations as are the springs.

ONEIDA COUNTY

Five thermal springs are located in Oneida County (figure 61) in the Malad Valley. All are fairly low in surface temperature and most occur near surface drainages. Pleasantview Warm Springs (15S-35E-3aablS) issues at 25°C from Precambrian quartzite and presently is unused. Woodruff Warm Springs (16S-38E-10bbclS) is the warmest spring at 27°C. Price's Hot Spring (16S-38E-23bbd1S) reported by Ross (1971) could not be found. An unnamed spring (125-34E-36bcblS) exists near the upper end of Malad Its surface temperature is $24\overline{OC}$. Valley. Malad Warm Springs (14S-36E-27cdalS) issues at 25°C from a travertine mound in the fairgrounds area near Malad City. This spring, being in close proximity to Malad City, appears to have the most potential for development, due to its proximity to a population center.

In addition to the thermal springs, Burnham and others (1969, p. 33) report three areas of saline groundwater in Malad Valley. These saline groundwaters were: "(1) small in volume compared to recharge and groundwater in storage, (2) associated directly with deep circulation along or on the bedrock side of the boundary faults of the valley, and (3) localized in only three small areas." These saline waters might indicate that mineral rich thermal water is mixing with cold groundwaters. Indeed, the cold saline groundwaters are all found near thermal springs - one area near the eastern margin of the Malad Valley from Malad City to Cherry Creek, one area near Pleasantview Warm Springs, and one near Woodruff Warm Springs. If mixing is occurring, there is a good possibility that hotter water could be found by drilling near the warm springs. Careful targeting of drill holes to intersect faults at depth should be undertaken before any drilling commences. However, the chalcedony chemical geothermometer indicates aquifer temperature only a few degrees above surface temperature except at Woodruff Warm Springs where aquifer temperature may be as high as 46°C.

None of the mixing models applied to these three thermal springs in these areas are definitive (basic data table 2, columns T_8 , 9, 11).

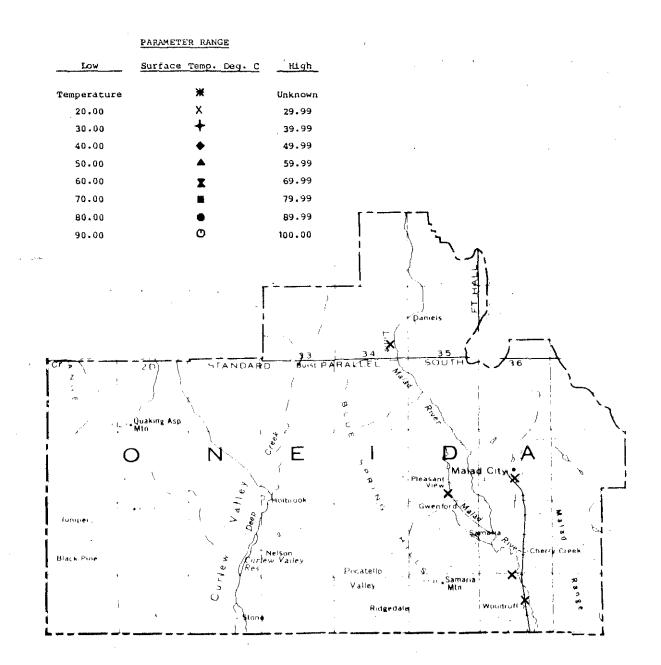
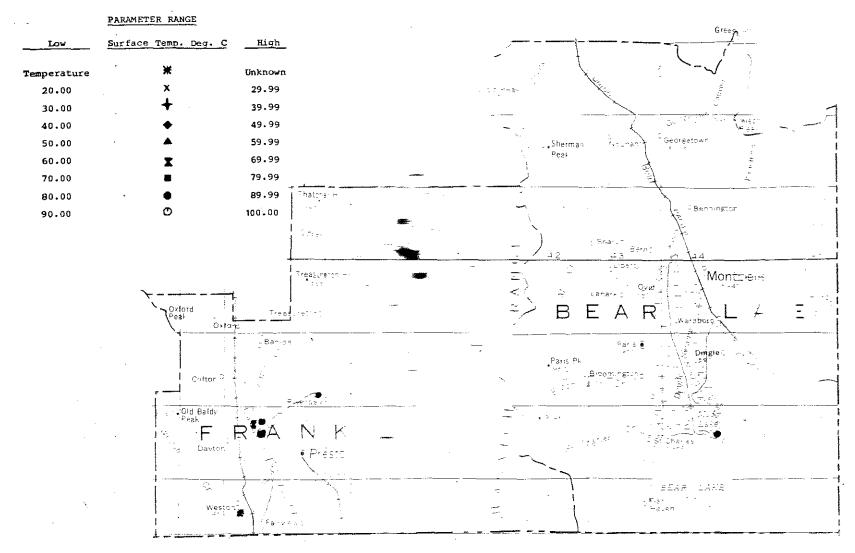


FIGURE 61. Index map of Oneida County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

FRANKLIN COUNTY

Mitchell, 1976, p. 17-19, summarized the thermal water occurrences in the northern Cache Valley area as follows:


Thermal springs and wells are scattered at irregular intervals along the Bear River (figure 62). They occur in conjunction with various types of consolidated and unconsolidated sedimentary rocks including travertine, limestone, quartzite, and alluvial deposits. Thermal wells penetrate only alluvial deposits.

Most springs in the area appear to be fault The springs near Cleveland are situated related. along a northwest linear trend on both sides of Bear River. On the west side, spring vents (12S-41E-30caalS) issue from the bottom of circular pools 6 to 9 m in diameter within travertine Numerous seeps and many small pools formations. occur near the river edge. Numerous seeps and from a spring vents issue travertine bluff overlooking Bear River on the east. Much gas, thought to consist mostly of CO_2 , escapes from the riverbed, audible for some tens of meters.

No fresh deposits of travertine were forming near Cleveland. The springs on the west side issuing from pools may even be dissolving the existing travertine deposits. The waters on the west side are much cooler $(35^{\circ}C)$ than the waters from the east bluff $(66^{\circ}C)$. Waters from the vents on the west side have been used for recreational purposes. Samples were taken for chemical analyses from the large pools on the west side and from several vents on the east side.

Maple Grove Hot Springs (13S-41E-7acalS) are located in an area of intense local faulting near shore of Oneida Narrows Reservoir. the The numerous vents and seeps and the one large pool that make up the spring system are more or less aligned with each other. Unlike the Cleveland springs, Maple Grove waters are depositing much travertine. Gas, probably CO_2 , is also being Several small, cold (10°C) mud pots near evolved. the smaller vents at Maple Grove evolve small quantities of gas which bubbles up through the mud. The bubbling might be interpreted by a casual observer as evidence of boiling. These waters have been used for recreational purposes and also for power generation as evidenced by an old Pelton wheel found below the spring on the shore of Oneida

FIGURE 62. Index map of Franklin thermal water occurrence surface temperatures of I- = higher.

130-

Narrows Reservoir. This may have been the first use of geothermal water for power generation in Idaho; even though the wheel was designed to make use of kinetic energy of the flowing water, rather than its enthalpy or heat content. Total installed capacity probably did not exceed 5 kilowatts (kw).

Well 14S-39E-36adal, on the Bear River flood plain at Riverdale, has a surface water temperature of $40^{\circ}C$ and was reportedly drilled to a depth of 12.1 m. For years, water from this well has been used for beneficial purposes in a dairy operation. Rulon F. Mitchell, a resident of the area for 40 years, reports that snow in a 40-acre tract around the well would melt much more quickly than in surrounding areas.

The Clifton Hill high angle boundary faults may exist at Battle Creek Hot Springs (Wayland) (15S-38E-8bdclS) and Squaw Hot Springs (15S-39E-17bcdlS) (Oriel and Platt, 1967; Peterson and Oriel, 1970; and Mabey, 1974, unpublished data). These faults may intersect the Mink Creek-Bear River lineament near these two hot springs (figure 63). The structural implications of this transverse lineament are unknown but it could represent a strike-slip or normal fault. The controlling structure for these two hot springs could be the intersection of the Clifton Hill high angle boundary faults with the Mink Creek-Bear River(?) fault.

Battle Creek Hot Springs consists of one large pool about 6 m in diameter, a smaller pool (probably a collapsed travertine structure), numerous vents and seeps. This spring system is located on the western edge of Bear River. Numerous vents are marked by gas bubbles in the riverbed. Travertine is actively being deposited around the pool and vents of this spring system. These waters have been used for hog carcass scalding and recreation. Samples were taken from the two pools and two smaller vents. Cold water seeps (temperature 6°C and total discharge $5-10 \ 1/m$) were issuing from a clay bank just above the spring vents at Battle Creek Hot Springs. Other cold water seeps were issuing at approximately the same elevations as the thermal vents about 40 m down river from the ther-The cold water may be seepage along mal vents. impermeable clay layers from an irrigation canal which runs along the bottom edge of the uppermost terrace level of the river valley above the hot springs, or from irrigation water applied on farmlands above the canal. Significant quantities of cold water could be mixing with the thermal water.

Reprine that Apertugin (158-1918 (7build)) and found of about 1 km south of Battle Creek Hot Springs near the confluence of Deep Creek and Bear River. This system consists of one well, reportedly 6.7 m deep, four other vents and several seeps. Discharge from the well (15S-39E-17bcdl) is depositing travertine at the end of the discharge pipe some 30 m from the well head, and a small mound of travertine 1.5 m high and 3 m across the base has been formed on the edge of Deep Creek. Only minor travertine deposition or evaporative incrustation was evident at the well head itself, where water samples were taken. The other vents are now only very minor depositors of travertine with small incrustations and a few travertine-coated pebbles along discharge channels. Older travertine deposits crop out in the immediate spring area, indicating prior deposition by the springs. Samples were taken from the well, from a vent situated near the road, and from another vent located near the Bear River-Deep Creek confluence. All spring vents were evolving minor quantities of probably CO_2 . The well being the most 门前用。 prolific gas evolver, gave a false appearance of vigorous boiling. These spring waters were formerly used for recreational purposes, and for heating hot houses.

Basic data table 2 lists apparent subsurface temperatures in Franklin County. Mitchell (1976) listed reasons for believing that at Squaw and Battle Creek hot springs, subsurface temperatures would approach 150° C provided quartz controlled silica in these waters. If mixing of thermal and non-thermal groundwater were taking place, temperatures could be as high as $235-245^{\circ}$ C. In other areas of Franklin County the chalcedony chemical geothermometer (T₄, basic data table 2) probably gives good subsurface temperature estimates.

BEAR LAKE COUNTY

In Bear Lake County (figure 62), located in the central Rocky Mountain Province, there are only two known thermal springs presently active. Extensive travertine deposits, particularly on the west side of Bear Lake Valley north of Bern, attest to much greater thermal spring activity in the past. It is not known whether the springs here ceased flowing because of cooling or to self sealing because of travertine deposition, or both. Prospecting for thermal water might prove fruitful in areas of extensive travertine deposition near known faults.

Pescadero Warm Spring (12S-44E-7bdalS) (26°C) is located two miles south of the Nounan-Georgetown Road near the FΙ

-132-

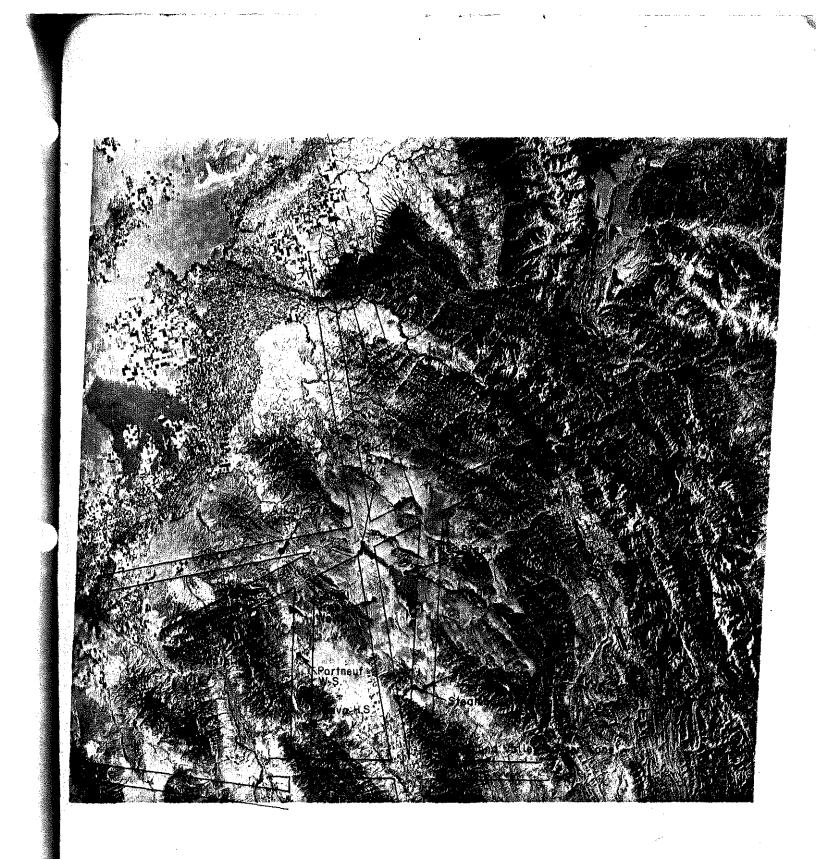
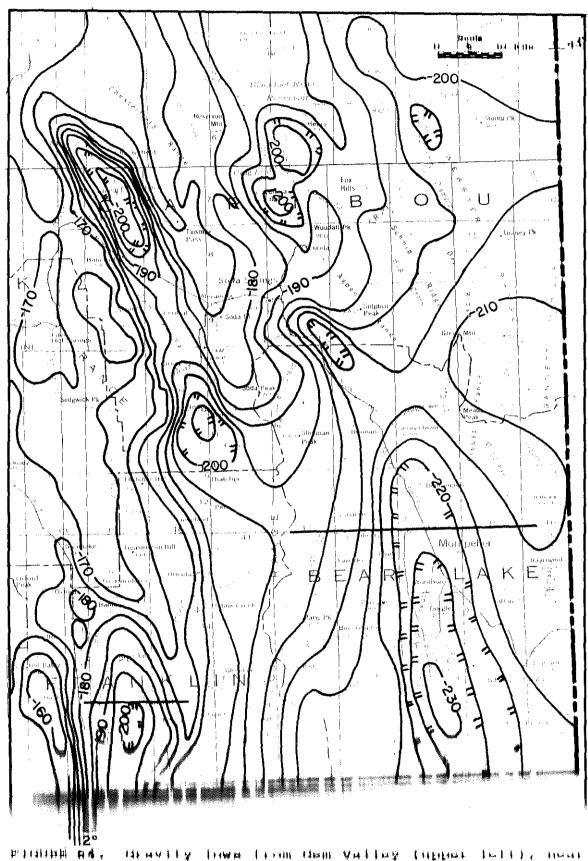


FIGURE 63. EROS false color infrared Landsat EDISE image of part of southeastern Idaho and northern Utah showing selected thermal water locations with surface temperatures above 20°C.

Bern-Pescadero Road on a travertine-covered bluff overlooking the Bear River. It issues at about 40 l/min. It is presently used for stock water.

Bear Lake Hot Springs (15S-44E-13bcalS) is a popular resort area and has been for many years. Formerly known as Joe Rich's Spring, vents issue from limestone along a fault scarp at the base of the steep slope, which forms the western edge of the Bear Lake Plateau. The water issues at 48° C. Bear Lake Hot Springs and Pescadero Warm Springs are remote from population centers in Bear Lake Valley. Maximum subsurface temperatures expected at depth may be best represented by the chalcedony equilibrium temperature at about 54° C (see basic data table 2, column T₅). Bear Lake Hot Springs could probably support a natatorium and a greenhouse provided additional flow could be found by drilling.

Donaldson and Applegate (1979) reported that:


Gravity mapping (Mabey, Peterson and Wilson, 1974) in the Bear Lake-Montpelier area of southeastern Idaho reveals steep east-west gradients suggesting a north-south striking basin and range type grahen valley (Figure 64). An east-west profile taken from the aforementioned map along the Idaho Standard Parallel south through the Bear Lake anomaly defines a 21 mgal residual (figure 65) low. Calculations made assuming a 0.4 gm/cm³ density contrast between valley fill and flanking bedrock result in an estimated basin depth of about 1250 m. Witkind (1975) defines faults along both margins of the gravity inferred graben (figure 15) which are presumed active with late Quaternary beds broken. Day (1974) has mapped linears from band 5m MSS-ERTS imagery which also coincide very well with the gravity inferred graben (figure 9).

The basin depth estimate must be considered very conservative. A similar depth estimate was calculated in the Oakley area where a maximum temperature-at-depth of about 90°C was calculated. Given similar assumption, similar temperature estimates would be appropriate for this area.

CARIBOU COUNTY

Six thermal springs and four thermal wells are known in Caribou County. They are widely scattered but principally located around the margins of the Blackfoot lava field and near the principal drainages of the Blackfoot, Bear, and Portneuf rivers (figure 66).

The best known thermal occurrence in Caribou County is located within the town of Soda Springs and is known as Soda

HEAVILY HARE FROM HEM VALUEY (HEAVILY HEAVILY HARE FROM THE Preston in Cache Valley (lower left), and near Bear Lake (lower right) (Mabey, Peterson and Wilson, 1974.) Contour interval = 5 milligals.

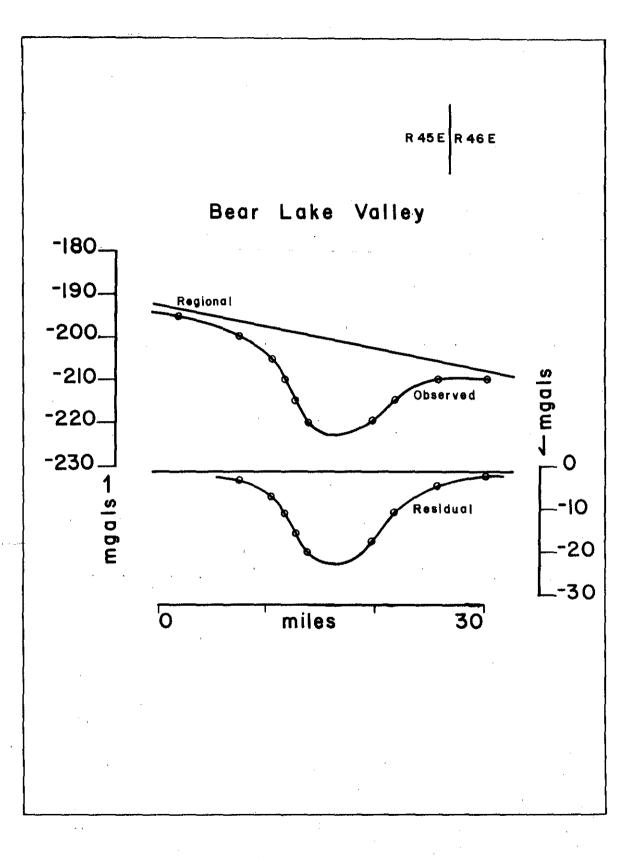


FIGURE 65. Gravity profile near Bear Lake. (From Donaldson and Applegate, 1979.)

6.5 TINC lackfoot Rive eservair Portneut Res 5391 Chesterfield Crag iox 1111s Plo Hatch Hat A R O Soda Sprir ويرجينه . Centra Soda Pl Grace Bear 10 iller, Bench GLago

	PARAMETER RANGE	
Low	Surface Temp, Deg, C	High
Temperature	*	Unknown
20.00	X	29.99
30.00	+	39.99
40.00	•	49.99
50.00	▲ ′	59.99
60.00	I I	69.99
70.00	8	79.99
80.00	٠	89.99
90.00	O	100.00

FIGURE 66. Index map of Caribou County showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

Springs Geyser (9S-41E-12add1). It is actually a well drilled near a former hot spring, and geysering is caused by high pressure carbon dioxide gas rather than steam pressure generated by superheated water. Soda Springs Gyeser is now a tourist attraction erupting through automatic valves every hour (at the will of the city police) when the wind is right. It is 28°C at the wellhead.

A spring (6S-42E-8dbalS) with a surface temperature of $21^{\circ}C$ issues from a large circular travertine mound west of Henry near the shore of Blackfoot Reservoir, and another (6S-41E-1adclS) issues at $22^{\circ}C$ across the Meadow Creek arm of the reservoir. Steamboat Springs (9S-41E-10daalS) issues from travertine beneath the waters of Soda Point Reservoir. Blackfoot River Warm Springs (5S-40E-14bcdlS) issues from travertine overlying basalt on the edge of the Blackfoot River. Its temperature is $26^{\circ}C$. Another spring (7S-38E-26cbdlS) known in the area is on the bank of the Portneuf River on the west side of the Portneuf Valley. It has a temperature of $41^{\circ}C$.

The Corral Creek wells (6S-41E-19ba, temperature 36 to in 41°C) are located an extremely faulted area. Strike-slip, normal, and reverse faults were encountered when Food Machinery Corporation (FMC) drilled for phosphate the area. The thermal water was encountered when in drilling reached the Mead Peak member of the phosphoria formation. The wells were drilled near an old geyser cone.

Mitchell (1976) summarized the geothermal potential of Caribou County as follows:

Geologic evidence of geothermal activity is abundant in Caribou County. The Intermountain Seismic Belt, related to plate and subplate boundaries, passes through the area. A known zone of high heat flow coincides with the seismic zone, and is manifested by numerous thermal springs. Mansfield (1927) reports a high geothermal gradient. The Pleistocene basalt flows, thought to be less than 700,000 years old, exist west and south of the Blackfoot Reservoir. Possibly present is geologically young volcanic collapse structure (caldera) or low density granitic intrusive (heat source ?). The extremely young (less than 100,000 years old) rhyolite structures (China Hat, North Cone and South Cone) exist near the center of the area surrounded by the somewhat younger basalts. Thermal spring deposits, warm springs and geyser activities are evident. All are strong geologic evidence of large-scale geothermal potential.

The audio-magnetotelluric (AMT) survey indicates that no shallow, low-conductive zone (typical of

geothermal systems) exists to depths approaching 2 km. This indicates the absence of geothermal reservoirs to 2 km depths in the survey area.

The chemical geothermometers indicate that the thermal waters of the Blackfoot Reservoir area probably have never reached high temperatures (above 50° C).

Published estimates of temperature gradients suggest that the thermal springs could emerge from depths as shallow as 1,000 m. The close association of these springs and wells with normal indicates that the waters are probably faults meteoric waters circulating to shallow depths along faults and re-emerging as thermal springs or wells. Water ascending from shallow depths may provide little information concerning any deep thermal system, which in this area would be the real exploration target.

The geochemistry of the thermal waters, the results of the AMT survey, and the speculative geothermal gradient and heat flow estimates from the Blackfoot little Reservoir area indicate potential for geothermal power generation from shallow depths (less than 2 km). The possibility of deeper geothermal resources is, however, attested to by The possible the favorable geologic framework. deep reservoirs would not be accessible to exploration or development except by very expensive techniques such as deep resistivity, heat flow, or deep test drilling.

Heat flow measurements taken from three or four strategically placed 300 m deep drill holes would indicate the approximate intensity of any deep heat source in the area, and consequently may be the better and less expensive method of exploration. This activity should be deferred until other, more accessible geothermal systems in Idaho have been assessed.

Caribou County does, however, represent a unique region where prospecting for geothermal water for low temperature use might be successfully conducted by local individuals, small businessmen, or corporations who wish to make use of low temperature geothermal energy but who lack large amounts of speculative investment capital. Local water well drillers might locate hot water in areas of obvious faulting where surface deposits of travertine are found. If the extinct springs have ceased to flow

F .

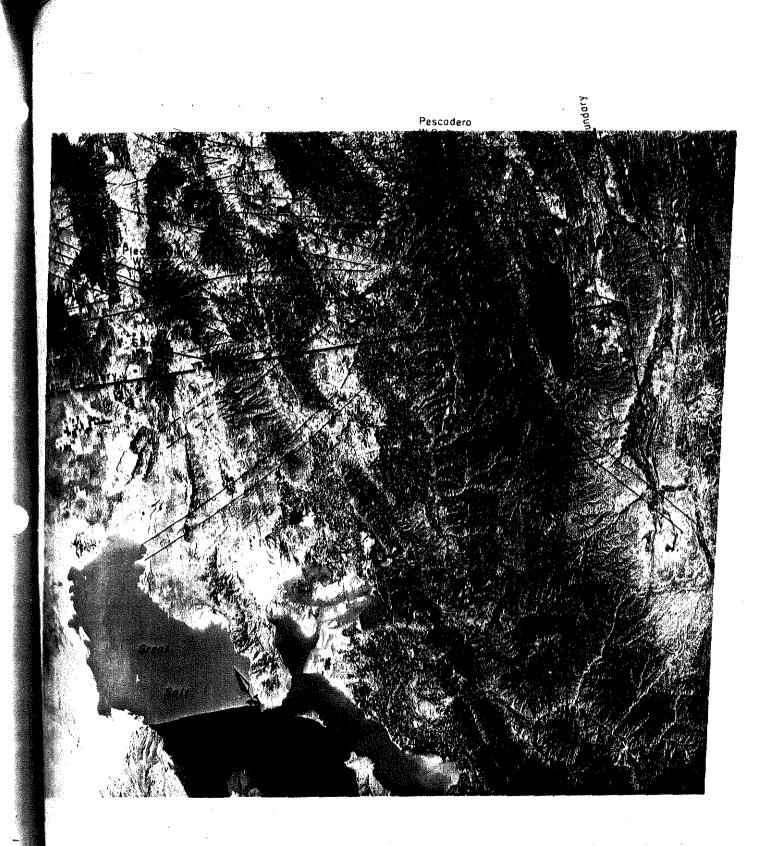


FIGURE 67. EROS false color infrared Landsat EDISE image of part of southeastern Idaho showing selected linear features and thermal water locations with surface temperatures above 20°C. .

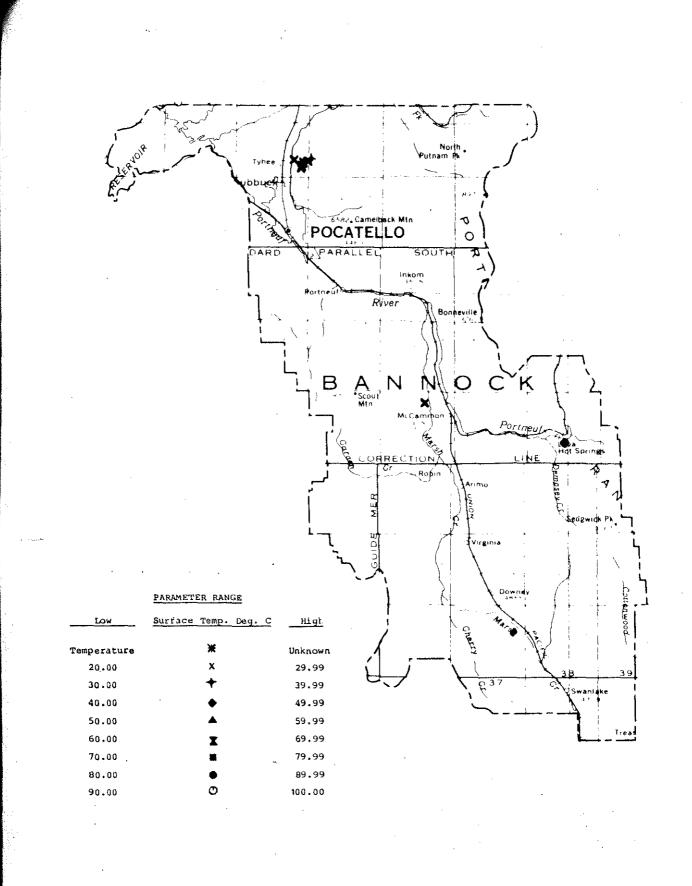
because of sealing due to tatty deposition, rather than regional cooling or more arid conditions than formerly existed, substantial amounts of low temperature water (less than 75°C) might be found by drilling into fault zones associated with travertine deposits. Self-reliant, enterprising individuals may even devise methods of scaling control, a potential hazard in geothermal water utilization in this area.

The moderately high dissolved solids in these waters preclude their use for irrigation purposes or stockwatering. Their low temperatures suggest uses such as mushroom growing, balneological baths, soil warming, recreational usages, warm water for winter mining operations or de-icing. Space heating for vegetable greenhouses or animal husbandry may be practical if efficient heat pumps were utilized.

The saline waters may challenge engineers who work toward their utilization. Activities related to the large-scale withdrawal and use of these waters must be very carefully monitored. Cooperation between those individuals making use of the water, as well as state and local officials, is necessary to avoid potential thermal and saline pollution, which could be a danger due to the higher temperature and salinity of these waters should large-scale withdrawal be attempted.

Figure 67 is an enhanced false-color infrared satellite image of part of southeastern Idaho showing major linear features and thermal water occurrences. Many of the thermal springs and wells are near the intersection of these major linear features. The exact nature of these features is not known but the features may represent some type of crustal fracture along which meteoric water circulates to depths where it is heated by hot rock.

An irregular, somewhat discontinuous and curved lineament can be traced on satellite images (figures 63 and 67) from the north end of the Great Salt Lake in northern Utah through Woodruff Hot Springs south of Malad, near Squaw Hot Springs west of Preston, through Cleveland Hot Springs, through Soda Springs, through Henry Warm Springs, through Brockman Creek Warm Springs, through Fall Creek Mineral Springs, and further north, perhaps to Ashton Warm Springs. This lineament coincides with the suspected curvilinear zone revealed by thermal spring activity as shown on figure 9. Springs along this zone appear near where east-west trending lineaments intersect the curvilinear lineament or zone. The geothermal potential of the Blackfoot Reservoir area indicates that much of the energy requirements for the growing phosphate industry, as well as space heating for the expanding population, might be supplied by geothermal energy.


BANNOCK COUNTY

Four thermal spring areas and seven thermal wells are located in Bannock County (figure 68). The most promising areas for development are north of Pocatello near Tyhee and Lava Hot Springs.

In the Tyhee area the warm water wells, drilled to depths of 177 m, are used for irrigation, domestic, and The wells range from 20 to water. 41°C stock in They are more or less aligned in a northeasttemperature. southwest direction approximately following an inferred fault through the area (Trimbel, 1976). A faint linear feature can be seen in enhanced false color satellite images of the area. The feature is consistent with the warm water well alignment and inferred fault. A magnetic high similar to one found near Heise Hot Springs also exists near the wells (Corbett, 1978, oral commun.). These facts are evidence of both structural control for thermal water in the area and possible deep circulation of meteoric water along Chalcedony and Na-K-Ca chemical geothermometers faults. give 63 and 47°C respectively in one well (5S-34E-26dabl) in the Typee area. Quartz predicts 63°C for the subsurface temperature in another well (basic data 2, columns T1, T4, Τς). Further work in the area should be considered to determine the attitude and exact position of the controlling structures to target drill holes to intersect the structure at predetermined depth. Gravity, magnetic, and hydrologic studies should be performed first to best determine the type of followup approaches to use in further reservoir assessment in the Pocatello-Tyhee area. This area is currently being studied in greater detail. Any thermal water discovered here could be utilized for space heating and industrial uses in Pocatello.

Another area of thermal water occurrence is Lava Hot Springs where two groups of thermal springs and several wells of above normal temperatures are known. Lava Hot Springs has been a popular resort area for years boasting a state-owned health spa. Before renovation, the swimming pool contained natural thermal water; now, the water must be heated by natural gas to give a comfortable swimming temperature. The city is interested in further development of the resource, particularly for space heating.

McClain (1978) reported on the geothermal occurrences near Lava Hot Springs and stated:

FIGURE 68.

18. Index map of Bannock County showing locations of thermal water occurrences with surface temperatures of 20°C or higher. Geologically, the Lava Hot Springs area is a complicated stratigraphic and structural location. The oldest rocks in the area are Precambrian and Cambrian quartzite. Units lower representing Cambrian through Pennsylvanian systems are present in the area. Most of the rocks in this section are carbonates. A major unconformity exists between the upper Paleozoic units and Tertiary units of the Pliocene units are present in the area and area. consist of sedimentary and volcanic breccias, tuffs, ash, and lava flows. Most of these rocks are valley fill materials which have been largely removed by erosion. The final stratigraphic unit deposited in the area are Pleistocene lava flows. Most of the Portneuf River Valley is underlain by this intervalley basalt flow.

During the Cretaceous and early Tertiary, major thrust faulting displaced the Precambrian and Paleozoic units eastward. The area experienced a period of structural quiescence during the early and middle Miocene which was followed by extensive high angle faulting during the Pliocene. This last period of tectonic uplift created the present fault block mountain range of the area.

Physiographically, the Lava Hot Springs area is in the northeasternmost corner of the Basin and Range Province. The occurrence of thermal springs in the area appears to be related to the location of fault zones. The brecciated fault zones serve as permeable conduits leading the thermal water up from depth.

In the city of Lava Hot Springs, two major fault linears intersect. The Lava Hot Springs fault is a major north-south trending linear that is typical of the Basin and Range Province. Vertical displacement along this fault is several thousand feet creating the fault block mountain which dominates the relief of the area. A second fault cuts east-west through the Lava Hot Springs area offsetting the Lava Hot Springs fault to the east several hundred feet. It is at the intersection of these two faults that the thermal waters of the The relationship of the area are manifested. thermal waters to the thrust plain of the region is unclear.

The hot waters of the Lava Hot Springs area range in temperature from 21-68°C. The major springs which feed the Foundation'Spa are 38°C. The presence of fault zones can be easily determined in the area by extensive travertine deposits. These thermal waters are most logically associated with deeper sources of thermal fluids which are circulating up through the Paleozoic units along the fault intersection.

Most of the thermal springs and wells in the area occur from the basaltic rocks which underlie the Portneuf River Valley. Several shallow wells have been dug with backhoes to depths of less than 20 feet. Hot fluids are intersected along the bottom contact of the basalts. This may indicate that thermal water of the area is rising along the fault zones and spreading horizontally along the basalt contact.

Using the sodium-potassium-calcium geothermometer, a reservoir temperature of 211°C has been predicted, and using silica, a temperature of 80°C. In either case, the temperature would be sufficient for space heating. A surface temperature of 71°C has been reported on the bank of the Portneuf River just west of the spa. Investigations are presently being undertaken to determine the feasibility of designing a district heating project. The reported flow (over 1500 l/min.) and the location appears to favor this project. A district heating project would also avoid the present apparent interference between the very shallow individual wells in towns.

Downata Hot Springs (12S-37E-12ccdlS), a popular resort area of long standing, rises from Quaternary alluvium near Tertiary sediments. It is associated with an east-west lineament (see figure 67). It is $43^{\circ}C$ at the surface. Subsurface temperatures here probably are not much higher than $46^{\circ}C$, as estimated by the Na-K-Ca chemical geothermometer. These hot springs are remote enough from a large population center to exclude large scale development. Greenhouses or other agricultural uses could be made of excess water over and above the resort's needs.

One warm domestic well (22°C) exists near Marsh Creek between McCammon and Inkom. It has not been sampled.

POWER COUNTY

Power County has one popular resort area, Indian Springs (8S-31E-18dablS) (figure 69), which has been in existence for many years. It is located a few kilometers south of American Falls. Indian Springs is 32°C and discharges 5,830 1/min. Maximum subsurface temperatures expected are best represented by the Na-K-Ca chemical geothermometer at 71°C with the quartz chemical geothermometer indicating 63°C.

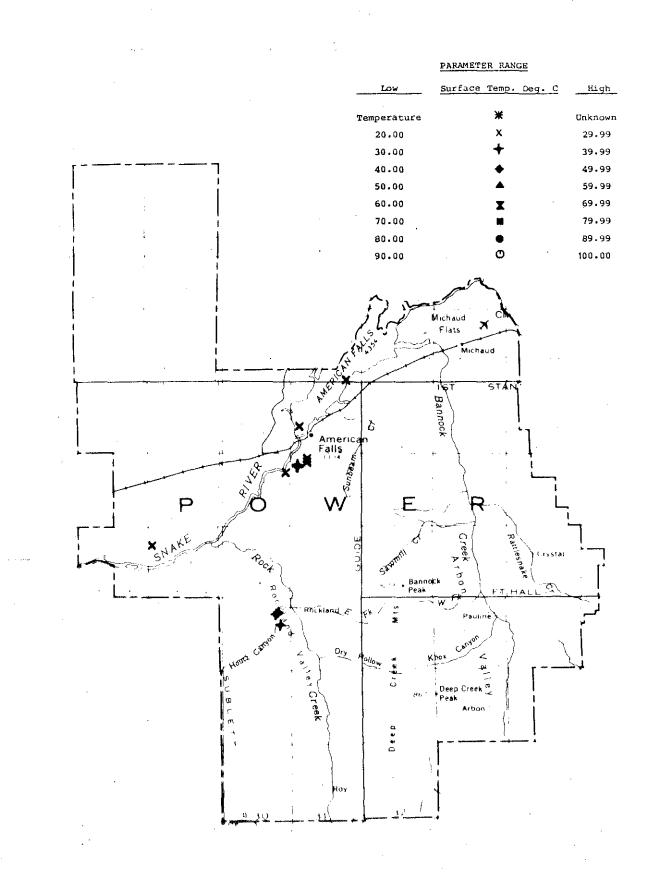


FIGURE 69.

i9. Index map of Power County showing locations of thermal water occurrences with surface temperatures of 20°C or higher. Two other springs, Rockland Warm Springs (10S-30E-13cdclS) and an unnamed spring (9S-28E-19acdlS) located west of Massacre Rocks State Park on the shore of Lake Walcott, are undeveloped. Rockland Warm Springs has a chemistry and surface temperature similar to Indian Springs.

Several large travertine deposits occur in Power County (figure 70). Past flows of thermal water may have deposited them. If the thermal springs ceased flowing due to self sealing from travertine deposition in spring vents, thermal water might be found by prospecting along known faults near the travertine deposits. Trimble and Carr (1976, p. 62-64) reported on the geology in the Rockland and Arbon quadrangles, Power County. They stated:

Travertine and travertine-cemented conglomerate and breccia occur at several localities in the Rockland and Arbon quadrangles. Yellowish-white travertine as much as 1.83 m thick overlies the Little Creek Formation in the valley of Warm Creek from a point near Indian Springs to a point near the community of Neeley. An isolated exposure of travertine apparently overlies basalt of the Massacre Volcanics on the east side of the valley of Rock Creek, in the SW1/4 NE1/4 sec. 13, T.9S., R.31E. Several outcrops of travertine overlie alluvial pebbly silt or gravel that, in turn, rests on the Starlight Formation (1) on the north side of Rocky Hollow east of the highway between American Falls and Rockland (State Highway 37), (2) in secs. 28 and 29, T.9S., R.31E., between Rocky Hollow and Spring Creek and (3) along the valley of Spring Creek.

Travertine and travertine-cemented conglomerate and breccia are exposed in the valley of East Fork Rock Creek and in Sand Hollow and Dry Hollow in the Rockland quadrangle and are exposed in the area of Pete Lish Canyon, Howard Flat, and Warner Flat in the Arbon guadrangle. The thickest travertine deposits are adjacent to the frontal fault of the Deep Creek Mountains and to a normal fault of large displacement in the Arbon quadrangle. In Sand travertine-cemented conglomerate imme-Hollow; diately adjacent to the frontal fault is about 68 m thick and ends abruptly on the east at a breccia zone. In the valley of East Fork Rock Creek, it is more than 15 m thick. Travertine is found downvalley from the fault for as much as 5 km in some: places and appears to be younger than the coarse pediment gravel in this area.

The volume of travertine-cemented breccia at the locality in the Arbon quadrangle is notable. An

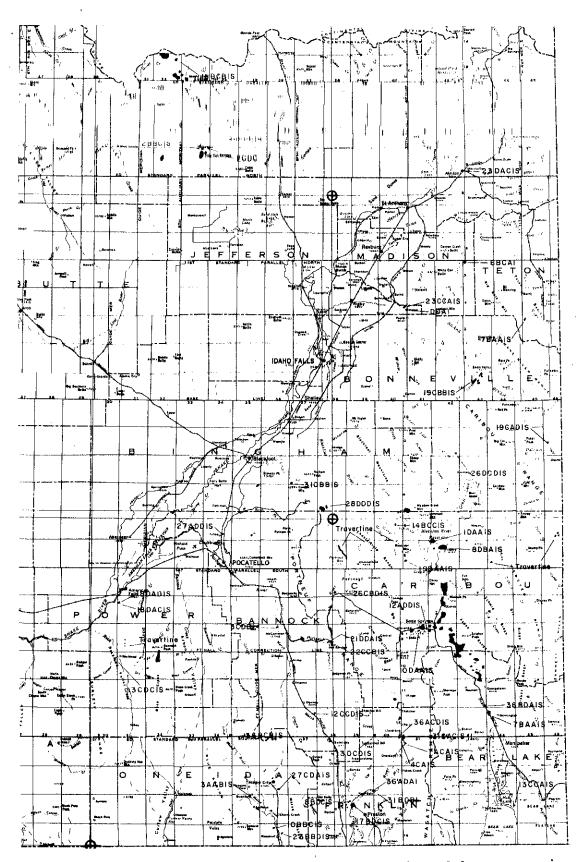
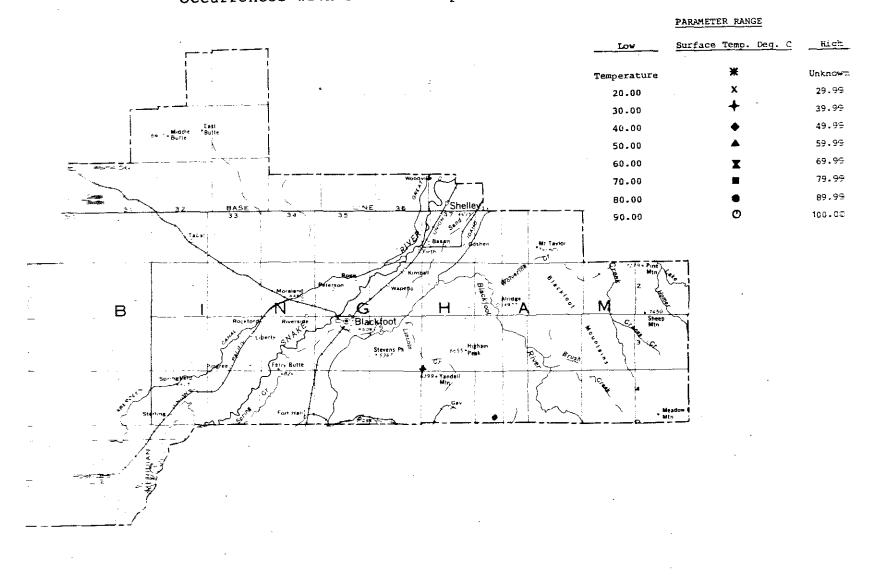


FIGURE 70. Travertine deposits and associated known springs in southeastern Idaho (modified from Bodnar and Bush, 1978).

area more than 4 km long and locally more than half a mile wide between Pete Lish Canyon and Warner Flat is completely covered. Locally, this deposit probably is more than 150 m thick. The breccia is composed mainly of fragments 0.65 - 1.25 m across of Paleozoic rocks in a travertine matrix. Travertinecemented sandstone and tuffaceous sandstone is locally interbedded with the breccia.

The common occurrences of travertine-cemented conglomerate and breccia adjacent to major faults, and the abundance of travertine near Indian Springs, a hot spring apparently on a fault line, indicate that the travertine was deposited by water containing a high percentage of calcium carbonate that issued from artesian springs along the faults.

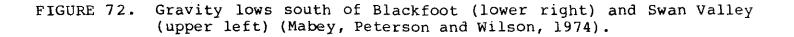
A late Pleistocene age for most of the travertine is suggested by two lines of evidence. First, the isolated exposure of travertine overlying basalt east of Rock Creek, in the SE1/4 NW1/4 sec. 13, mollusks of possible T.9S. R.30E., contains age (USGS Pleistocene Cenozoic loc. 21644). According to D.W. Taylor (written commun., 1959) the absence of extinct species tends to suggest a late Pleistocene age, but the small number of species makes even this age uncertain. The stratigraphic position, in several localities, of the travertine above gravel that probably is generally equivalent to the Sunbeam Formation also suggests a late Pleistocene age for much of the deposit. Eastward dips in the travertine cemented breccia and sandstone in the Arbon quadrangle indicate that there has been renewed tectonic movement along the major fault after deposition of the travertine. This suggests that these deposits are somewhat older than flat-lying deposits west of the frontal fault of the Deep Creek Mountains.


BINGHAM COUNTY

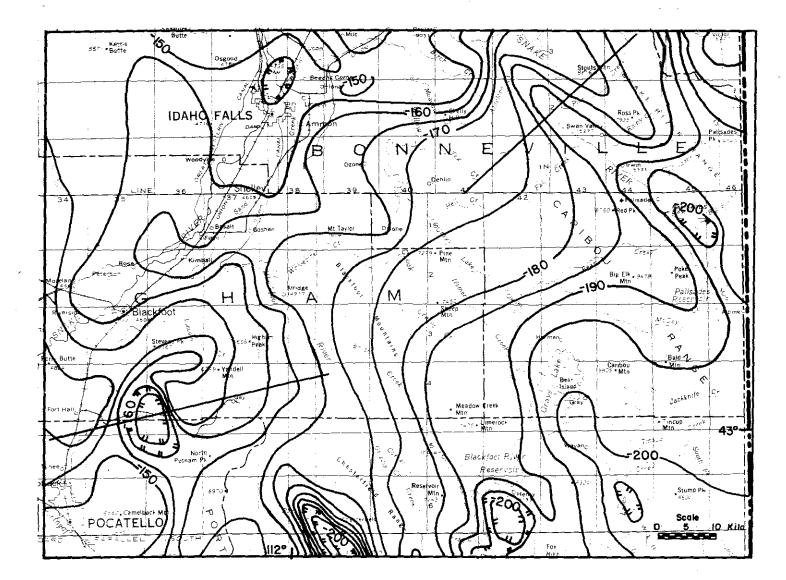
Only two thermal springs are known in Bingham County (figure 71). Both are of low temperature. Yandall Springs (3S-37E-31dbblS) is located at the base of Yandall Mountain along a fault in Paleozoic limestone. It issues from several vents at 22 - 32°C. This is a fairly large spring, discharging 5,700 l/min and is used for irrigation. Dissolved solids are only 197 mg/l. Subsurface temperature probably will not exceed $35^{\circ}C$, as predicted by the chalced-ony chemical geothermometer.

Alkali Flat Warm Springs (4S-38E-28dddlS) is a small seep situated in a bowl in travertine and closely resembles

Index map of Bingham County showing locations of thermal water occurrences with surface temperatures of 20⁰C of higher.


springs found in Caribou County. It has a surface temperature of 34°C, discharges about 75 1/min and is located in the Gay Mine (phosphate) area. Thermal water in this area could possibly be used in winter mining operations. The spring is presently used for stock water. Subsurface temperatures are predicted to be about 58°C by the chalcedony chemical geothermometer.

Donaldson and Applegate (1979) reported that:


The preliminary Gravity Map of southern Idaho (Mabey, Peterson and Wilson, 1974) defines a prominent low about 12 miles south of Blackfoot (figure 72). An east-northeast profile through this anomaly (figure 73) defines a 22.5 mgal low which, assuming a 0.4 gm/cm^3 density contrast, results in calculations estimating a basin depth of about 1,342 m. A steep gravity gradient on the east side of the anomaly is very suggestive of a fault but the equi-dimensional nature of the main part of the anomaly does not suggest a preferred direction of valley strike. Witkind (1975) defines a 105 km long active fault which is terminated in the vicinity of the east flank of the gravity anomaly (figure 15). This fault has been recurrently active since Middle Miocene time. East of this anomaly, gravity is guite featureless and exhibits only a regional gradient of about -.64 mgal/km eastward. Day (1974) has mapped a lineament from ERTS imagery (figure 9) which approximates a portion of the Witkind fault but terminates before reaching the gravity anomaly. In the vicinity of the gravity anomaly, Day has mapped several northeast trending linears which parallel the trend of the eastern Snake River Plain, only a short distance northward (figure 9). It is probably significant that gravity contours enclosing the main portion of the previously mentioned anomaly are distorted toward the northeast (figure 72). Gravity, mapped lineaments and a prominent fault interruption all indicate effects of the force or forces responsible for the presence of the eastern Snake River Plain and the complexity expected in the transition into this dominating structural feature.

BONNEVILLE COUNTY

Three thermal spring areas are located in Bonneville County and warm water of 20°C has been encountered by well drilling near Ammon west of Idaho Falls (figure 74). Alpine Warm Springs (2S-46E-19cad1S), the hottest at 37°C, is now covered by the waters of Palisades Reservoir. A sample of

ŧ

-154-

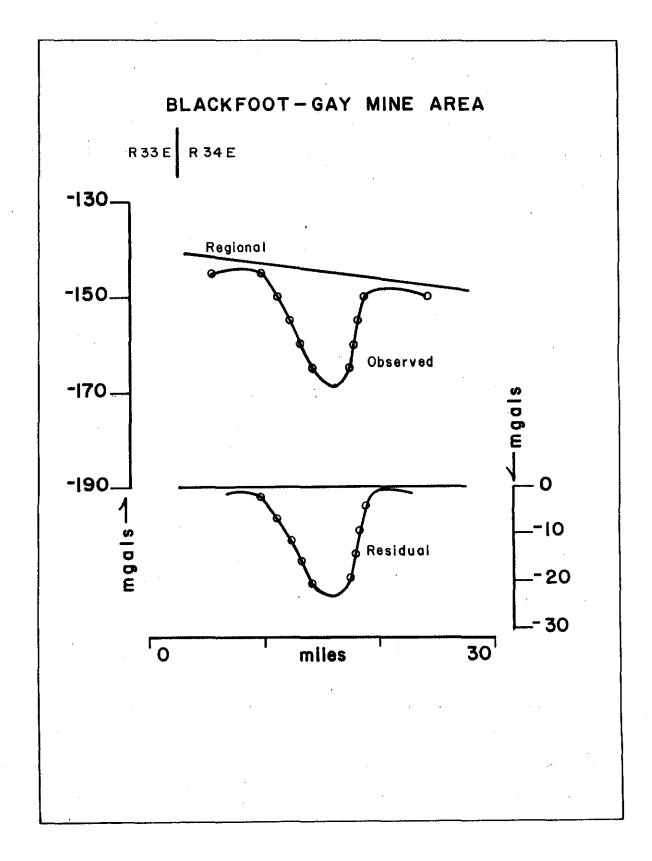


FIGURE 73. Gravity profile near Blackfoot. (From Donaldson and Applegate, 1979.)

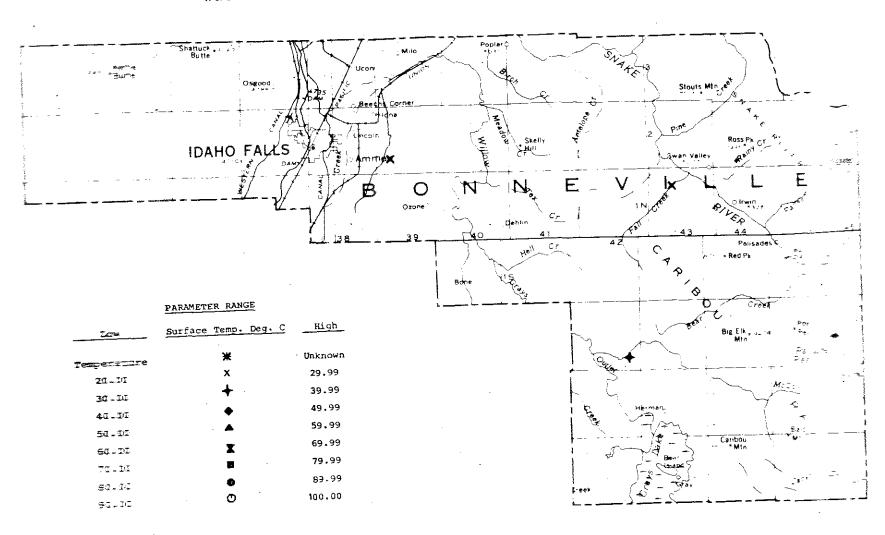


FIGURE 74. Index map of Bonneville County showing locations of thermal water occurrences with surface temperatures of 20⁰ or higher.

ת ת

e needer of the

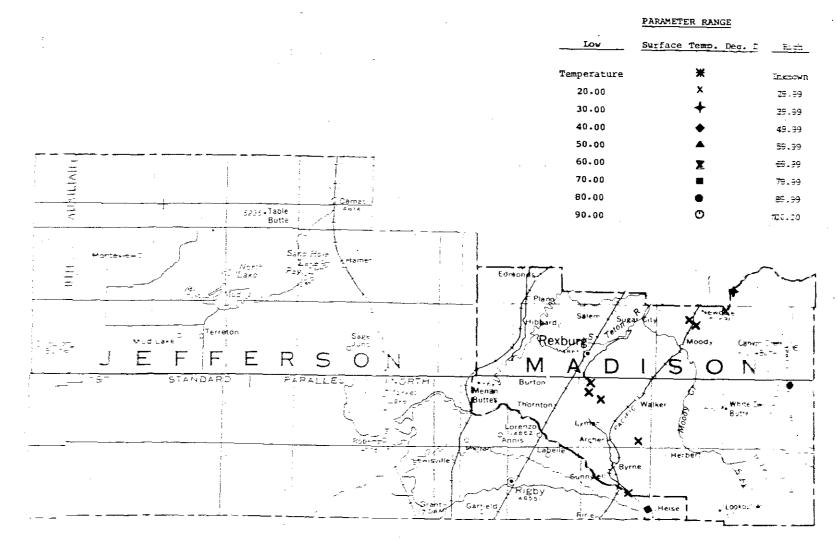
this group of springs was obtained during low water caused by the drought of 1977. Subsurface temperature here might be $61^{\circ}C$ as predicted by the chalcedony chemical geothermometer.

Brockman Creek Hot Springs (2S-42E-26dcdlS) is 35°C, discharges 49 1/min and bubbles gas.

Fall Creek Mineral Springs (1N-43E-9cbblS) is the coolest thermal spring at $25^{\circ}C$. It discharges water along a three-fourths mile long stretch of Fall Creek and deposits travertine in several locations. The spring appears to be fault controlled.

Subsurface temperatures in these areas are best represented by the chalcedony (T₄, basic data table 2) temperature, with the exception of Fall Creek Mineral Spring, where quartz (T₁) may be the best estimated subsurface temperature. At Fall Creek, subsurface temperatures may approach 40°C, while at Brockman Creek and Alpine Warm Springs, subsurface temperatures might be as high as 38 and 61° C, respectively.

This area lies along what is locally known geologically as the Heise Alpine Trend.


MADISON COUNTY

Madison County near Rexburg and Fremont County near Newdale have been scenes of intense geothermal research activity by the DOE and the USGS. Since the destruction of Sugar City by the Teton Dam failure and flood of 1976, efforts have been aimed at finding a thermal source to heat the rebuilt town of Sugar City. The area lies along the southern margin of the eastern Snake River Plain in a zone of high heat flow recognized by Brott and others, 1976. Heat flow values in excess of 5 HFU extend in a northeastsouthwest zone from Rexburg to Newdale. Several thermal wells are also known here (figure 75). The Na-K-Ca chemical geothermometer predicts a shallow warm water system with temperatures that might range between 30 and 81°C.

Mabey (1978) reports:

A caldera complex in the Rexburg area of the eastern Snake River Plain has been defined on the basks of goologic evidence provided by H.J. Prostka and U.F. Mubres (Willien communication, 1977) and named the Rexbury caldera complex (figure 75). Geothermal resources in the Rexburg area are likely to be related directly or indirectly by this caldera complex. FIGURE 75. Index map of Madison and Jefferson counties showing locations of thermal water occurrences with surface temperatures of 20°C or higher.

A CONTRACTOR

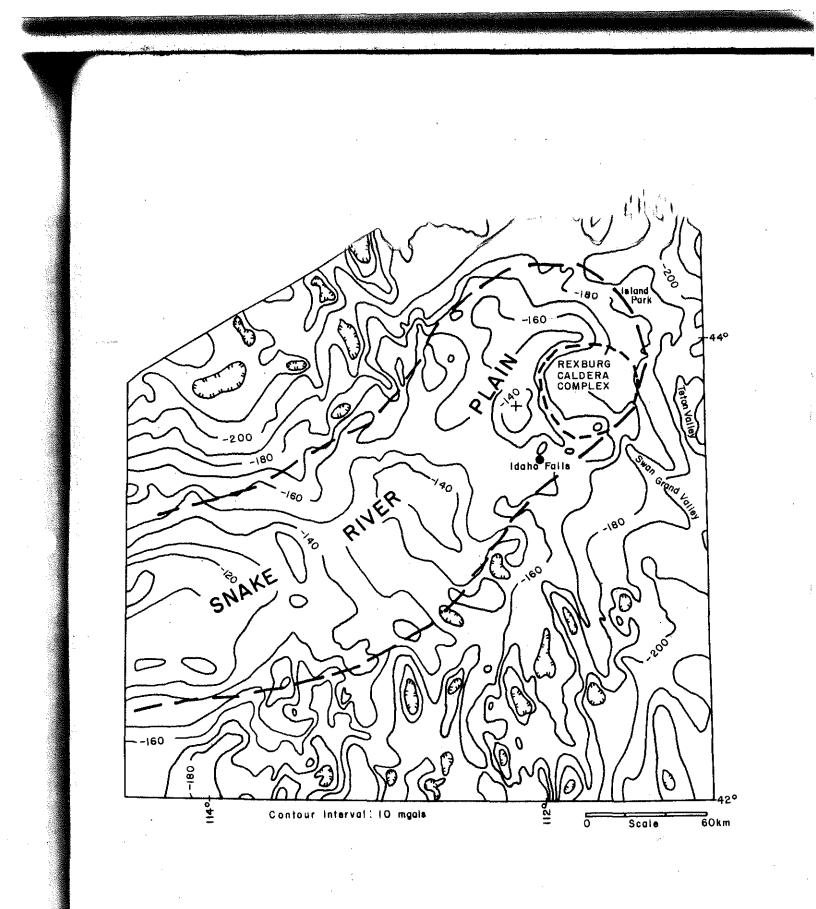


FIGURE 76.

 Bouguer gravity anomaly map of southeastern Idaho showing the location of the Rexburg caldera complex (from Mabey, 1978). A gravity map of the caldera complex (Mabey, 1978) is shown in figure 77.

Mabey (1978) further reports:

The boundary of the Rexburg caldera complex is best defined by the surface geology in the southeastern quadrant, and here there is very good correlation between the boundary of the Rexburg gravity low and the caldera complex boundary. On the west and north the gravity data may be the best information available on the boundary of the caldera complex, and the inferred boundary of the caldera complex shown in figure 77 coincides with the edge of the negative mass anomaly indicated by the gravity To the northeast the caldera complex appears data. to overlap another depression, and the margin here is not well defined by either the geology or the gravity data. The inferred boundary here is primarily a connection better defined of the The lowest gravity values occur in the segments. eastern and western parts of the caldera complex, near Menan Buttes and east of Rexburg. The subdued lows appears high between these to be а. northwestward-trending gravity high centered over Heise Hot Springs and a southwest-trending high west of Sugar City.

Gravity lows associated with calderas in the western United States usually result from two sources: low density fill within the caldera or an underlying body of intrusive rock that is less dense than the enclosing basement. The coincidence of the southwestern boundary of the Rexburg caldera complex with steep gravity gradients suggests a near-surface source, caldera fill. Except in the vicinity of the gravity high at Heise Hot Springs, the rocks exposed or penetrated by drill holes as deep as 420 m in the area of the gravity low are and basalt welded tuff of stream gravels, Quaternary age, and Pliocene rhyolite. No attempt has been made to determine the density of these rocks in the area of the Rexburg caldera complex, but the average bulk density of similar rocks in the region ranges from about 2.0 to 2.65 g per cm^3 . The average bulk density of pre-Tertiary rocks in the region is about 2.65 g per cm³. Thus a mass of the low-density Quaternary and Tertiary sedimentary and volcanic rock enclosed by pre-Tertiary rock would produce a gravity low, and this seems a probable cause of a major part of the low. Nowhere does the gravity anomaly require a deep source, although the existence of such a source smaller in

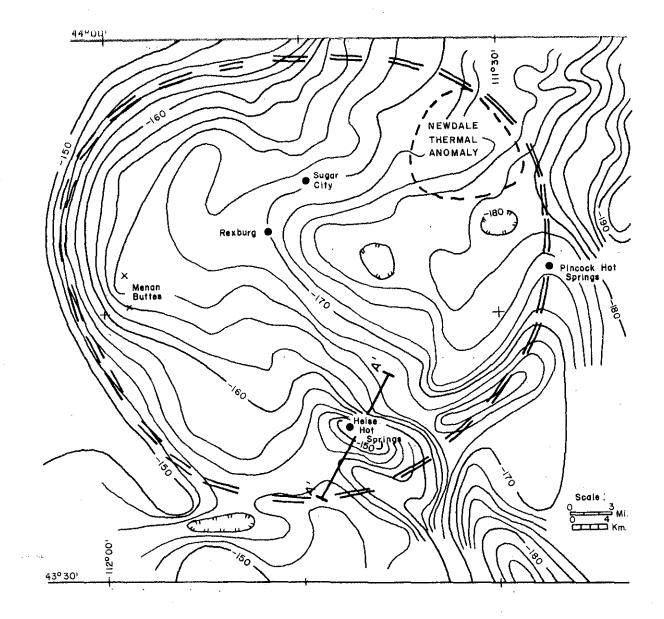


FIGURE 77.

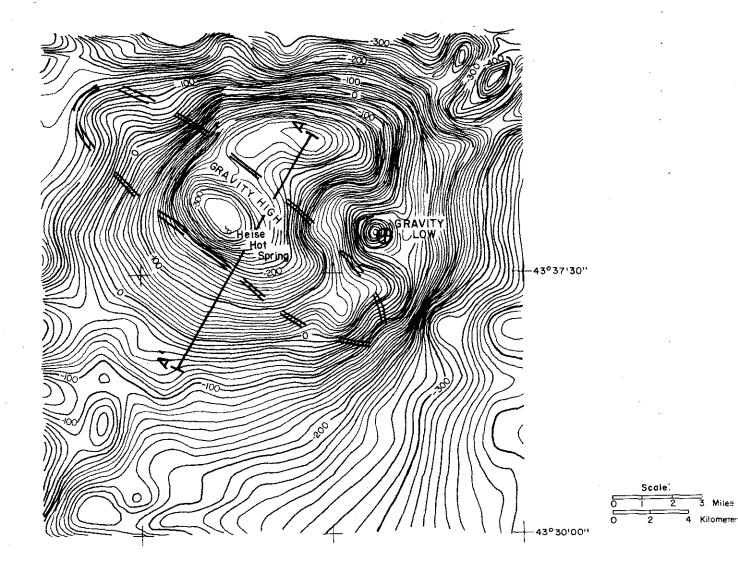
Bouguer gravity anomaly map of the Rexburg area showing the outline of the Rexburg caldera complex as inferred from the gravity data. Contour interval is 2 milligals (from Mabey, 1978). extent than the inferred caldera complex is not inconsistent with the gravity data.

Although the Readourg gravity low appears is large port for reflect (11) within the beating continues in multions, or presentate appendit to at type the owner the set of the contract the set of the contract of the set of the contract of the set of the contract of the set of the of uncertainties in isolating the anomaly from the regional high associated with the eastern more Snake River Plain. approximation No of the regional gravity anomaly over the Snake River Plain can be computed by assuming that a linear relationship exists between the gravity anomaly and (Mabey, 1966). topography However, in the northeast part of the Snake River Plain, the area over which the elevations are averaged strongly affects the regional determined and thus the amplitude of the computed residual. Even if the local low could be isolated from the regional high, the fill and the enclosing rock cannot be accurately Also the possibility of a significant estimated. contribution to the gravity anomaly by an underlying intrusive body cannot be discounted. The residual amplitude of gravity is estimated to be about 20 mgals. The average density contrast between the fill and the enclosing rock is likely to be between 0.2 and 0.5 g per cm^3 . A 20-mgal anomaly could be produced by a thickness of 1 to 2.5 km of rocks having this density contrast.

Green Canyon (Pincock) Hot Spring (5N-43E-6bcalS) lies on the caldera margin (figure 77). The quartz chemical geothermometer (T_1 , basic data table 2) gives an estimate that thermal water feeding the Green Canyon Hot Springs may only have been as hot as $72^{\circ}C$.

JEFFERSON COUNTY

Only one thermal water occurrence is known in Jefferson County (figure 75). Heise Hot Springs (4N-40E-25ddalS), an established popular resort area located near the South Fork of the Snake River near the edge of the Snake River Plain, is in the extreme southeastern part of the county. Surface temperature is 49°C. The quartz chemical geothermometer gives an estimate of a subsurface temperature of 79° C. This spring deposits free has sulfur and travertine and It issues from Tertiary silicic distinct sulfur odor. volganie rocks along a northwest-trending fault. Heise lies within and near the southern margin of the Rexbury dalders. on a large gravity high.


Mabey (1978) reports:

The most prominent local gravity and magnetic anomalies are highs within the Rexburg caldera complex in the area of Heise Hot Springs (figure 77.) Although the crests of the anomalies are coincident, the extent of the anomalies are different and they cannot reflect entirely the same mass. Mesozoic sedimentary rocks overlain by Pliocene rhyolite flows and welded tuffs are exposed in the area of the anomalies. Rhyolite dikes are locally abundant. The northwest-trending Heise fault (Prostka Hackman, and 1974), which forms а southwest-facing scarp locally 300 m hiqh, is parallel to and near the crest of the anomalies. The correlation between the gravity high and outcropping Mesozoic sedimentary rock suggests that the gravity anomaly reflects in large part a structural high elevating the more dense pre-Tertiary The shape and extent of the magnetic rocks. anomaly, the abundant rhyolite dikes in the area, and the indication by the magnetic gradients that the source lies below the surface all suggest that a major part of the magnetic high is produced by a large buried intrusive body. Some features of the magnetic anomaly reflect the near-surface volcanic rocks.

Heise Hot Springs and the warm springs to the northwest occur along the crest of the gravity and magnetic highs. The springs are in a structurally complex area where northwest-trending faults, probably related to the Basin and Range structure of Swan and Grand valleys, displace a structural high over the inferred intrusive body. Although the Heise fault forms a prominent southwest-facing scarp and the presence of the Snake River against this scarp attests to recent movement of the fault, the geophysical data indicate that the Heise fault is near the crest of the structural high.

The north side of the magnetic high is an easttrending zone that coincides with a subtle east trend in the gravity anomaly contours. The zone coincides with west-trending segments of major canyons and is north of the northernmost outcrops of rhyolite. Another east-trending gravity feature is apparent about 5 km faither multip.

About 8 km east of Heise Hot Springs are coincident gravity and magnetic lows (figure 78). The cause of the lows is not apparent on the geologic map of Prostka and Hackman (1974). The anomalies appear to reflect a zone in which both the density and magnetization of the underlying rocks are lower than those of the enclosing rocks. FIGURE 78. Residual aeromagnetic map of the area of Heise Hot Springs show: = location of the gravity high at Heise Hot Springs and a gravity = the east.

164-

Pincock Hot Spring, on the east edge of the Rexburg caldera, then midway betwon two flight times about 9 km apart on the regional map (flynne /H). Along both flight throw a momente high was measured appeartes the bot spring. Although estating data are not adequate to define this anomaly, the data suggest a magnetic high in the area of Pincock Hot Spring.

A profile (figure 79) normal to the trend of the gravity high shows a section that would produce the major features of the gravity and magnetic fields in the vicinity of Heise Hot Springs. The gravity anomaly is attributed to a high on the surface of the pre-Cenozoic rocks at Heise Hot Springs and to an area of thicker Cenozoic rocks under the valley of the Snake River to the southwest. The depression containing the thicker Cenozoic rocks is parallel to and within a northwestward projection of the Swan-Grand Valley trend into the Rexburg caldera complex. The magnetic anomaly has two major components: local high at Heise Hot а Springs superimposed on broader, more deeply buried Both components probably reflect a large source. body of intrusive rock with the apex near Heise Hot Springs. The intrusive mass, which may be the same age as the rhyolite dikes, lies within the Rexburg caldera complex where the Swan-Grand Valley trend Magnetic intersects the caldera. anomalies suggesting a similar intrusive body occur elsewhere along the southeastern margin of the Snake River where major Basin and Range structures Plain, intersect the plain (Mabey, in press). Along the northeastern part of the profile, the magnetic anomaly appears to reflect both Cenozoic volcanic rock and the underlying intrusive body.

SOUTHERN FREMONT COUNTY

One thermal spring in southern Fremont County referred to as Ashton Warm Springs (9N-42E-23daclS) is located outside the Rexburg caldera boundaries near the community of Ashton (figure 51). It seeps into a nearby creek at 41°C. Silica content is quite high, indicating superheated water could be obtained here. The Na-K-Ca chemical geothermometer indicates that a maximum subsurface temperature of 91°C may be obtained. Ashton Warm Springs is close enough to Ashton to represent a significant energy source for low temperature space heating, and uses up to low temperature blanching (figure 4) might be possible if increased flow rates and temperatures could be found through deep drilling. Geophysical and geological studies to determine structure should be pursued before any drilling in the area begins to best site a target prior to any contemplated deep holes.

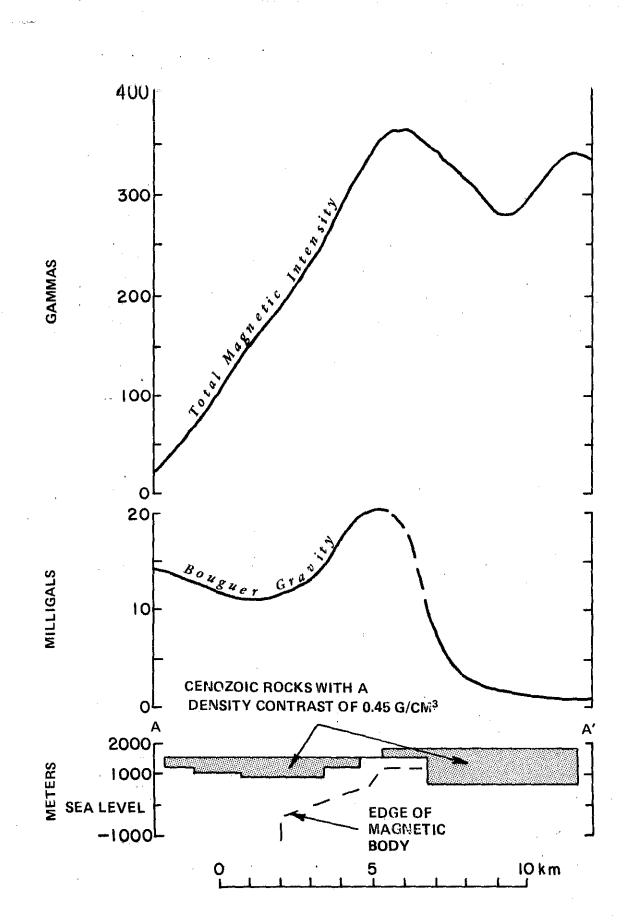
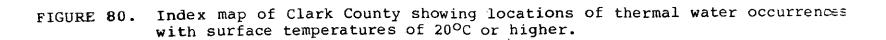
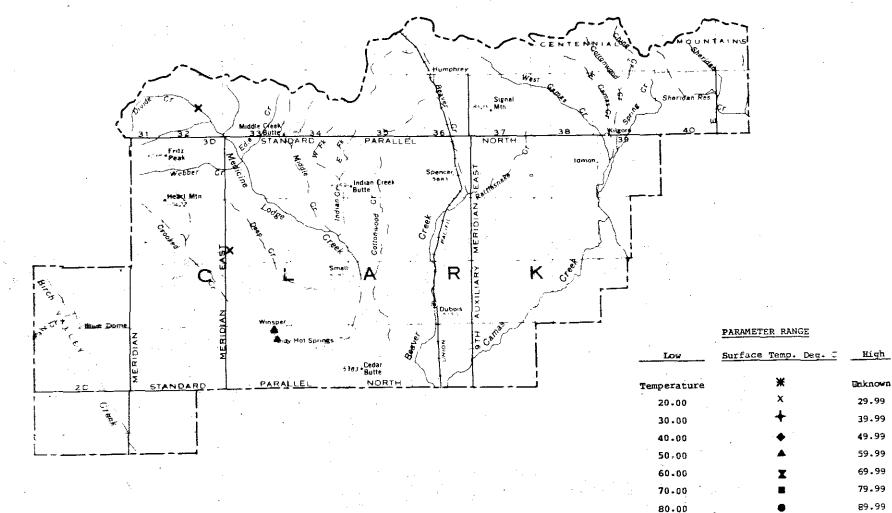


FIGURE 79.

 Magnetic and gravity profiles and interpreted section across the anomalies at Heise Hot Springs (from Mabey, 1978).

Seventeen thermal wells ranging from 22 to 51°C exist in southern Fremont County in and around the city of Newdale (10 km southeast of St. Anthony). This thermal anomaly seems to be related to the Rexburg caldera previously discussed in the sections on Madison and Jefferson counties. Further work in this area might be oriented toward determining if thermal water could possibly extend further to the northwest, toward St. Anthony.


CLARK COUNTY


Three thermal spring areas are known in Clark County (figure 80). Liddy Hot Springs (10N-33E-35ccc1S) is located near where the mountain front meets the northern margin of the eastern Snake River Plain. Liddy is located on an active fault and is used presently for phosphate fertilizer processing and in a domestic laundry room. It was formerly used at the Liddy Hot Springs natatorium, which has been closed for several years. Discharge is near a ridgecrest several tens of meters above the Snake River Plain. It is one of the two ridgetop discharges known in Idaho. A well has been drilled near the spring site and the owner reports that water shot to the top of the 12 m drilling mast, so the well apparently is under some degree of shut-in pressure. Surface temperature is 51°C. Best estimated subsurface 54^oC the chalcedony temperature is by chemical The Na-K-Ca chemical geothermometer gives geothermometer. an estimate of 65°C as the probable highest temperature that might be obtained from the well.

Big Springs (13N-32E-15bcb1S) is located on Warm Springs Creek, a tributary to Medicine Lodge Creek in the Beaverhead Mountain Range. It is 23°C and is not used. It discharges 140 1/min. No chemical analysis is available.

Warm Springs (11N-32E-25aaclS) is 29° C, discharging 3400 l/m and is currently used for stock water. Chalcedony and Na-K-Ca chemical geothermometers give an estimate of subsurface temperatures of 25 and 23° C, 4 and 6° C, respectively, below surface temperatures. The quartz chemical geothermometer gives an estimated subsurface temperature of 51° C.

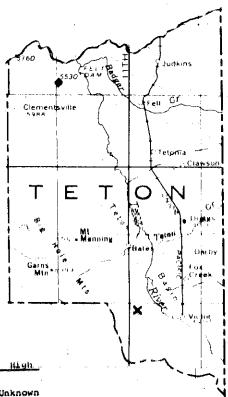
Clark County thermal areas apparently lie on the same thermal water structure or issue from deep rocks similar to those found on the south side of the Snake River Plain, judging from the travertine deposits found in both areas (figure 70). Clark County is the only area north of the Snake River Plain where travertine deposits of large areal extent are known. Commercial quarrying operations for onyx occur here. Water quality appears to be good; dissolved solids are less than 500 mg/l. Flouride content at Liddy Hot Springs is 6 mg/l; however, as maximum subsurface temperatures appear to be not greater than 68°C, limited use

O

90.00

500.00

-168-


could be made of the thermal water. Uses such as animal husbandry, greenhouse, space heating, and hay and grain drying are suggested in figure 4. Other thermal water might be discovered in Clark County in areas of obvious faulting near travertime deposits provided extinct springs have consed flowing caused by self sealing from travertime deposition in the thermal water conduits.

TETON COUNTY

Only one thermal spring (13N-45E-7baalS) is known in Teton County (figure 81). It is located east of Victor near the western flank of the Big Hole range in the Teton Basin. It is $20^{\circ}C$ at the surface. Chemical analysis is not available, so speculation on the subsurface temperature cannot be made. It discharges 950 l/min and is used for swimming. This spring is located near a thrust fault in Triassic marine sedimentary rocks near the nose of an anticline.

A thermal well (7N-43E-36aacl), 353 m deep, has been reported in northwestern Teton County. The reported surface temperature is 49°C. The well was not field checked, but the well location seems to "fit" the suspected curvilinear zone outlined on figure 9.

-169-

	PARAMETER RANGE	
Low	Burtace Temp. Day, C	<u>ILlan</u>
Temperatura	*	Unknown
20.00	×	29.99
30.00	+	39.99
40.00	٠	49.99
50.00	٠	59.99
60.00	X	69.99
70.00	, ,	79.99
80.00	•	89.99
90.00	O	100.00
30.00 40.00 50.00 60.00 70.00 80.00	x + * X U	39.99 49.99 59.99 69.99 79.99 89.99

FIGURE 81.

Index map of Teton County showing locations of thermal water occurrences with surface tempera-tures of 20°C or higher.

SUMMARY BASIN AND RANGE CENTRAL ROCKY MOUNTAIN PROVINCE SOUTHEASTERN IDAHO

Table 6 shows towns in southeastern Idaho that are near These towns probably could be heated by thermal water. geothermal water if sufficient flow rates and temperatures could be obtained by drilling. School districts could perhaps lower heating costs by developing geothermal heating. New schools or other public buildings planned could be built near thermal water locations. In certain places, as at Preston, Malad, and Soda Springs, CaCOa deposition and high dissolved solids may lead to scaling and disposal problems. In other areas, heat dissipation and objectionable gasses may pose environmental problems. Areas near towns in southeastern Idaho could be evaluated without large capital outlays for exploration as the larget areas menn finfing fir menner

Possible, due to its large population and industrial hase, shows the most promise of the largest impact upon convantional energy supply savings by converting to geothermal energy; the potential in this area should be studied tiret. Gravity, magnetic, seismic refraction or resistivity studies should be able to pinpoint controlling structure and thermal water occurrence in a limited area near Typee, north of Pocatello. Pump tests on existing wells should be conducted to determine aquifer characteristics.

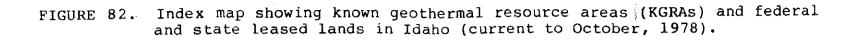
Preston may show promise of power generation. If such is the case, cascading uses could be made of thermal water effluent from the power plant. These uses range from steam electric generation to fish farming (see figure 4).

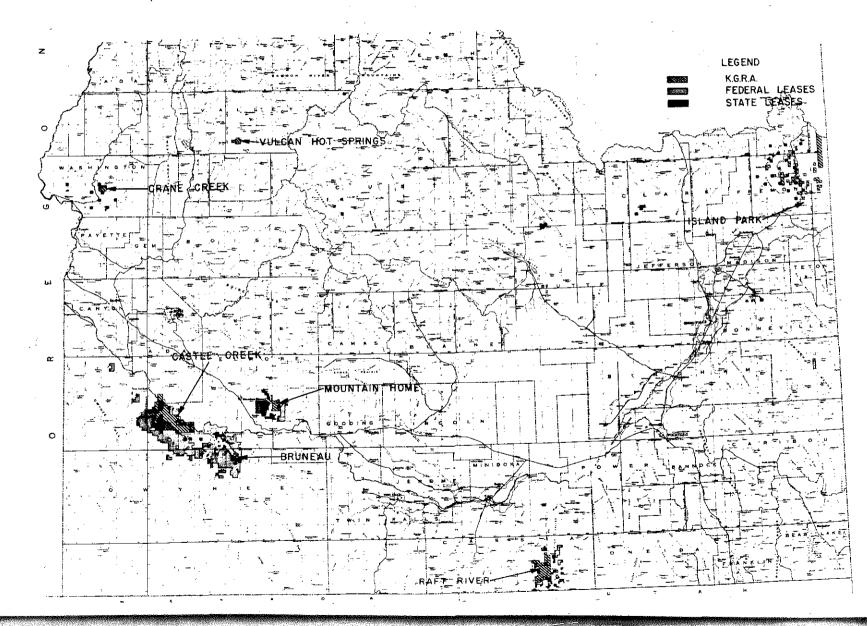
Malad, Soda Springs, Lava Hot Springs, Rexburg, and Ashton represent towns where an economical assessment of geothermal resources for space heating of business establishments and area subdivisions could be made. Rexburg also has potential to use geothermal heat in food processing plants, as well as to heat large buildings at Ricks College. Other areas may have potential and could see development as well, but assessment might be a little more difficult and costly. The engineering and economic feasibility of retrofitting the above communities for space heating could also be studied.

Wells to tap the geothermal resource would have to be carefully targeted to intersect thermal water bearing structures which, in most cases, appear to be faults.

	ст	IES AND TOWNS I		ST IDAHO N	TABL	E 6 3 MI) OF A 2	20°C OR HIGHER T	HERMAL SPRIM	IG OR WELL	(1978
Town	Carro tan y	Location	Spring or Well Surface Tempera- ture ^O C	Est Subs	Best imated urface ature ^o C Max. Chalcedony	Total Dissolved Solids	Present Water Use	Population	Surface Owner	Remarks
lbion		115-25E-11cca1	60	81	B 9****	372	Irrigation	243		
	Bomber 1 le	3N-39E-3 0adc1	20		_	 -	Domestic	3,360	Private	No chemical anal yses available.
shton		95-42E-23dab1S	41	91	116	204	Unused	1,181	Private	Thermal spring just north of town.
ava Hot Springs		95-38E-21dda1S	45	50	82***	960	Natatorium baineological baths	512	State of Idaho	Recreational area.
la i ad	Cine at	14S-36E-27cda1	S 25	29	61***		Unused	1,848	Private	Spring in traver- tine bowl near fairgrounds.
Cammon	Bernmack.	95-36E-3cdb1	20				Domestic	619	Private	No chemical anal- yses available.
lewda i e		7N-41E-35cdd1	32	84 -	93	377	irrigation	285	City	Several wells in vicinity of New dale.
ocatel lo	Second Second	55-34E-26dab11	41	47	62	718	Domestic & irrigation	42,565	Private	Several wells aligned in a NE direction.
reston	- 20040 0 i b	15S-39E-17bcd1	84	125	250**	9,830	Unused	3,284	Private	Geothermometers difficult to in- terpret.
{exburg		5N-40E-36ddb1	26				Irrigation	9,761	Private	No chemical anal- yses available, not field check
ioda Springs		95-41E-12add1S	28	30	54	3,207	Tourism	3,487	City	Really a well drilled near a former spring.
ictor		3N-45E-7abb1	20	_~		- - '	Private swimming	254	Private	No chemical anal- yses available.
leston	.	165-38E-24acd1	23	84	92	566	Irrigation	229	Private	Weil 3 km SE of Weston.

*See first formate of Table 4.


**Maximum temperature is from Na-K-Ca chemical geothermometer, minimum temperature is from quartz chemical geothermometer.
***Maximum temperature is from quartz chemical geothermometer, minimum temperature is from the chalcedony chemical geothermometer.
****Maximum temperature is from Na-K-Ca chemical geothermometer, minimum temperature is from the chalcedony chemical geothermometer.


CONCLUSIONS AND RECOMMENDATIONS

It has become apparent that much of the thermal water discharged through wells and springs is probably of low temperature (<100°C). Much of it discharges near small towns and cities throughout southern Idaho where it reasonably be used for space heating. Figure 82 could Figure 82 shows locations of towns and cities in Idaho within 5 km of a thermal water discharge. In these areas, and to some extent in favorable rural areas, the federal 1978 Energy Tax Act has provided significant incentives for private development. cities and towns near thermal water discharges These approximately 30 percent of Idaho's present represent population.

Prior to the development of any geothermal resource, the prospective developer/user should be sure there is a necessary amount of water appropriated and a drilling permit secured from the IDWR. The subsurface ownership should be checked for ownership of the mineral rights. If not, the developer/user will need to secure a geothermal lease from the appropriate party or agency.

As found in the statewide study done for this report, most of the thermal water is associated with known faults or linear features thought to represent some type of rock Even the three main thermal aquifers presently fracture. known to have thermal water are widespread--Bruneau-Grand View, Blue Gulch-Artesian City, and Nampa-Caldwell areas may ultimately be fed through deep-seated regional fractures. Recharge to the fracture controlled systems could be anywhere along their length and interbasin groundwater transfer may be associated with those that are regional in length. More and perhaps hotter water might be discovered by exploration along faults and fractures throughout the (Drill holes would have to be Snake River Plain region. targeted carefully to intersect the water bearing structure Detailed knowledge of the dip, at predetermined depth. strike, and throw of faults would be needed to site the Reflective seismic profiling and deep drill holes.) electrical resistivity methods appear to be the best methods of delineating fractures containing thermal water in much of the western Snake River Plain region. A systematic program for seismic and resistivity profiling should be initiated in the Western Snake River Plain region and in areas of heavy population density in eastern Idaho, such as Pocatello, Twin Falls, and Idaho Falls, to map fracture patterns, provided geologic conditions are conducive to seismic techniques in these areas.

174-

In the Western Snake River Plain region, the faults and linear features associated with thermal water appear to be regional in character, some stretching the length and breadth of the plain. In the Western Snake River Plain, a systematic seismic reflection profiling program should be initiated to cover most of the plain proper where geologic conditions are favorable to seismic reflection techniques. This could be in the Nampa-Caldwell-Boise region and be extended into other areas later on. The seismic profiling could be followed by resistivity surveys of faulted and fractured areas discovered by the seismic profiling. This would provide information on deep water movement, recharge, and discharge areas. It would leave well-defined target areas for large-scale energy users to explore in greater depth.

The small towns and cities outside the Western Snake River Plain could be assessed at relatively small cost as surveys could be concentrated in smaller areas.

The preceding three regional summaries give specific conclusions regarding towns that could receive the most significant and the greatest benefits from further study.

· ·

· · · ·

. *****

. .

SELECTED REFERENCES

Ackerman, H.D., 1975, abs., Seismic refraction study in the Raft River geothermal area, Idaho: Soc. Explor. Geophys. Annual Int. Meeting, Abs. no. 45, p. 28.

, 1975, Velocity section in Raft River, Idaho, geothermal area from seismic refractions: U.S. Geol. Survey open file report no. 75-106.

Anderson, W.L., 1977, Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho: U.S. Geol. Survey open file report no. 77-557.

Applegate, J.K. and Donaldson, P.R., 1975, abs., Passive and active seismic studies and the geologic structure of the Boise front, Idaho: Soc. Explor. Geophys. Annual Int. Meeting, abs. no. 45, p. 29.

, 1977, Characteristics of selected geothermal systems in Idaho, in The earth's crust, its nature and physical properties: Am. Geophys. Union, Geophysical monograph 20.

Applegate, J.K., Donaldson, P.R., Hinkley, D., and others, 1976, abs., Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho: Soc. Explor. Geophys., Annual Int. Meeting, abs. no. 45, p. 94-95.

Applegate, J.K., Donaldson, P.R. and Mink, L.L., 1976, abs., Geologic and seismic studies of the Boise front, Idaho, for geothermal resource evaluation: Am. Assoc. Petroleum Geologists Bull., v. 60, p. 1389.

Applegate, J.K., Donaldson, P.R., Mink, L.L., and others, 1977, An investigation of the geothermal potential of the Boise, Idaho area: U.S. Dept. of Energy, open file report 1537, Idaho Falls, Idaho.

Armstrong, F.C., 1953 Generalized composite stratigraphic section for the Soda Springs quadrangle and adjacent areas in southeastern Idaho: <u>in</u> Intermountain Assoc. Petroleum Geologists 4th Ann. Field Conf., 1953: chart in pocket.

, 1969, Geologic map of the Soda Springs quadrangle, southeastern Idaho: U.S. Geol. Survey Misc. Geol. Inv. Map 1-557, 2 sheets.

Armstrong, F.C. and Cressman, E.R., 1963, the Bannock thrust zone, southeastern Idaho: U.S. Geol. Survey Prof. Paper 374-J, 22 p. Armstrong, R.L., Leeman, W.P. and Malde, H.E., 1975, K-Ar dating, Quaternary and Neogene volcanic rocks of the Snake River Plain, Idaho: Amer. Jour. Sci., v. 275, p. 225-251.

Arnórsson, Stefán, 1970, Underground temperatures in hydrothermal areas in Iceland as deduced from the silica content of the thermal water: <u>in</u> Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2, p. 537-541.

A state of the sta

, 1975, Application of silica geothermometer in low temperature hydrothermal areas in Iceland: Amer. Jour. Sci., v. 275, no. 7, p. 763-784.

- Austin, C.F. and Wheland, J.A., 1978, Geothermal potential at U.S. Air Force Bases: Geothermal Technology Div. Naval Weapons Center, China Lake, Ca. Civil and Environmental Engineering Development Div., Air Force Systems Command, Tyndall Air Force Base CEEDO-TR-78-47, 55 p.
- Barnes, H.L., ed., 1967, Geochemistry of hydrothermal ore deposits: New York; Holt, Rinehart, and Winston, Inc., 670 p.
- Bennett, E.H., 1976, Reconnaissance geology and geochemistry of the South Mountain-Juniper Mountain region, Owyhee County, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 166, 110 p.
 - , 1977, Reconnaissance geology and geochemistry of the Blackbird Mountain-Panther Creek region, Lemhi County, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 167, 108 p.
- Bishop, A.A., 1975, Use of geothermal water for agriculture: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1221.
- Bjorklund, L.J. and McGreevy, L.J., 1971, Groundwater resources of Cache Valley, Utah and Idaho: State of Utah, Dept. of Natural Resources, tech. pub. no. 36, 72 p.
- Bodnar, Theodore and Bush, Richard, 1978, Hot springs in the state of Idaho and associated deposits: ISU Geology Research Dept., open file report.
- Bodvarsson, Gunnar, 1970, Evaluation of geothermal prospects and the objectives of geothermal exploration: Geoexploration, 8,7.

Bond, J.G., 1963, Geology of the Clearwater embayment: Idaho Bur. of Mines and Geology Pamph. no. 128, 83 p.

_____, 1978, Geologic map of Idaho: Idaho Dept. of Lands, Bur. of Mines and Geology, 1 map.

Bonini, W.E., 1963, Gravity anomalies in Idaho: Idaho Bur. of Mines and Geology Pamph. no. 132, 10 p.

Bonini, W.E. and Lavin, P.M., 1957, abs., Gravity anomalies in southern Idaho and southwestern Montana: Geol. Soc. America Bull., v. 68, p. 1702.

- Braile, L.W., Keller, G.R., Martin, W.R., et. al., 1977, abs., Crustal structure of the Columbia Plateau and Snake River Plain: Geol. Soc. America, abs. programs, vol. 9, no. 7, p. 908-909.
- Bright, R.W., 1963, Pleistocene Lakes Thatcher and Bonneville, southeastern Idaho: Minnesota Univ. (Minneapolis) Ph.D. thesis; available from University Microfilms, Inc., Ann Arbor, Mich.
- Brook, C.A., Mariner, R.H., Mabey, D.R., and Swanson, J.S., 1979, Hydrothermal convection systems with reservoir temperature ≥ 90°C, in Assessment of geothermal resources of the United States - 1978, L.J.B. Muffler, ed., U.S. Geol. Survey Circ. 790, 163 p.
- Brott, C.A., Blackwell, D.D. and Mitchell, J.C., 1975, abs., Heat flow studies of the Snake River Plain: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 590-591.

, 1976, Geothermal Investigations in Idaho, Part 8, Heat flow studies of the Snake River Plain, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 195 p.

_____, 1976, abs., Heat flow study of Snake River Plain, Idaho: Amer. Assoc. Petroleum Geologists Bull., v. 60, p. 1392.

- , 1978, Tectonic implications of the heat flow of the western Snake River Plain, Idaho: Geol. Soc. America Bull., v. 89 p. 1697-1701.
- Burnham, W.L., Harder, A.H. and Dion, N.P., 1969, Availability of groundwater for large-scale use in the Malad Valley-Bear River Basin areas of southeastern Idaho - an initial assessment: U.S. Geol. Survey open file report, 40 p.
- Castelin, P.M. and Chapman, Sherl, 1972, Water resources of the Big Wood River-Silver Creek area, Blaine County, Idaho: Idaho Dept. of Water Adm., Water Inf. Bull. no. 28.
- Castelin, P.M. and Winner, J.E., 1976, Effects of urbanization on the water resources of the Sun Valley-Ketchum area, Blaine County, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 40.
- Cater, F.W., Pinckney, D.M., Hamilton, W.B., Parker, R.L., Weldin, R.D., Close, T.J. and Zilka, N.T., 1973, Mineral resources of the Idaho Primitive Area and vicinity, Idaho: U.S. Geol. Survey Bull. 1304, 431 p.

Chappel, R.N., Griffith, J.L., Knowles, W.R. and Schulta, R.J., 1978, The multipurpose geothermal test and experimental activities at Raft River, Idaho: Geothermal Energy: A Novelty becomes a Resource, transactions v. 2, sec. 1, p. 83-87, Geothermal Resources Council Annu. Meeting, 25-27 July 1978.

- Chosts, Raout, 1962, Geology and one deposite of the Hanley area. Idelo Bur. of Mines and Geology Pamph. no. 126, 122 p.
- Cook, K.L., Halverson, M.O., Stepp, J.C. and Bery, J.W., Jr., 1964, Regional gravity survey of the northern Great Salt Lake Desert and adjacent areas in Utah, Nevada and Idaho: Geol. Soc. America Bull., v. 75, p. 715-740.
- Coulter, H.W., 1956, Geology of the southeast portion of the Preston quadrangle, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 107, 47 p.
- Covington, H.R., Deep drilling data, Raft River geothermal area, Idaho (well no. 3, sidetract-C): U.S. Geol. Survey open file report no. 77-883.

, 1977, Deep drilling data, Raft River geothermal area, Idaho (Wall no. 1): U.S. Geot. Búrvey open file report No. 77-226.

(well no. 2): U.S. Geol. Survey open file report no. 77-243.

, 19477, Dennessen oder Etternig oder Etternig dem Ermig Ben 1947 Beitvener Generet Dennemmen Friedenig Tolmeben Ewenne Etternig der Beinden einen eine Beiter wennig vergenete Britisch eine Breitgereiste Beiter Zie-Beiteben

- (well no. 4): U.S. Geol. Survey open file report no. 78-91.
- Cox, Allan, Dalrymple, G.B. and Doell, R.R., 1967, Reversals of the earth's magnetic field: Sci. American, v. 216, no. 2, p. 44-54.
- Crosthwaite, E.G., 1957 (1958), Ground-water possibilities south of the Snake River between Twin Falls and Pocatello, Idaho: U.S. Geol. Survey Water-Supply Paper 1460 C, p. 99-145.
- Crosthwaite, E.G., Mundorff, M.J. and Walker, D.H., 1970, Ground water aspects of the Lower Henry Fork region, eastern Idaho: U.S. Geol. Survey Water Supply Paper 1879 C.
- Crosthwaite, E.G. and Scott, R.C., 1956, Ground-water in the North Side Pumping Division, Minidoka County, Idaho: U.S. Geol. Survey Circ. 371, 19 p.
- Dart, R.H., Neill, D.T. and Whitbeck, J.F., 1975, Conceptual design and cost evaluation of organic rankine cycle electric generating plant powered by medium temperature geothermal water: Aerojet Nuclear Corp., Idaho Operations Office, ANCR report 1226.

- Davis, W.E., 1972, Mineral resources of the Salmon River breaks primitive area, Idaho, aeromagnetic survey: U.S. Geol. Survey Bull. 1353-C, p. 18-20.
- Day, N.F., 1974, Linears Map, Band 5, MSS-ERTS, Northern and Southern Idaho: Idaho Bur. of Mines and Geology open file map, 2 maps.
- Diment, W.H., Urban, T.C., Sass, J.H., et al., 1975, Temperatures and heat contents based on conductive transport of heat, in Assessment of geothermal resources of the United States, 1975: U.S. Geol. Survey Cir. 726.
- Dion, N.P., 1969, Hydrologic reconnaissance of the Bear River Basin in southeastern Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. No. 13, 66 p.

_____, 1974, An estimate of leakage from the Blackfoot Reservoir to Bear River Basin, southeastern Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. No. 34, 24 p.

- Doherty, D.M. and Nash, K.G., 1977, abs., Remote sensing identification of caldera related geologic features in the eastern Snake River Plain: Geol. Soc. America, abs. programs, v. 9, no. 6, p. 719-720.
- Donaldson, P.R. and Applegate, J.K., 1975, abs., Evaluation of the geothermal potential of the Boise front, Idaho: Soc. Explor. Geophys. Annual Int. Meeting, abs., no. 45, p. 29.

_____, 1976, abs., Geoelectrical investigations of Boise, Idaho geothermal system: Amer. Assoc. Petroleum Geologists Bull., v. 60, p. 1397.

_____, 1979, Geophysical review of selected geothermal areas in southern Idaho: Geotechniques, Inc. open file report.

- Donovan, L. E., 1975, Feasibility/conceptual design study for Boise geothermal space heating demonstration project distribution and disposal system: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1258.
- Donovan, L.E. and Richardson, A.S., 1975, Feasibility/conceptual design study for Boise geothermal space heating demonstration project building modifications: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1246.
- Eldridge, G. H., 1895, A geologic reconnaissance across Idaho: U.S. Geol. Survey Sixteenth Ann. report, pt. 2, 211-276.

Ellis, A. J., 1970, Quantitative interpretation of chemical characteristics of hydrothermal systems: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2, p. 516-528.

- Fenneman, N.M., 1917, Physiographic division of the United States: Assoc. Am. Geographers Annals 6, p. 19-98.
- , 1931, Physiography of Western United States: New York, McGraw-Hill Book Co., 534 p.
- Forrester, J.D., 1956, Geology and mineral resources of the Salmon Quadrangle, Lemhi county, Idaho: Idaho Bur. of Mines and Geology Pamph. no. 106, 102 p.
- Fournier, R.O., 1977. Chemical geothermometers and mixing models for geothermal systems: Geothermics, v. 5, no. 1-4, p. 41-50.
- Fournier, R.O. and Potter, R.W., II, 1978, A magnesium correction for the Na-K-Ca chemical geothermometer: U.S. Geol. Survey open file report 78-986, 24 p.
- Fournier, R.O. and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet steam wells: Am. Jour. Sci., v. 264, p. 685-695.
- Fournier, R.O., and Truesdell A.H., 1970, Chemical indicators of subsurface temperature applied to hot waters of Yellowstone National Park, Wyo., U.S.A.: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2; p. 529-535.

, 1973, An empirical Na-K-Ca geochemical thermometer for natural waters: Geochim, et. Cosmochim, Acta., v. 73, p. 1255-1275.

, 1974, Geochemical indicators of subsurface temperature, Part 2, Estimation of temperature and fracture of hot water mixed with cold: U.S. Geol. Survey Jour. of Research, v. 2, no. 3, p. 264-270.

- Fournier, R.O., White, D.E. and Truesdell, A.H., 1974, Geochemical indicators of subsurface temperature, Part 1, Basic Assumptions: U.S. Geol. Survey Jour. of Research, v. 2, no. 3, p. 259-263.
- Geothermal Task Force, 1975, Idaho Geothermal R&D project report for period 1-1-75 to 3-31-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1222.

, 1975, Geothermal R&D project report for period 4-1-75 to 6-30-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1247. , 1975, Geothermal R&D project report for period 7-1-75 to 9-30-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1281.

, 1975, Geothermal RAD project report for period 10-1-75 to 12-30-75: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1283.

, 1976, Geothermal R&D project report for period 1-1-76 to 3-31-76: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1319.

, 1976, Geothermal R&D project report for period 4-1-76 to 6-30-76: EG&G Idaho, Inc., Idaho National Engineering Laboratory, Energy Research and Development Administration, Idaho Operations Office, TREE report 1008.

- Gerick, J.A. and Simmons, George, 1977, Idaho potential for industrial utilization of geothermal energy: M.S. thesis, University of Idaho, Chem. Eng. Dept., 169 p.
- Gilbert, G.K., 1875, Lake Bonneville, in report upon the geographic and geologic exploration and survey west of the 100th meridiani Washington U.S Gov't. Printing Office, v. 3.

, 1890. Lake Bonneville: U.S. Geol. Survey Mon. 1, 438 p.

- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P. Wayland, R.G., 1971, Classification of public lands valuable for usublashal resources: U.S. Gosl. Survey Uire. 847, 17 p.
- Godwin, L.H. and Oberlindacher, Peter, 1967, Rev. July 1976, State of Idaho geothermal and classification map: Menlo Park, Calif., U.S. Geol. Survey Conserv. Div., Pacific Area.
- Greenberg, S.A. and Price, E.W., 1957, The solubility of silica in solutions and electrolytes: Jour. Phys. Chem. 61, p. 1539-1541.
- Grose, L.T., 1971, Geothermal energy: geology, exploration, and developments; Part 1: Colorado School Mines Research Inst. Min. Industries Bull. v. 14, no. 6, 14 p.
- Hale, L.A., 1969, abs., Phosphate exploration using gamma-radiation logs, Dry Valley, Idaho: Mining Eng., v. 21, no. 8, p. 35.

Hamilton, W.S., 1965, Geology and petrogenesis of the Island Park caldera of rhyolite and basalt eastern Idaho: U.S. Geol. Survey Prof. Paper 504 C, p. C1-C37. _____, 1976, abs., Tectonic history of west-central Idaho: Geol. Soc. America, abs. programs, v. 8, no. 3, p. 378-379.

- Hardy, C.T. and Williams, J.S., 1953, Geologic map of the northern Wasatch Mountains, Utah and Idaho: in Intermountain Assoc. Petroleum Geologists Guidebook 4th Ann. Field Conf., Geology of northern Utah and southeastern Idaho, 1953, pl. 1.
- Harrison, J.E., Greggs, A.B. and Wells, J.D., 1974, Tectonic features of the Precambrian belt basin and their influence on post-belt structures: U.S. Geol. Survey Prof. Paper 866.
- Haskett, G.R., 1976, Thermal springs and wells, lineaments and circular feature map for Idaho, U.S. Bur of Rec. map, open file.
- Healy, J., 1970, Pre-investigation geological appraisal of geothermal fields: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1, Geothermics, Spec. Issue 2, p. 571-577.
- Hill, D.P., 1963, Gravity and crustal structure in the western Snake River Plain, Idaho: Jour. Geophys. Research, v. 68, no. 20, p. 5807-5819.
- Hill, D.P., Baldwin, N.L. and Pakiser, L.C., 1961, Gravity, volcanism and deformation in the Snake River Plain, Idaho: U.S. Geol. Survey Prof. Paper 424-B, p. 248-250.
- Hill, D.P. and Pakiser, L.C., 1967, Seismic-refraction study of crustal structure between the Nevada test site and Boise, Idaho: Geol. Soc. America Bull., v. 78, p. 685-704.
- Holland, H.D., 1965, Nome application of thermoulemlual data to problema of ore deposits, II. Mineral assemblages and the composition of oreforming fluids: Moon. Geology v. 60, no. 6, p. 1101-1165.

- , 1967, Gangue minerals in hydrothermal deposits: in Geochemistry of Hydrothermal Ore Deposits, H.L. Barnes, ed., Holt, Rinehart, and Winston, Inc.
- Hollenbaugh, K.M. and Nichols, C.R., 1975, Geological aspects of the national potential for non-electrical utilization of geothermal resources: Aerojet Nuclear Corp., Idaho National Engineering Interatory, U.B. Atomic Energy Commission, Idaho Operations Office, ANCK report 1213.
- Hoover, D.B. and Long, C.L., 1975, Audio-magnetotelluric methods in reconnaissance geothermal explorations: Proceedings, 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 2, p. 1059-1064.

Hoover, D.B. and Tippens, C.L., 1975, Geothermal Investigations in Idaho, Part 2, A reconnaissance audio-magnetotelluric survey: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, p. 53-79.

- Hoover, D.B., Brougham, G.W. and Clark, J.C., 1976, Station and traverse location map, audio-magnetotelluric data log and telluric profiles for Crane Creek known geothermal resource area, Idaho: U.S. Geol, Survey open file report no. 76-409.
- Hubbard, C.R., 1956, Geology and mineral resources of Nez Perce County, Idaho: Bur. of Mines and Geology, County report no. 1, 17 p.
- Huttrer, G. W. and Tamm, A.H., 1977, abs., Geothermal potential of three areas in southeastern Idaho and western Wyoming: Am. Assoc. Petroleum Geologists Bull., v. 61, p. 798.
- Hyde, Jay and Whelan, J.A., 1978, Field report, geothermal potential of the Mountain Home Air Force Base and Sailor Creek Air Force Range, Idaho. Appendix B, Item 8 to Air Force report CEEDO 78-47, Geothermal potential at U.S. Air Force Bases, 55 p.
- Jackson, D.B., 1974, Report on direct current soundings over a geothermal prospect in the Bruneau-Grandview area, Idaho: U.S. Geol. Survey open file report no. 74-240.
- Jobin, D.A. and Schroeder, M.L., 1964. Geology of the Conant Valley quadrangle, Bonneville County, Idaho: U.S. Geol. Survey Mineral Inv. Field Studies Map MF-277, 1 sheet.
- Karlo, J.F. and Koswor, P.R., 1975, abs., Thermal overprint as a possible effect on the gravity relations of the eastern Snake River Plain, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 615-616.
- Keller, A.S., 1963, Structure and stratigraphy behind the Bannock thrust in parts of the Preston and Montpelier quadrangles, Idaho: Unpublished Columbia Univ., Ph.D. dissertation, 204 p.
- Keller, J.G., Miller, L.G., Miners, G.L. and Richardson, A.S., 1975, Geothermal space heating of a geothermal drilling rig: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission Idaho Operations Office, ANCR report 1241.
- Kettenacker, W.C., 1977, Two dimensional simulation of the Raft River geothermal reservoir and wells: NGNG Idaho, Ing., Idaho National Muyimmifing immightery, Museyy Manuality and Invaluant Administration, Idaho Operations Office, TREE report 1085.
- Kharaka, Y.K. and Barns, Ivan, 1973, SOLMNEQ: Solution-mineral equilibrium computations: National Tech. Inf. Service pub. PB-215 899.82 p.

Khattab, M.M.M., 1969, abs., Gravity and magnetic surveys of the Grouse Creek Mountains and the sart siver Mountains area and vicinity, Dish and Dames Disas abs. v. 49, mis 13, part 1, p. 4740 4.

- Killsgaard, T.H., Freeman, V.L. and Coffman, J.S., 1970, Mineral resources of the Sawtooth primitive area, Idaho: U.S. Geol. Survey Bull. 1319-D.
- King, Clarence, 1878, Systematic geology: U.S. Geol. Explor. 40th Parallel, v. 1, p. 127-227.
- Kirkham, V.R.D., 1924, Geology and oil possibilities of Bingham, Bonneville, and Caribou Counties, Idaho: Idaho Bur. of Mines and Geology Bull. 8, 108 p.
- Kummell, Bernhard, 1954, Triassic stratigraphy of southeastern Idaho and adjacent areas: U.S. Geol. Survey Prof. Paper 254-H, p. 165-194.
- Kunze, J.F., 1974, Program plan for FY 1974: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1139.
 - , 1975, Idaho geothermal R&D project report for period 1-1-75 to 3-31-75: Idaho National Engineering Laboratory, ANCR report 1222, p. 17.
- Kunze, J.F. and Miller, L.G., 1974, Idaho geothermal R&D project report for period 12-16-73 to 3-15-74: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1155.
 - , 1974, Idaho geothermal R&D project report for period 7-16-74 to 9-30-74: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1190.
 - , 1974, Geothermal R&D project report for period 10-1-74 to 12-31-74: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1208.
 - , 1974, Idaho geothermal R&D project report for 3-16-74 to 7-15-74: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1175.
- Kunse, J.F., Miller, L.G. and Whitbeck, J.F., 1975, Moderate temperature utilization project in the Maft Niver Valley, Proceedings 2nd United Nations Symp. on the Development and Use of Geothermal Resources, Ban Francisco, v. 3, p. 1241-1245.

Kunze, J.F. and Richardson, A.S., 1975, National program definition study for the non-electrical utilization of geothermal energy: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1214.

- Kunze, J.F., Richardson, A.S., Nichols, C.R. and Mink, L.L., 1975, Geothermal space heating project involving state owned buildings in Boise, Idaho: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1211.
- Kunze, J.F., Richardson, A.S., Hollenbaugh, K.M., Nichols, C.R. and Mink, L.L., 1975, Non-electric utilization project, Boise, Idaho: Proceedings 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 3, p. 2141-2145.
- Kunze, J.F., Miller, L.G., Neill, D.T. and Nichols, C.R., 1974, Proposal for a demonstration geothermal power plant in the Raft River Valley: Aerojet Nuclear Corp., National Reactor Testing Station, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1138.
- Kunze, J.F. and Whitbeck, J.F., 1976, A plan for developing moderate temperature low salinity geothermal resources: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1318.
- La Fehr, T.R., 1963, abs., Gravity and crustal structure in eastern Snake River Plain, Idaho: Am. Assoc. Petroleum Geologists Bull., v. 47, p. 1772.
- La Fehr, T.R. and Pakiser, L.C., 1962, Gravity, volcanism and crustal deformation in the eastern Snake River Plain, Idaho: U.S. Geol. Survey Prof. Paper 450D, p. 76-78.
- Lindal, Baldur, 1973, Industrial and other applications of geothermal energy: in Earth Sciences 12, Geothermal Energy, A Review of Research and Development, The Unesco Press, H.C. Armstead, ed., p. 135-147.
- Lindgren, Waldemar, 1900, The gold and silver veins of Silver city, DeLamar, and other mining districts in Idaho: U.S. Geol. Survey Twentieth Ann. report p. 3, p. 65-256.
- Livingston, D.C. and Laney, F.G., 1920, The copper deposits of the Seven Devils and adjacent districts including Heath, Hornet Creek, Hoodoo, and Deer Creek: Idaho Bur. of Mines and Geology Pamph. no. 1, 105 p.
- Long, C.L., O'Donnell, J.E. and Smith, B.D., 1975, abs., Geophysical studies in the Island Park caldera, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 623.

Long, C.L., et. al., 1976, AMT station location map, Island Park KGRA, Idaho: U.S. Geol. Survey open file report no. 76-700-E. Mabey, D.R., 1966, Relation between Bouguer gravity anamalies and regional topography in Nevada and the eastern Snake River Plain, Idahor U.H. Gaol. Hurvey Prof. Paper 550-8, p. 105-110.

, 1971, Geophysical data relating to a possible detectore **overflow of Lake Bonneville at Gem Valley, Southeastern Edahor G.H. Geol. Survey Prof. Paper 750-B, p. 122-127.**

, 1974, abs., Regional gravity and magnetic anomalies in southeastern Idaho and western Wyoming: Geol. Soc. Am. Spec. Paper 76, p. 212.

, 1976, Interpretation of a gravity profile across the western Snake River Plain, Idaho: Geology, v. 4, no. 1, p. 53-55.

, 1978, Gravity and aeromagnetic anomalies in the Rexburg area of eastern Idaho: U.S. Geol. Survey open file report no. 78-382.

- Mabey, D.R., Ackerman, H., Zohdy, A.A.R., and others, 1975, abs., Geophysical studies of a geothermal area in the southern Raft River Valley, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 624.
- Mabey, D.R. and Armstrong, F.C., 1962, Gravity and magnetic anomalies in Gem Valley, Caribou County, Idaho: U.S. Geol. Survey Prof. Paper 450-D, p. 73-75.
- Mabey, D.R., Peterson, D.L. and Wilson, C.W., 1973, abs., Regional gravity and aeromagnetic studies in southern Idaho: Geol. Soc. America, abs., v. 5, no. 6, p. 494.

, 1974, Preliminary gravity map of southern Idaho: U.S. Geol. Survey open file report no. 74-78, 1 map, scale 1:250,000.

______, 1975, abs., Regional gravity and magnetic studies of the Snake River Plain: Geol. Soc. America, abs. programs, v. 7, no 5, p. 624-625.

- Mabey, D.R. and Oriel, S.S., 1970, Gravity and magnetic anomalies in the Soda Springs region, southeastern Idaho: U.S. Geol. Survey Prof. Paper 646-E.
- Mabey, D.R., Hoover, D.B., O'Donnell, J.E., and Wilson, C.W., 1978, Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho, Geophysica, v. 43, no. 7, p. 1470-1414.

Madsen, W.W. and ingvarsson, 1.J., 1975, Analysis of the binary cycle for ganthermal power generation. Asrojet Muchaer Durp., idelu-National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1245.

- Mahon, W.A.J., 1970, Chemistry in the exploration and exploitation of hydrothermal systems: in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Plas, 1970, v. 2, Part 2, Geothermics, Spec. Issue 2, p. 1310-1322.
- Malde, H.E., 1959, Fault zone along northern boundary of western Snake River Plain, Idaho: Science, v. 130, no. 3370, p. 272.
- Malde, H.E., 1965, Snake River Plain: in the Quaternary of the United States: Princeton, N.M., Princeton Univ. Press, p. 255-263, illus., tables, geol. map.
- Malde, H.E., Powers, H.A. and Marshall, C.H., 1963, Reconnaissance geologic map of west-central Snake River Plain, Idaho: U.S. Geol. Survey, Misc. Geol. Inv. Map 1-373.
- Maley, S.T., 1973, Handbook of mineral law (1977): Idaho Dept. of Lands Adm. & Div. of Earth Resources, MMRC Publication, Boise, Idaho, 293 p.
- Mansfield, G.R., 1927, Geography, geology and mineral resources of part of southeastern Idaho: U.S. Geol. Survey Prof. Paper 152, 453 p.
- McGreevy, L.L. and Bjorklund, L.J., 1970, Selected hydrologic data, Cache Valley, Utah and Idaho: U.S. Geol. Survey open file release (duplicated as Utah Basic-Data Release 21), 51 p.
- McLain, David, 1978, Lava Hot Springs, Idaho: Geo-heat utilization center Bull. v. 14, no. 1, p. 3.
- Meinzer, O.E., 1924, Origin of the thermal springs of Nevada, Utah, and southern Idaho: Jour. Geology v. 32, no. 4, p. 295-303.
- Meuschke, J.L. and Long, C.L., 1965, Aeromagnetic map of part of the Lanes Creek quadrangle, Caribou County, Idaho: U.S. Geol. Survey Geophys. Inv. Map GP-490, 1:62,500.
- Miller, R.L., 1976, Corrosion Engineering in the utilization of the Raft River geothermal resource: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1342.
- Mink, L.L. and Graham, D.L., 1977, Geothermal potential of the west Boise area: EG&G Idaho, Inc., Idaho National Engineering Laboratory, Dept. of Energy, Idaho Operations Office, TREE report 1162, 34 p.
- Mitchell, C.M.; Knowles, F.F. and Petrafeso, F.A., 1965, Aeromagnetic map of the Podetello-Soda Springs area, Semmerk and Carlley Counties, Idaho: U.S. Geol. Survey Geophys. Inv. Map GP-521.
- Mitchell, J.C., 1976a, Geothermal Investigations in Idaho, Part 5, Geochemistry and geologic setting of the thermal waters of the

Northern Cache Valley area, Franklin County, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 47 p.

, 1976b, Geothermal Investigations in Idaho, Part 6, Geochemistry and geologic setting of the thermal and mineral waters of the Blackfoot Reservoir area, Caribou County, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 47 p.

, 1976c, Geothermal Investigations in Idaho, Part 7, Geochemistry and geologic setting of the thermal waters of the Camas Prairie area, Blaine and Camas Counties, Idaho: Dept. of Water Resources, Water Inf. Bull. no. 30, 44 p.

_, 1978, Idaho Dept. of Water Resources unpublished data.

- Mundorff, M.J., 1967, Ground-water in the vicinity of American Falls Reservoir, Idaho: Prepared in cooperation with the U.S. Bureau of Reclamation, Geol. Survey Water-Supply Paper 1846.
- Nace, R.L., et. al., 1961, Water resources of the Raft River Basin, Idaho-Utah: U.S. Geol. Survey Water-Supply Paper 1582, 138 p.
- Newcomb, R.C., 1970, Tectonic structure of the main part of the basalt of the Columbia River Group, Washington, Oregon and Idaho: U.S. Geol. Survey Misc. Inv. Map 1-587, 1 sheet.
- Newton, N.C. and Corcoran, R.E., 1963, Petroleum geology of the western Snake River Basin, Oregon-Idaho: Oil and Gas Investigations no. 1, Oregon Dept. of Geology and Min. Industries, 67 p.
- Nichols, C.R., Brockway, C.E. and Warnick, C.C., 1972, Geothermal water and power resource exploration and development for Idaho: Water Resource Research Inst. Tech. Completion Prep. Project NSF-Geothermal 47-517, 48 p.
- Norvitch, R.F. and Larson, A.L., 1970, A reconnaissance of water resources in the Portneuf River Basin, Idaho: Idaho Dept. of Reclamation, Water Inf. Bull. no. 16, 58 p.
- Oriel, S.S. and Platt, L.B., 1968, Reconnaissance geologic map of the Preston quadrangle, southeastern Idaho: U.S. Geol. Survey open file map, 2 sheets.
- Pakiser, L.C., 1960, abs., Gravity in volcanic areas, California and Idaho: Jour. Geophys. Research v. 65, no. 8, p. 2515.
- Pakiser, L.C. and Baldwin, H.L., 1961, Gravity, volcanism and crustal deformation in and near Yellowstone National Park: U.S. Geol. Survey Prof. Paper 424-B, p. 246-248.
- Pakiser, L.C. and Hill, D.F., 1963, Crustal structure in Nevada and southern Idaho from nuclear explosions: Jour. Geophys. Research, v. 68, no. 20, p. 5757-5766.

_ -190-

- Pennington, W.D., Smith, R.B. and Trimble, H.B., 1974, A microearthquake survey of parts of the Snake River Plain and Central Idaho: Seismological Soc. Amer. Bull., v. 64, p. 307-312.
- Peterson, D.L., 1974, Bouguer gravity map of part of the northern Lake Bonneville Basin, Utah and Idaho: U.S. Geol. Survey, Misc. Field Study Map, no. MF-627, gravity survey map 1:250,000.

, 1977, Principal facts for a gravity survey of Battle Creek-Squaw Creek Hot Springs and vicinity, northern Cache Valley, Idaho: U.S. Geol. Survey open file report no. 77-670.

- Peterson, D.L. and Oriel, S.S., 1970, Gravity anomalies in Cache Valley, Cache and Box Elder Counties, Utah, and Bannock and Franklin Counties, Idaho: U.S. Geol. Survey Prof. Paper 700-C, pp. Cl14-Cl18.
- Peterson, D.L. and Witkind, I.J., 1975, Preliminary results of a gravity survey of the Henry's Lake quadrangle, Idaho and Montana: Jour. Research, U.S. Geol. Survey, v. 3, no. 3, p. 223-228.
- Piper, A.M., 1923, Geology and water resources of the Goose Creek Basin, Cassia County, Idaho: Idaho Bur. of Mines and Geology Bull. no. 6, 48 p.
 - , 1925, Ground Water for irrigation on Camas Prairie, Camas and Elmore Counties, Idano: Idano Bur. of Mines and Geology Pamph. no. 15, 46 p.
- Presser, T.S. and Barnes, Ivan, 1974, Special techniques for determining chemical properties of geothermal water: U.S. Geol. Survey Water Resource Investigations 22-74, 11 p.
- Prostka, H.J. and Embree, G.F., 1978, Geology and geothermal potential of the Rexburg area, southeastern Idaho, U.S. Geol. Survey open file report no. 78-1009.
- Prostka, H.J., Hackman R.J., 1974, Preliminary geologic map of the northwest 1/4, Driggs 1 and 2^o quadrangle, southeastern Idaho: U.S. Geol. Survey open file geologic map 74-105.
- Prostka, H.J. and Oriel, S.S., 1975, abs., Genetic models for Snake River Plain, Idaho: Geol. Soc. America, abs. programs, v. 7, no. 7, p. 1236.
- Ralston, D.R. and Chapman, S.L., 1968, Ground-water resources of the Mountain Home area, Elmore County, Idaho: Idaho Dept. of Reclamation, Water Inf. Bull. no. 4, 63 p.
- Rambo, W.L. and Blank, H.R., Jr., 1969, abs., Gravity survey of the Island Park caldera and vicinity, eastern Idaho: Geol. Soc. America Spec. Paper 121, p. 625.

- Renner, J.L., White, D.E. and Williams, D.L., 1975, Hydrothermal convection systems: in Assessment of Geothermal Resources of the United Histas ~ 1975, U.S. Gool. Burvay Click 726, D.M. White and D.E. Williams, eds., DB p.
- Richards, H.W., 1911, Noter on lead and compet deposite in the book River Hange, idamo and Utahi U.S. Geol. Survey Bull. no. 4/0, p. 117-187.
- Richards, R.W. and Mansfield, C.R., 1912, The Bannock overthrust, a major fault in southeastern Idaho and northeastern Utah: Jour. Geology, v. 20, p. 681-701.
- Rightmire, C.T., Young, H.W. and Whitehead, R.L., 1976, Geothermal Investigations in Idaho, Part 4, Isotopic and geochemical analysis of water from the Bruneau-Grand View and Weiser areas, southwest Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 28 p.
- Roberts, P.A., 1975, Fish culture utilization of geothermal energy: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations, ANCR report 1220.
- Ross, S.H., 1971, Geothermal potential of Idaho: Idaho Bur. of Mines and Geology Pamph. no. 150, 72 p., also in Proceedings, United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, v. 2, Part 2, Geothermic Spec. Issue 2, p. 975-1008.
- Russell, I.C., 1902, Geology and water resources of the Snake River Plain of Idaho: U.S. Geol. Survey Bull. no. 199, p. 192.
- Sacarto, D.M., 1976, State policies for geothermal development: National Conference of State Legislatures, Denver, Renewable Energy Resources Project, Patrick Binns, Dir., 94 p.
- Savage, C.N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bur. of Mines and Geology, County report 3, 94 p.
- , 1962, Geomagnetics and geologic interpretation of a map of Eastern Bonner County: Idaho Bur. of Mines and Geol. Info. Circ. no. 15, 16 p.
- Sbar, M.L., Barazangi, Muawia, Dorman, James, Christopher, H.S. and Smith, R.B., 1972, Tectonics of the Intermountain Seismic Belt, Western United States Micro-earthquake seismicity and composite fault plane solution: Geol. Soc. American Bull. v. 83, no. 1.
- Schmidt, D.L. and Makin, J.H., 1962, Quaternary geology of the Bellevue area in Blaine and Camas Counties, Idaho: U.S. Geol. Survey open file report no. 625.

Schnitt, R.C. and Spencer, S.G., 1977, Beneficial User of quality mathematic mainly, dealering and perimenty teenits for phane 1 of the rate Hiver Irrigation experiment, TRAM report 1044

- Shaffer, C.J., 1975, Geothermal steam plant modeling and power tradeott studies: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1295.
- Siever, Raymond, 1962, Silica solubility, 0-200^oC and diagenesis of siliceous sediments: Jour. Geol. v. 70, p. 127-150.
- Smith, C.L., 1966, Geology of the eastern Mount Bennett Hills, Camas, Gooding and Lincoln Counties, Idaho: Ph.D. dissertation, Univ. of Idaho, Moscow, 129 p.
- Smith, R.B. and Sbar, M.L., 1974, Contemporary tectonics and seismicity of the Western United States: Geol. Soc. America Bull., v. 85, p. 1205-1218.
- Smith, R.O., 1959, Ground water resources of the middle Big Wood River-Silver Creek area, Blaine County, Idaho: U.S. Geol. Survey Water-Supply Paper 1478, 64 p.
- Spencer, S.G., 1975, Environmental Report Deep geothermal test wells in the Raft River Valley: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1204.
- Staley, W.W. and Prater, L.S., 1945, Sulphur in Idaho: Idaho Bur. of Mines and Geology, Min. Resources report no. 2, 7 p.
- Stanley, W.D., 1972, Geophysical study of unconsolidated sediments and basin structure in Cache Valley, Utah and Idaho; Geol. Soc. America Bull, v. 83, no. 6, p. 1817-1830.
- Stearns, H.T. and Bryan, L.L., 1925, Preliminary report on the geology and water resources of the Mud Lake Basin, Idaho: U.S. Geol. Survey Water-Supply Paper 560-D, 134 p.
- Stearns, H.T., Crandall, Lynn and Steward, W.G., 1936, Records of wells on the Snake River Plain, southwestern Idaho: Water Supply Paper 775, 139 p.
- , 1938, Geology and ground-water resources of the Snake River Plain in southeastern Idaho: U.S. Geol. Survey Water Supply Paper 774, 268 p.
- 樹長崎蔵子白崎。 樹玉島玉。 樹長崎蔵子石樹。 村市里で あわけ WWとも白豆 はんたく しりまた。 ひれらくのかし opertorpe to 七白崎 いいまた風は 緑長崎屋甸市 いっぽ。 いいいし。 林いといゆ、 Weter "Auppely Perper (i7) か、 je り切っないち。

Stephenson, G.R. and Zugel, J.F., 1967, Seismic refraction studies in watershed hydrology: Proceedings of the Fifth Annual Engineering Geology and Soils Engineering Symp., Idaho Dept. of Highways.

Stoker, R.C., 1975, Drilling plan Boise slim (2-3/8 in. diameter) holes demonstration space heating project 1975: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1261.

Stoker, R.C., 1977, unpublished data, EG&G Idaho, Inc., Idaho Falls.

- Stott, L.R., 1974, A gravity survey of a late Cenozoic graben in the Wyoming-Idaho thrust belt: Masters thesis, Univ. of Michigan.
- Swanberg, C.A., 1972, Vertical distribution of heat generation in the Idaho batholith: Jour. Geophys. Res., v. 77, p. 2508-2513.
- Swanson, J.R., 1977, Data file geotherm: U.S. Geol. Survey open file data, Menlo Park, CA.
- Swink, D.G. and Schultz, R.J., 1975, Conceptual study for utilization of an intermediate temperature geothermal resource: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1260.
- Torgerson, L.D. and Richardson, A.S., 1975, Feasibility review for geothermal conversion of existing H&V systems on the Boise geothermal space heating project: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1256.
- Trimble, D.E., 1976, Geology of the Michaud and Pocatello quadrangles, Bannock and Power Counties, Idaho: U.S. Geol. Survey Bull. 1400, p. 88.
- Trimble, D.E. and Carr, W.J., 1961, Late Quaternary history of the Snake River in the American Falls region, Idaho: Geol. Soc. America Bull, v. 72, no. p. 1739-1748.
- Truesdell, A.H. and Jones, B.F., 1974, WATEQ, a computer program for calculating chemical equilibia of natural waters: Jour. Research, U.S. Geol. Survey, v. 2, no. 2, March-April, 1974, p. 233-248.
- Tschanz, Charles, et. al., 1974, Mineral resources of the eastern part of the Sawtooth National Recreation Area, Custer and Blaine Counties, Idaho: U.S. Geol. Survey open file report.
- Umpleby, J.H., 1915, Ore deposits in the Hawtooth quadrangle, Haine and Custer Counties, Idaho: in Contribution to Recommite Geotogy U.H. Gool: Burvey Bull, 500, p. 221-249.
- Umpleby, J.B., Westyate, L.G. and Ross, C.P., 1930, Geology and one deposits of the Wood River region, Idaho: U.S. Geol. Survey Bull. 814.

Urbin, T.C. and Diment, W.H., 1975, abs., Heat flow on the mouth flank of the Snake River rift: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 648.

U.S. Geological Survey, 1971, Aeromagnetic map of southwestern Idaho, scale 1,500,000: U.S. Geol. Survey open file report.

Vincent, K.R. and Applegate, J.K., 1978, A preliminary evaluation of the seismicity of southwestern Idaho and eastern Oregon: Implications for geologic engineering studies: Idaho Trans. Dept., Div. of Highways, Proc, Sixteenth Annual Eng. Geol. and Soils Eng. Symp.

Walker, E.H., Dutcher, L.C., Decker S.O. and Dyer, K.L., 1979, The Raft River Basin, Idaho, Utah, As of 1966: A re-appraisal of the water resources and effects of ground-water development: U.S. Geol. Survey open file report, 116 p.

- Wallace, R.W., 1972, A finite-element planer flow model of Camas Prairie, Idaho: Univ. of Idaho Ph.D. dissertation.
- Walton, W.C., 1962, Ground-water resources of Camas Prairie, Camas and Elmore Counties, Idaho: U.S. Geol. Survey Water-Supply Paper 1609, 57 p.
- Waring, G.H. (revised by R.R. Blankenship and Ray Bentall), 1965, Theomal springs of the United States and other countries of the world a summary: U.S. Geol. Survey Prof. Paper 492, 383 p.
- Warner, M.M., 1972, Geothermal resources of Idaho: in Geothermal Overviews of the Western United States, Geothermal Resources Council Special report no. 1, p. 92-98.

_____, 1975, Special aspects of Cenozoic history of southern Idaho and their geothermal implications: in Proceedings 13th Annu. Eng. Geol. and Soils Eng. Symp. p. 247-270.

, 1975, abs., Special aspects of Cenozoic history of southern Idaho and their geothermal implications: Geol. Soc. America, abs. programs, v. 7, no. 5, p. 649-650.

- Watson, K., 1975, abs., Reconnaissance geothermal explorations at Raft River, Idaho, from thermal infrared scanning: Soc. Explor. Geophys., Annu. Int. Meeting, abs. no. 45, p. 66-67.
- Wells, N.W., 1971, Heat from the earth's surfacer Marty development of Western geothermal resources: Jour. of the West, v. 10, p. 53-71.
- Whitbeck, J.R., 1974, Design concepts for flash steam systems for use with medium temperature geothermal water: Aerojet Nuclear Corp., National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1210.

, 1975, Review and tentative selection of a working fluid use with a medium temperature (300°F) geothermal resource: Aerojet Nuclear Corp., Idaho National Engineering Laboratory, U.S. Atomic Energy Commission, Idaho Operations Office, ANCR report 1224.

- White, D.B., 1970, Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, v. 1, Part 2, Geothermics, Spec. Issue 2, p. 58-80.
- White, D.E., Muffler, L.J.P. and Truesdell, A.H., 1971, Vapor-dominated hydrothermal systems compared with hot water systems: Econ. Geology, v. 66, no. 1, p. 75-97.
- White D.E. and Williams, D.L., ed., 1975, Assessment of geothermal resources of the United States 1975: U.S. Geol. Survey Circ. 726.
- Willden, R., 1965, Seismic-refraction measurements of crustal structure between American Falls Reservoir, Idaho, and Flaming Gorge, Utah: U.S. Geol. Survey Prof. Paper 525-C, p. 44-50.
- Williams, P.L., Mabey, D.R., Zohdy, A.A.R., Ackermann, Hans, Hoover, D.B., Pierce, K.L. and Oriel, S.S., 1975, Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, U.B.A.: Proceedings, 2nd United Nations Symp. on the Development and Use of Geothermal Resources, San Francisco, v. 2, p. 1273-1282.
- Wilson, M.D., Applegate, J.K., Chapman, S.L. and Donaldson, P.R., 1976, Geothermal investigations of the Cascade, Idaho area: Dept. of Geology and Geophysics, Boise State University report, 44 p.
- Witkind, I.J., 1975, Preliminary map showing known and suspected active faults in identify U.S. Gool, Survey open file report no. 75-270.
- Young, H.W., 1977, Reconnelssance of ground-water resources in the water resources investigations 77-108 open file report, 40 p.
- Young, H.W., Harenburg, W.A. and Seitz, H.R., 1977, Water resources of the Weiser River Basin, west-central Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 44.
- Young, H.W. and Mitchell, J.C., 1973, Geothermal Investigations in Idaho, Part 1, Geochemistry and geologic setting of selected thermal waters: Idaho Dept. of Water Resource, Water Inf. Bull. no. 30, 43 p.

- Young, H.W. and Whitehead, R.L, 1975a, Geothermal Investigations in Leano, Part 2, An evaluation of thermal water in the homean Grand View area, wouldweat Dahor Daho Dept. of Water Recommend, Nator Full Bull and W. Hop
 - , 1975b, Geothermal investigations in Idaho, Part 3, An evaluation of thermal water in the Weiser area, Idaho: Idaho Dept. of Water Resources, Water Inf. Bull. no. 30, 35 p.
- Zohdy, A.A.R., 1970, abs., mapping basaltic aquifers in southern Idaho by deep electrical soundings: Geophysics, v. 35, p. 1166.
- Zohdy, A.A.R. and Bisdorf, R.J., 1976, Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah: U.S. Geol. Survey open file report no. 76-92.
- Zohdy, A.A.R., Bisdorf, R.J. and Jackson, D.B., 1978, Simple total field and Schlumberger soundings near Sugar City, Idaho: U.S. Geol. Survey open file report no. 78.
- Zohdy, A.A.R., Jackson, D.B. and Bisdorf, R.J., 1975, Schlumberger soundings and total field measurements in the Raft River geothermal area, Idaho: U.S. Geol. Survey open file report no. 75-130.

, 1975, abs., Exploring the Raft River geothermal area, Idaho, with the D.C. resistivity method: Soc. Explor. Geophys. Annual Int. Meeting, abs. no. 45, p. 27-28.

Zohdy, A.A.R. and Stanley, W.D., 1972, abs., Profiles of deep electrical soundings on the Snake River Plain, Idaho: Geol. Soc. America, abs., v. 4, no. 6, p. 423-424.

. · ·

APPENDIX

Basic Data Table 1	
Basic Data Table 2	•• 201
Basic Data Table 3	• 223
Basic Data Table 4	• 243
Preliminary Environmental Assessment, Idaho Geothermal Areas	
	• 333

The basic data tables list information on thermal springs and wells so far as is presently known. In some instances the spring number given in the basic data tables may differ slightly from that found on the map, Geothermal Resources of Idaho, Plate 1, in pocket. The location given in the basic data tables represents a sample location while that given on the map represents that of the main discharge points. When a spring location is given in the text, it refers to the basic data tables.

-100

·

s .

BASIC DATA TABLE 1

.

• •

BASIC DATA TABLE 1

CHEMICAL ANALYSES OF THERMAL WATER FROM SELECTED SPRINGS AND WELLS IN IDAHO (Chemical constitutents in milligrams per liter)

• <u>••••</u> •••••••••••••••••••••••••••••••			1 8				Ţ	Γ				_								Π		Hardn	less					
Spring or Well Identification Number and Name	Sample Collection Date	. Nensured Surface Temperature ^c C	Reported Weil Depth below Land Surface (maters)	Discharge (1/min)	SIIIca (SI0 ₂)	Calcium (Ca)	mideslum Magneslum	Sodłum (Na)	Potassium (K)	Bicarbonate (HCO ₅)	Carbonate (CO ₃)	Sulfate (SO4)	Phosphate (PO4)	Chloride (CI)	Flouride (F)	Nitrate (NO ₃)	Heron (B)	Ammon Ia (NH ₃)	Specific Conductance (field)	pH (fleid)	Total Dissolved Solids (TDS)	Carbonate	Non⊷Carbona†e	Aikalinity as CaCO ₃	Percent Sodlum (\$Na)	Sodium Absorption Railo ('AN?)	e an e constante o regeneration - el Prop. E pal- el - d'el [egle e	ltata Putaringga
	•												Ada	County														
LILLIE COLLIAS WE IN 1E IADCI	LL 8/12/76	z	146.	0,	31	22.0	5.80	48	2.60	149.	0.0	33.00	0,02	17.0	0.70	1.00	6.0	0.0	342	0, 1	234	79.	0.	122.	56.0	2•-	-, =	۶Z
NICHOLSON WELL IN 1E 250BA1	8/ 2/76	z	162.	0.	38	17.0	2,60	30	2.30	119.	0.0	15.00	0.01	6.8	0.40	0.76	0.0	0.0	287	7.9	171	53.	0.	98.	53.8	l.ć		١ź
AGRI-CON WELL #4 IN 1E 36AAD1	0/.0/0	22	0.	0.	46	377.0	105.00	444	124,00	0.	0.0	528,00	0.0	291.0	0.27	0.0	6.0	0.0	246	7.8	1915	1372.	1372.	0.	36.7	5.2		:2
1DU LAND AND BEEF 1N 2E 6ABA1	5/ 6/54	z	123.	0.	29	14.0	2,90	49	2.10	134.	0.0	22,00	0.0	16.0	1.10	0.0	0.0	0.0	299	8.3	- 201	47.	0.	110.	68.3	3.1		÷
TOM BEVINS WELL 2N 1E 220081	0/ 0/ 0	31	0.	٥.	26	224.0	6.10	889	99.00	59 92.	0.0	1013.00	0.0	227.0	1.60	0.0	6.0	0.0	237	8.1	5431	584.	0.	4910.	73.1	16.1		1Z
GEORGE WHITMORE WELL 2N 1E 24DAD1	0/0/0	27	σ.	0.	30	377.0	44,00	84 î	99.00	6784.	0.0	1383.00	0.0	390.0	0.56	0.0	6.0	0.0	294	7.6	6500	1122.	0.	5559.	59.4	16.9	~	
WARREN TOZER WELL 2N 3E 10BCB1	8/ 3/76	20	144.	٥.	32	17.0	4.20	14	1.10	77.	0.0	16.00	0.01	7.3	0.30	1.30	0.0	0.0	193	7.9	131	60,	.0.	63.	33.3	6.E	- 15-1	12
ST. TRANS. DEPT. WELL	0 / 7 / 7 /		297.	0.	44	23.0	4.90	19	1.60	119.	0.0	7,60	0.05	4.6	0,30	2,00	0.0	0.0	232	7 4	165	78.	0.	09	34.2	6.1		
FERD KOCH WELL	8/ 3/76		0.	76.	39	3.0	0.10	720	0,60	89.	15,00		0.0			0.0	6.0	0.0		9.0	856	8.	0.	98.	99.41		-#1	12
BEARD WELL	8/10/77				60	5.5	0.0	89	1.40	120.					3.10													4
WARM SPRINGS	0/21/77	/6	0.	568.	60	2.5	0.0	07	1140	120.	19.00	21.90	0.01	3.1 1	7.00	0.02	6.0	0.09	420	0.7	295	14.	0.	150.	92.6	10.5	ų.	72
· · · · · · · · · · · · · · · · · · ·	5/31/72	7\$	122.	727.	78	2.0	0.0	75	1.30	141.	4.00	23,00	0.01	9.3 2	4.00	0.08	c.c	0.0	386	7.3	286	5.	0.	122.	96.1	14.5	- 1,5-1	3
OLD PENI TENTLARY 3N 2E 13ACB1 1	WELL #1 1/ 6/76	59	266.	2649.	42	1.6	0.01	77	0.78	100.	20.00	0.0	0.32	8.9 1	8,00	0.0	0.05	0.50	402	8.7	217	4.	0.	115.	97.1	16.~	• 2 •	-2
BOISE WATER CORP. WELL 31. 25.36ABC1	7/29/77	Z:	0.	0.	25	19.0	0,80	22	1.10	97.	0.0	14.00	0.0	5.9	0.50	0.28	6.0	0.03	204	7.3	134	51.	0.	79.	47.9	1.3	·	12
DEMAIS FLAKE WELL 4N 16 24000?	6/ 9/77	T	516.	95.	60	22.0	2.10	42	5.40	200.	0.0	3.10	0.12	.2.6	0.60	0.0	c.c	0.11	310	7.6	236	64.	0.	164.	56.5	Z, I	'	÷.,
CARL RUSH WELL 4N 2E 480C!	8/ 9/77	29	G.	0.	27	34.0	5.10	30	1,20	150.	0.0	36.00	0.0	3.9	2.00	0.0	c.c	0.02	290	7.3	210	98.	0.	123.	39.7	1,5	- 2	5
EDWARD'S GREENHOUS WELL 4% 2E 29AOUT	5/31/72	٤~	364.	Ċ.	46	4.5	0.30	55	2.40	145.	2.00	21,00	0.02	4.4 1	0.00	0.05	C.J	0.0	311	7.1	216	12.	0.	122.	6 8.5	ć	. •	ē

SHADOW VALLEY WELL 5N 1E 25BCC1 B/ B/77 26 92. 1703. 38 38.0 4.30 28 3.60 150. 0.0 54.00 6.0 4.1.80 0.0 0.0 0.04 340 8.6 245 112. 0.125.3.1 ... -7,744 BEN STADLER WELL 5N 1E 260CD1 8/ 9/77 29 210, 3406, 32 22.0 1.90 37 3.50 110. 0.0 0.0 47_86 **6**_2 3.50 0.0 0.00 2799 7.5 205 63. Ω_ 96. ÷. = -3-941 -12 JULIUS JEKER WELL 5N 1E 35ACA1 5/31/72 40 0. 83. 33 4.3 0.0 49 3.20 112. 1.00 23.00 0.02 **4.9** 11,00 0.05, 0.0 0.0 285 7.5 184 11. ΰ. 93. 572 52 -1.72 3 JERRY DAVIS WELL #1 IN IN 7ACC1 8/12/76 21 180. 0. 45 52.0 20.00 50 6.80 171. 0.0 100.00 6.0 43.0 0.20 4.20 0.0 0.0 656 8.0 405 212. 72. 140. 5.057 14 CLATER FORSGREN WELL 0. 43 45.0 18.00 60 6.10 264. 0.0 110.96 6.1 27.0 0.30 0.0 0.0 0.0 1N IN 78CC1 8/25/75 20 38. 643 7.4 439 186. 0. 216. c IRVIN BOEHLKE WELL IN IW 8DBA1 10/ 6/77 22 0. 3028. 35 70.0 8.80 4.70 110. 55.0 0.20 0.07 46 0.0 130.00 0.34 1.20 0.0 610 7.5 405 211, 121, PO_ 3.2 1.32 10 SHANE BUES WELL IN 1W 15DAA1 8/12/76 23 165. 0. 47 20.0 7.00 39 4.90 130. 0.0 37.00 0.57 15-0 0.30 1.20 0.0 0,0 331 8.1 Z35 79. 9. 107. Tur 🚅 G.ZE īΣ TERRY TLUCEK WELL #1 IN 1W 220001 0, 37 429.0 56.00 591 99.00 6589. 0.0 970.00 G., D 34...0 0.25 0.0 0.0 0.0 270 7,4 0/0/023 0. 5762 1301. 3. 5400. Jam ------43.50 12 BISCHOF REALTY WELL 8/25/77 21 0.-0. 32 89.0 20.00 58 2.70 310. 0.0 140.0C 5_2 25.0 0.50 3.10 0.0 0,07 3N 1W 25ADD1 808 7.0 523 304. 50. 254. 3. 5.Z 1.00 -2.772 LETHA FISHER WELL 5N 1W 16CAB1 10/ 7/75 20 58. 0. 62 34.0 8.10 25 9.30 237. 0.0 16.0C C.T 4.Z 0.30 0.0 0.0 0.0 360 7.9 275 116. 0. 194. 35.F 🚞 ç -5.55 HARRY CHARTERS WELL 0, 43 16.0 6.90 4,70 133. 0.0 41_00 6. T. 75.0 0.50 1.40 0.0 15 IN 5ABC1 8/13/76 26 113. 48 0.0 346 8.2 241 68. 0. 109. 50. 1.5 1 -1.2 INITAL BUTTE WELL 8/ 4/76 23 168. 0, 32 19.0 5.70 54 4.60 114. 0.0 62.00 G.S. 22.0 0.50 3.20 0.0 0.0 386 8.1 15 1w 3688C1 257 71. б. 93+ 5. 12 44.44 Adams Iconty WHITE LICKS H S 16N 2E 33BCC15 6/29/72 65 0. 114. 110 39.0 0.30 420 17.00 71. 0.0 660.00 CLTS 150.0 8.60 0.07 0.0 502 7.6 0.0 1440 99. 4G . 55. <u>а</u>с – Ter 2.75-З KRIGBAUM H S 0. 151. 73 5.3 0.20 140 3.30 81. 9.00 190.00 0.3 2£ 6 2.90 0.05 0.0 0.0 668 489 -2-25 2 19N 2E 2200A15 6/29/72 43 8.8 14. 81. υ. ZIM'S RESORT 0. 64 12.0 0.10 190 3.60 47. 9.00 336.00 C_23 32.0 2.30 0.07 0.0 0.0 940 8.5 666 30 ο. 54. ------2.757 3 ZON 1E 2600A15 6/29/72 65 0. STINKY W S 21N 1E 23 ABA1S 10/19/77 30 تشبق 74_0 1.80 0.0 0.88 680 497 32. 58. -4-62 0. 38. 55 10.0 1.70 130 3.80 81. 1.00 250.00 0.0 8.4 ũ. ÷..... -----BOULDER OREEK RESORT D. 19. 43 17.0 0.0 50 0.40 46. 34.00 40.00 ----5.0 1.00 0.03 0.0 0.0 240 9.4 213 42. 5. 94. -40 22N 1E 34DAD1S 10/19/77 26 STARKEY H S 18N 1W 34D8815 6/27/72 56 0. 492. 56 4.5 0.0 86 1.60 60. 6.00 t50.00 0.00 ≃.0 0.90 0.05 0.0 0.0 502 8.6 348 11

*DATA REFERENCE: 1= ROSS, 1971 5= YOUNG AND MITCHELL, 1973 5= YOUNG AND MITCHELL, 1975 7= MITCHELL, 19766 9= SMANSCY, 1977 11= TSCHANG, ET.AL., 1974 13= STDHER, UMPABELISHES, 1977 2= CATER,ET.AL., 1973 44 YOUNG AVE H.TEHSAD,1975 6= MITCHELL,19755 10= MITCHELL,19755 10= MITCHELL,19755 10= MITCHELL,19755 12= L935 MCD FLLE 14= YOUNG,1977

20 $\frac{\omega}{1}$

1

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

	Τ_	Γ	€8	T	Γ	T	T	Γ									Наг	dness										
Spring or Weil Identification Number and Name	Sample Collection • Date ·	Measured Surface Temperature ^o C	Reported Well Depth balow Land Surface	(meters) Discharge (l/mln)	Silica (Si0a)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Blcarbonate (HCO ₃)	Carbonate (CO ₃)	Sulfate (SO4)	Phosphate. , (PO ₄)	Chloride (CI)	Flouride (F)	Nitrate (NO ₃)	Baron (B)	Ammonia (NH5)	Specific Conductance	(fleld)	Total Dissolved Solids (TDS)	, Carbonate	Non-Carbonate	Atkalln1+y as CeCO ₅	Percent Sodłum (\$Na)	Sodium Absorption Ratio (SAR)	Cation-Anion Balanco	Date Reference*
													Bannoc.	<u>k Coun</u>	ty							-						
SHOAL SUBDIVISION 55 34E 26DBA1		26	72.	378.	38	93.0	39.00	176	25.00	425.	0.0	156.00	0.0	228.0	2,70	6,90	0,0	0.0	0	0.0	973	392.	44.	348.	47.4	3.9	-2.248	10
ROBERT BROWN WELL 55 34E 260AB1		41	177.	57.	20	70.0	25,00	150	21.00	478.	0.0	95.00	0.0	87.0	3.20	0.02	0,0	0.0	1170	7.7	706	277.	0.	392.	51.7	3.9	0,700	3
DEAN MORRIS WELL 95.36E 3COB1	8/ 7/76	2 2	8.	0.	25	44.0	9.20	13	1,90	143.	Q.0	13.00	0.0	24.0	0.10	0.0	0.0	0.0	349	7.2	200	148.	30,	117,	15.9	0.5	3.373	9
LAVA H S 95 38E 21DDA15	8/15/72	45	٥.	0.	32	120.0	32,00	170	39.00	542.	0.0	110.00	0.04	190.0	0.70	0.38	0.0	0.0	1579	5.6 ⁻	9 60	431.	0.	444.	43.5	3.6	1.310	3
DOWNATA H S 125 37E 12CCD15	5/17/72	43	٥.	1855.	29	43.0	15.00	20	9.10	214,	0.0	18.00	0.0	20.0	0.40	0.50	0.0	0.0	413	6.7	260	169.	0.	175.	19,4	0.7	0.135	3
	<u>Bear Lake County</u>																											
PESCADERO W S 115 43E 368DA1S	9/12/73	26	0.	38.	31	188.0	65.00	63	14.00	658.	0.0	225.00	0.0	83.0	.80	0.14	0.01	0.26	169	6.4	994	736.	197.	539.	15.4	1.0	-0.229	10
BEAR LAKE H S 155 44E 130CA15	5/ 9/72	48	٥.	0.	35	210.0	55.00	180	61,00	256,	0.0	800.00	0,01	79,0	.10	0.56	0.0	0.0	2039	6.6	1553	750.	540.	210.	32.1	2.9	1.937	3
	Bingham County																											
YANDELL SPRINGS 35 37E 31DBB15	8/16/77	32	0.	568.	22	150,0	35-00	2 2	7, 20	240.	0,0	330.00	0,02	29.0) . 90	0.0	0.0	0.05	950	7.1	714	518.	321.	197,	8,3	0.4	-0.755	10
ALKALI FLAT W S 4S 38E 28D0D1S	B/18/77	34	0.	0.	19	210,0	68.00	34	37.00	640.	0.0	340.00	0,03	17.0	.90	0.0	0,0	1.10	1529	6.6 1	040	804,	279.	524,	8.0	0.5	1.084	10
											•	į	Blaine	Count	¥													
HATLEY H S 2N 18E 18D8B15	7/11/72	59	٥.	265.	65	2.0	0.0	68	1.50	88.	9.0	51.00	0.02	10.0 1	2,00	0.07	0.0	0.0	337 4	8.7	272	5.	0.	72.	95.5	13.2	-5.164	3
CLARENDON H S 3N 17E 27DCB15	7/11/72	47	0.	378.	80	2.2	0.10	81	1.70	29.	30,00	68.00	0.01	11.0 1	5.00	0.06	0,0	0.0	400 (8.2	303	б.	0.	74.	95.6	14.5	-4.353	3
GUYER H S 4N 17E 15AAC1S	7/11/72	71	0,	3785.	66	2.9	0.0	84	2,10	51.	25.00	72,00	0.02	11.0 H	5.00	0.06	0.0	0.0	421 8	8.0	324	7.	0.	83.	94.8	13.6	-5.779	3
WARFIELD H S 4N 17E 31BBC1S 1	0/13/77	62	٥.	378.	97	2.6	C.0	67	1.90	55.	37.00	35.00	0.01	6,11	.00	0.0	0.0	0.01	370 8	3.7	289 '	6.	0.			11.4 -	11-009	10
EASLEY H S 5N 16E 1008C1S	o∕o∕s	37	ο.	68.	54	3.8	0.10	69	0.60	24.	28.00	46.00	0.0	5.9 ź	.00	0.0	0.0	0.0	0 9	9.2	240	10.	0,		93.4		-5.416	1)
RUSSIAN JOHN H S 6N 16E 330CA15	0/ 0/ 5	35	J.	4.	54	2,3	0.10	70	0.60	25.	29.00	45.00	0.0	6.5 19		0.0	0.0	6. 0	0 8	3 . 5	239	6.	0.		95.7			11
MAGIC H S LANDENS 15 17E Z3AAB1		71	79.	57.	100	22.0	1.30	33 6	19.00	766.	0.0	60.00	0.04	83.0 1	.00	0.06	0.0	0.1	1499 6			60.			89.5		- Z.4 6ć	8

1200年11日 - 二 1211日 - 第一日 - 1211日 - 121日 - 1211日 - 121日 - 1211日 - 121日 - 1211日 - 121 1 3 Boise County and 7/ 0/55 67 0. 0. 90 2.0 0.0 52 0.80 22. 37.00 22.00 0.0 2.0 4.80 0.0 0.0 0.0 250 9.4 221 5. 0. 80. 95.0 10.1 6.017 1 DANS: * 38 - 5 BR E BETTE 6/ 8/72 40 0. 8. 48 2.4 0.10 66 0.90 85. 1.00 42.00 0.01 5.1 3.10 0.25 0.0 0.0 317 8.8 210 5. 0. 71. 95.0 11.5 6.521 3 10/20/77 48 0. 19. 64 3.9 0.0 73 1.30 71. 26.00 24.00 0.01 7.3 15.00 0.01 0.0 0.10 370 8.9 249 10. 0, 102, 93,3 10,2 -1,581 10 ₩ 18/18/72 55 0. 265. 59 1.9 0.0 68 1.10 45. 30.00 38.00 0.02 5.6 14.00 0.04 0.0 0_0 336 8.6 237 5. 0. 83. 96.0 13.6 -4.113 3 0.0 600 8.1 464 11. 0. 131. 94.2 16.9 6.565 3 K) (788) - E m # = = 7/14/72 65 0. 946. 69 1.9 0.10 66 1.30 46. 21.00 45.00 0.02 3.0 15.00 0.06 0.0 0.0 322 7.8 244 5. 0. 73. 95.5 12.6. -4.389 3 Bonneville County FRE CREW 8/10/72 25 0. 265. 11 440.0 96.00 110 120.00 1250. 0.0 390.00 0.04 1900.0 1.70 0.05 0.0 0.0 7949 6.3 4658 1493. 509. 983. 59.5 12.5 -C.170 A S S C A 9. 24 150.0 41.00 2100 34.00 9900. 0.0 2502.00 0.0 590.0 2.60 0.0 0.0 0.0 8649 6.4 6377 543. 0. 1557, 88.6 39.2 1.491 9 AL_____ * = ____ Sec. 100.00 0.53 2800.0 2.70 0.05 0.0 100.00 1500 180.00 880.00 0.00 0.00 0.53 2800.0 2.70 0.05 0.0 5.20 10499 6.5 6615 1508. 1087. 721. 61.5 15.3 -3.802 10 Butte County 8/ 9/72 41 110. 45. 55 74.0 24.00 72 21.00 3ZZ. 0.0 170.00 0.02 21.0 3.20 0.12 0.0 0.0 898 5.3 598 283. 19. 264. 33.5 1.9 -1.295 3 BUTTE DT Camas County 6/20/72 66 0. 731. 73 1.4 0.0 54 3.00 51. 37.00 12.00 0.03 5.1 4.10 0.07 0.0 0.0 252 8.0 214 3. 0. 103. 94.1 12.6 -3.553 3 - 12 1.450 : 10/31/73 60 0. 0. B1 1.0 0.0 56 0.75 45. 36.00 11.00 0.0 5.7 3.70 0.03 0.0 0.03 226 9.2 217 2. 0. 97. 97.2 15.4 -0.73 8 -<u>-</u> __ __ ____ THE THE TO/31/73 67 0. 95. 78 1.0 0.0 56 2.00 52. 30.00 12.00 0.0 5.7 3.30 0.70 0.0 0.0 215 9.2 217 2. 0. 98. 96.0 15.4 1.144 8 -27 (# 220 9.2 214 3. 0. 98. 96.0 12.6 -0.605 8

. _ 1 51 73 55 0. 8. 83 2.4 0.12 92 1.51 26 1.26 44.00 0.5 23.0 16.00 0.10 0.06 0.01 376 8.9 310 5. 0. 81. 95.9 16.5 .525 8

0. 57. 95.9 16.2 1.323

8

E TE TE TE TE SC. 75 55 0, 95, 82 2,2 0,12 91 2,00 c5, 2,40 44,00 0,0 23,018,00 0,10 0,0 0,03 333 8,9 29€ 6.

-205

Examinant Lation Table 1. Chemical Analyses of Thermal Mater from Selected Springs and Wells in Idaho (continued)

.

	भ मित्री भस्तराज्य प्रथमित्री (14	þ	þ	171	-81	(4)	• •	40	100		•1						
	- Di [44] - [1] - (1] - (8j	81 7	3	1 ' 1	ΞÌ	Р.	·	*		ý	1	1					
	(P)(\$)		, 4	191	7	1) 147		.,	1.1	· *]	1.		-1	.1	•			
	.mulho≳ tneshe4		Į.	×	ź.	5	Å	- , <u>- 5</u> -				Å		8	r. F.		11 L 11 L	ю	51
	Alkalinîty Alkalînîty			. 117.	\$	8	. 95.	86	69	, 158.		. 176.		173	72.		120.	.06	164,
Hardness	Non-Carbonate	(°.		°.		.0	ð	0	đ	ď	ే		ð	ð		25.	121.	0
Ŧ	Sofids (TOS) Serbonete		νî Έ	4	ې م	و 4-	5 6	5	-	0.	8	<u>ه</u> ۲		6	80		144.	64	ц.
	(bjeit) bevjozziŭ istoT		313	282	195	276	189	184	116	Ŕ	310	305	349	339	122		562	407	9 0
	(þieit) Hq		8.9	8.7	: 8°2	7.3	6 6 7	6 •6	9.2	7.8	0*8	8,5	8.2	B+3	8+0		8.0	7.5	8.2
	Conductance Specific (NH ₃)		418	460	270	328	208	206	150	460	491	411	335	347	172		463	610	27 P
	sinommA.		0.01	0.13	0.07	0"0	0,00	0.00	0.0	0.02	0, 02	0.0	0.02	0.02	0.0		0.0	0.07	
	Boron Boron		0.03	0.0	0,0	0.0	0*0	0.0	0.0	1.30	0.48	0-06	0.06	0. 02	0.0		0 • 0	0 .5	
	etentin (_E ON)		0.86	0°03	0, 27	0.07	0°0	0°06	0, 03	0.0	0.02	0.02	0-0	0, 15	0°C		0.0	1.22	0.41
	Flouride (F)	(cont'ā.)	17.00	13.00	6.50	15.00	2,00	1.90	0.80	08.80	11, 00	10.00	13,00	13.00	Z. 40		0*30	0.20	1
	(၂၁) ဓ၉၂-၊၀၂၂၅		24.0 17	10°0	35 . 0 6	5,015	4,2 2	3.2	2,10	6 0 ⁵ 3	11 0 11	10 IO	13.0 13	SI 0.7.	- P	Gruntg	3C.0 C	0.5	;;
	(Ք(Ն() թլթղվենցլլ	Correct	с . 5	5	5	Ц В		1	ľ. L	均 日	3	11	6. 1	3	 ئ			.A .3	
	eteilu2 (_Å)?	Camas	48.00	X. 0	22.00	35,00	7.76	8.8	3.30	5.30	5,80	9.10	13.00	12,00	6,30	10	72,00	130,60	34,51
	Cerbanate (CO ₅)		2, 40	16.00	11.00	28,00	57.00	51,00	Z6.00	0°C	0°C	0"0	0°0	0.0	0.0		0.0	5	••
	li (ceritonel e (ficili)	•	*	110-	80.	-15	J	41	ŝ	193.	205.	215.	.12	 Iù	in S		* 14	1	÷
	Potessium (X)		1.60	28	0.80	06•1	0.76	0. 39	0° 30	2.40	1.50	2-00	3,10	2.70			07*5	13 15 10	
	ሳክ [bog (ዋእ)		55	28	x	55	ପା ଏ	ণ শ	32	器	z	\$	106	8	11 X 14 Y		Ma	и Я	 .kj
	(⁶ W) արլseu6ew		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,61	0,12	0, 12	0.12	0.12	1.10		7,80	38.80	2.5
	mufals) (63)		2.2	1.7	2,5	9-1	1.0	0,8	0.6	3.0	3.0	2.2	3.6	3.4	5.6		45.0	70.0	6°.
	(² 015) 801115		78	72	44	96	68	68	36	78	83	64	84	84	8		28	55	77
	(meters) Discharge (i/m/i)		å	38.	76.	1764.	•	0	5	*	303.	0	38.	•	614.		;	•	•191
н ЧТС ЮЭВ	Reported Well Def Velow Land Surfs		•	0	0	0	•	•	122.	Ŕ	58.	120.	ਂ	°	ò		223.	0	ů.
	ureie Meesurod Suriace O ^O entistem D ^O entistem		5	8	1 44	2 81	3 4 9	5 45	Z 31	R S	3 35	3 45	5 72	3 49	7 21		5 22	7 22	73 In
	Sample Collection Dete		5 10/30/75	5 712-15 10/14/77	〒 - 5 五二15 10/14/77	27/01/T2	고 10/31/73	57/15/01 3: 450%	6/20/72	11/ 1/73	11/ 1/73	51/1 /11	11/ 1/73	11/ 1/73	<i>TT\</i> 2 /8		61/75/8	#2 10/ 6/77	12. 6.23
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		् इन्द्र	ີ ອີເ	ر ا ا ا	1 12	¥E15 1						10		ł				
	N	[ارب [.]		· 1	94 / 	
								i₩					All and a second se	₩ *11 1 . -					

1.11

- ,

WESLEY SCHOBER WELL 6/ 4/79 48 97. 2271. 38 3.3 0.20 131 1.00 227. 16.00 68.00 0.03 28.0 4-15 0.02 0.0 0.0 650 8.7 401 ÷ ¥ 213. 96.5 18.9 -6.272 15 2N 2W 34B0A1 CANNON FARMS WELL #4 5/ 6/54 30 0, 2952, 59 40.0 11.00 55 6.40 242, 0.0 62.00 0.0 7.9 يتحمد ا 0.0 0.0 0.0 509 8.2 ZN 3W 22DCC1 360 14 198. 43.8 2.0 7 ~0.55 ÷ CALDWELL MUNC. PARK WELL 4N 3H 28AAB1 10/ 5/77 28 67, 568, 49 11.0 0,10 0.09 53 2.00 160. 0.0 2,60 0.04 5.4 1.3 0.04 0.0 280 7.7 203 Z. 131. 79.1 4.4 10 -0.055 CALDWELL CLTY WELL 4N 3W 35ABD1 10/ 5/77 20 131. 3028. 29 19.0 1,60 37 1.60 140. 0.0 11.00 0.04 6.9 0.30 0.0 0.05 250 7.6 176 Ŧ - R. 115. 58.6 2.2 -1.773 1G Caribou Count BLACKFOOT RIVER W S 55 40E 14BCD15 9/27/73 26 4. 33 674.0 245.00 147 217.00 2357. 0.0 1132.00 0.0 110.0 1.72 1.30 0.42 470 6.2 3720 2685 0. 6_06 75E 1932 9.7 1.2 0.210 문 BLACKFOOT RESERVOIR W S 65 41E 1ADC15 10/11/73 23 \overline{z} 0, 568, 25 252,0 58,00 26 14,00 956. 0.0 70.00 0.0 28.0 2 0.03 0.01 0.04 146 6.2 925 8 ₩. 783. 6.3 0.4 -0.559 CORRAL CREEK WELL #1 65 41E 198AA1 9/12/73 42 40, 598, 28 701.0 263.00 101 237.00 2845. 0.52 4519 6.5 3670 2630-0.0 898.00 0.0 41.0 2.5 G. 35 1.20 **4955** 2331 6.6 0.8 0.383 CORRAL OREEK WELL #2 9/12/73 41 37, 397, 30 620,0 246,00 97 242,00 2763. 65 41E 19BAB1 0.0 908.00 0.01 43.0 3.3 0...24 1,90 0.47 4519 6.8 3548 2558- 254. 2264. 6.9 0.8 -3.31 CORRAL CREEK WELL #3 65 41E 198AC1 9/12/73 41 56, 79, 30 697,0 263,00 101 233.00 2723. 0.0 896.00 0.0 40.0 2000 0.94 1.30 0.52 4589 6.6 3601 25.2... ∋≝. 2231. 6.6 0.8 1.75 CORRAL CREEK WELL #4 64, 42, 30 649,0 253,00 99 233.00 2803. 0.0 884.00 65 41E 19BAD2 9/12/73 36 0.0 40.0 2.5 0.15 1.20 0.53 4399 6.6 3568 266 5 356 2297. 6.8 0.8 -1.624 PORTNEUF RIVER W S 75 38E 26C8015 8/23/77 34 0. 189. 38 280.0 64.00 81 62.00 1060. 0.0 270.00 0.06 62.0 0.31 2399 6.2 1379 962 WE 869. 14.5 1.1 -0.906 32 0_.*** 0.0 0.0 SODA SPRINGS GEYSER 95 41E 12ADD15 9/ 2/73 28 0. 4. 35 851.0 193.00 12 23.00 2613. 0.0 801.00 0.0 <u>تحصي</u>1 5,,7 0.2: 0.06 0.05 1959 6.5 3207 29 . TE 2141. 0.9 0.1 -0.258 Cassia County SIX S RANCH WELL **#**1 115 25E 11CCA1 7/26/72 60 136. 7911. 60 8.2 0.50 110 3,90 125 0.0 59.00 0.0 55.0 14.33 é.c 0.0 0.0 574 7.7 372 Ξ. 102. 89.7 10.1 -2.72 Ξ. 5 SIX S RANCH WELL #2 115 26E 200001 8/ 5/75 32 0. 5095. 46 31.0 0.50 34 3.80 143. 0.0 29.00 0.0 5.9 1_____ 0_0 0.0 0.0 310 7-9 222 구프. ۳. 117. 46.7 1.7 -1.52 4 CRITCHFIELD WELL 115 26E 28BCB1 7/25/75 35 0. 5095. 47 31.0 0.40 - 34 4.10 141. 0.0 13.00 0.0 26.0 - <u>- 16-</u> 5.0 0.0 0.0 0 7.6 220 116. 46.7 1.7 -1.436 ेन्द्र a. C & Y RANCH WELL 12 115 27E 58AB1 9/ 0/66 29 0. 0. 78 26.0 7.20 100 0.0 230. 0.0 14,00 0.0 90.0 3.40 6.90 0.0 655 7.6 0.0 432 185. 69.7 4.5 -4.2** 34 LYLE DURFEE WELL 135 25E 22BC81 9/ 0/66 30 0, 18 22.0 ٥. 5.40 19 0,0 94 0.0 13.00 0.0 22.0 1 2 ಎ.ಕಂ 0.0 0,0 238 7.3 147 77. 34.9 0.9 -3.515 -WARD SPR LNGS 135 26E 17CCD15 8/ 8/75 21 0. 322. 45 34.0 0.60 14 3,00 92. 0.0 9,50 0.0 25.0 O.T 2.2 0.0 0.0 217 8.2 176 57 75. 25.0 0.7 -1.135 2 145 21E 34BDC1 7/26/72 43 0, 189, 47, 14,0 1.10 44 9,60 144. 0.0 15.00 0.01 7,0 1.75 1.0 0.0 0.0 2 282 8.0 209 . 118. 64.9 3.0 -0.251 DAKLEY H 5 145 22E 27DCB1S 10/26/72 47 0. 36. 70 2.7 0.0 87 2,20 43. 29.00 22.00 0.03 53.0 S. 0.0 0.0 421 9,6 295 54. 95.2 14.6 -0.95_

한 사람이 들었던 바람이 가지 않는 것이다.

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

										_																	-	
Spring or We Identificatio Number and Nem	ກ ທີ່-ີ	Measured Surface	erure d Wel		SILICE	Calcium Calcium	Magnes um (Ma)	Sodium	Potass lum (K)	Bicarbonate (HCO ₃)	Carbon <i>a</i> te (CO ₃)	Sulfate (SO ₄)	Phosphate (PO ₄)	Chloride (Ci)	Flouride (F)	NI†rate (NO ₃)	Boran (8)	Ammon Ia (NH ₁₃)	Specific Conductance	(field)	Totel Dissolved Solids (TDS)	Carbonate Let	Non-Carbonate Non-Carbonate	Alkallnity as CaCO3	Percent Sodium (\$Na)	Sodium Absorption Ratio (SAR)	Cation-Anion Balance	Refaronco#
					-							Cassi	<u>a Cou</u>	nty (co	ont'd	•)	æ											
SEARS SPRING 145 25E 68861S	8/ 5/75	28	0.	662,	22	29.0	7,50	15	3,30	120.	0.0	10,00	0.0	19,0	0.40	0.0	0.0	0.0	270	8,2	165	103.	5.	96.	23.3	0.6	0.365	9
GRIFFETH-WIGHT 145 26E 18001	NELL 0/0/0	77	1982.	378.	64	5.0	12,00	14	2.50	116.	124,00	27,00	0,01	62.0	D. 0	1.20	1.00	0.0	10000	8.4	368	62.	0.	302.	31.9	0,8	-62.093	10
HAROLD WIGHT WEI 14S 26E 10DA1	L 6/14/77	63	0.	0.	83	1,0	0,20	170	2,90	240.	36,00	25.00	0.0	72.0	7.30	0.50	0.0	0.08	600	9.3	515	3.	0.	257.	98.1	40.6	-3.683	12
HAROLD WARD WELL #1 145 27E 18CCC1	7/24/75	24	ů.	3399.	90	55.0	2,20	170	29,00	131.	0.0	23.00	0.0	300.0	1.10	0.0	0.0	0.0	960	7.6	734	146.	39.	107.	66.8	6-1	-0.457	ç
MORRIS MITCHELL WELL #2 155 21E 250CC1	9/22/77	46	0.	38,	78	2.0	. 0. 10	110	1.80	230.	11.00	21.00	0.02	17.0	2,40	0,03	0.0	0.08	475	۵ ٦ ΄	306	5.						16
HAROLD WARD WELL #2						37.0																		207.			-2.673	16
155 24E 2200B1	1/25/72		152.	378.	44 66	3.6	9.30 0.10	70 120	3.10 3.40	169 .	0.0 20.00	33.00 40.00	0.03 -0.0		2.90 7.60	0.56	0.0	0.0		7.4		131.		138.			-1.377	1
155 25E 29C0C1 BLM 155 26E 12ACC1			o.	0.		300.0			270.00	58.	0.0	40.00			3.90	0.0	0.0	0.0		8.9	376	9.	0.		95.0		1.840	9
BLM																	-		998			754.	707.	48.	79.8	51.7	-1.427	ę
155 26E 220001	WELL #1		0.	189.	56	56.0	0.50		14.00	63.	0.0	52,00			5.00	0.0	0.0	0.04				142.	90.	52.	94.7	47.5	0.762	9
FRAZIER H S WELL	10/23/75		0.	15.		43.0 53.0			37,00	63.	0.0	40.00	0.0	680.0		0.0	0.0	0.0				111.	60.	52.	84.6	16.5	- 2,265	9
155 26E 23BBC1 HARRIAT ORANK WE	5/18/72					-	0,40		22.00 35.00	55. 36.	0.0	57.00 61.00		900.0	5.70	0.54	0.0	0.0				134.	89.	45.			-0.381	3
155 26E 2300C1	5/16/72	30	102.	2219		(5020	0.40	110	27,00		010	01.00	0.01	190020	4.00	0.01	0.0	0.0	6089	1.1	3365	326.	296.	30.	86.7	26,7	-0.474	3
WELL #3 155 26E 230001	7/30/75	33	0.	0.	53	140.0	8,30	450	19.00	174.	0.0	69.00	0.0	820+0	2.30	1.10	0.0	0.0	2459	7.0	1648	383.	241.	143.	70.6	10.0	0,265	1z
REID STEWART WEL 155 26E 24BAD1	7/24/75	32	0,	3399.	47	100.0	6.30	380	16,00	177.	0,0	65.00	0.0	650.0	1.90	0.0	0.0	0.0	2179	7.3	1353	275.	130.	145.	73.6	10.0	-0.596	ş
IVAN DARRINGTON WELL ≸4 155 26E 24DCC1	7/29/75	31	0.	3399.	55	88.0	7.10	340	16,00	161.	0.0	52,00	0.0	560.0	2.50	0.0	0.0	0.0	1839	7.5	1199	249.	117.	132.	73.3	9.4	1.293	5
BLM 155 26E 25ACA1	1/14/75	30	0,	83.	88	35.0	3,90	370	34.00	176.	0.0	32.00	0.0	570.0	2.80	0.0	0.0	0.21	1949	7.7	222	103.	0.	144.	84.6	15.8	-2.119	÷
ƏLM 165 265 588A1	3/28/75	40	0.	151.	37	58.0	9,00	240	13.00	138.	0.0	44,00	0.0	380.0	4.40	0.0	0.0	0,14	1539	6,8	853	182.	69.	113.	72.5	7.7	0.971	÷

LIDY H S #I 9N 33E 288C1S 8/25/72 50 0, 946, 34 87.0 16.00 27 15.00 179. G.C. 1987. 30 1.17 <u>a</u>__∑ 6,00 0.02 0.0 0.0 691 6,3 471 283. 136. 147. 16.3 0.7 -1.495 З LIDY H S WELL 8/22/77 59 149. 6813. 37 55.0 14.00 24 12.00 180. 10N 33E 350001 C_C गर्थ उ **~**_~ 4.40 0,0 0.0 0.09 490 7.6 342 195. 47. 148. 19.9 0.7 -2.047 80 WARM SPRINGS 11N 32E 25AAC1S 8/28/72 29 0. 7267. 17 54.0 19.00 9 2.90 209. 5.5 1.00 0.12 Q., C. ಕ್ಷಮ್ಮೆ ಮಾತ್ರ in te U*0 0.0 457 7.0 274 213. 42. 171. 9.0 0.3 -2.285 - 3 Trans Istary BOWERY H S 1. A. 549 7.3 383 0. 114. 68.5 4.3 7N 17E 6ABA15 8/17/72 43 76, 62 22,0 4,50 84 8,40 139, 5.3 12.00 0.0 0.0 0.0 73. ٥. -2.352 PIERSON H S 8N 14E 2708015 7/ 3/72 60 0. 49. 70 1.8 0.10 73 1,00 31, 35,00 31,00 .= 19.00 0.0 0.0 0.0 331 9.0 253 5. ۰. 84. 96.3 14.3 -3.652 WEST PASS H S 95, 43 21.0 5,50 100 13.00 234, B,40 0,06 0_0 651 6.7 6N 17E 328CA15 7/12/72 51 Z.--: 0.0 0. 0-C 36 76 \$26 75. 0. 192. 70.4 5.0 -6.316 - 5 STANLEY H S 10N 13E 3CAB1S 7/12/72 41 0, 416, 55 2.2 0.10 60 0.50 3ũ. 25.00 5.20 ±_1 34.00 0.05 0.0 0.0 293 8.8 210 б, ٥. 71. 95.2 10.7 -4.042 З SLATE CREEK H S - <u>-</u>--0.0 437 8.0 21. 90. 87.3 8.0 5 10N 16E 30BAD1S 7/11/72 50 0, 700, 86 8.1 0.10 83 4.50 116 G. C 100 5.77 8.70 0.03 0.0 361 n. ~7.145 ELKHORN H S 11N 13E 36BAA1S 9/ 0/54 57 0. 75 0.30 72 2.40 Z. 35.01 51.11 0.0 0.0 0.0 328 1.0 ----9.6 252 ο. 80. 95.8 16.2 -0.602 ٥. 4. BASIN CREEK W S 62 25. 35.X 35.X ____ <u>a_=</u> 14.00 0.0 0.0 304 11N 14E 2100815 7/ 3/72 38 0. 0. 86 2.1 0_0 1,20 0.0 8.8 255 5. 0. 77. 95.2 11.6 -6.077 MORMON REND H S '4. 89 Z.2 0.10 62 1.30 Z3. 35.00 35.71 -----±...± 14.00 0.0 0.0 0.0 0 8.6 11N 14E 29AAB15 0/ 0/ 0 38 0. 257 б. 0. 77. 94.7 11.1 -6.033 SUNBEAM H S 11N 15E 19CAB1S 7/12/72 76 0. 1681. 91 1.5 0.0 85 2.40 74 - TC . 15.00 0.06 0.0 0.0 413 8.5 319 98. 96.4 19.1 -4.741 3 115. 0_0 -4. ٥. ROBINSON BAR H S 11N 15E 2700C1S 0/ 0/ 0 49 0. 151. 80 2.0 0.40 77 3.60 26. 41.00 F.X -12.00 0.0 0.0 0.0 0 9.3 292 0. 91. 93.7 13.0 -3.919 7. SULLIVAN H S 11N 17E 2760015 7/12/72 41 0. 265. 38 49.0 11.00 170 15.00 554. 1.80 1069 2.1 Æ., Di - ---0.06 0.0 0.0 7.0 640 167. 0. 454. 66.5 5.7 -0.873 τ BARNEY W S 11N 25E 23CABIS 7/13/72 29 0. 643. 18 37.0 20.00 364 7.8 214 175. 9 1.50 18. 2.0 i.i.i.i ÷...-0.50 0.25 0.0 0.0 26. 148. 10.0 0.3 0.937 Ξ BILL JOHNSTON WELL 14N 19E 34DAA1 7/12/72 40 915. 189. 23 55.0 21.00 45 7.60 225 30.00 1.10 0.10 625 7.3 - - -0.0 0.0 397 224. C.C. 38. 185. 29.6 1.3 0.188 SUNFLOWER FLAT H S 16N 12E 800615 0/ 0/ 0 43 0. 16. 59 4.5 0.0 91 1.60 79. 2.2 166-26 2.00 0.0 0.0 0.0 0 7.4 319 i1, о. 65. 93.7 11.8 -1.956 THOMAS CREEK RANCH H 16N 12E 17DAD15 7/ 4/71 43 0. 257. 81 2.1 0.0 82 1.80 54. Z5.00 63..00 -12.00 0.0 0.0 0.0 377 9.0 306 5. 0. 91. 95.9 15.6 -4.483 LOWER LOON CREEK H S ______ 17N 14E 19B0815 7/ 4/71 49 0. 30. 72 2.9 0.0 93 1.30 114. To.CU- E 100. 433 8.7 2 0.0 0.0 0.0 318 7. 0. 123. 95.8 15.0 -3.271 Europe de la comp CHARLES BAKER WELL 3N 10E 10AEA: 10/14/77 41 90. 19, 67 7,4 0,0 55 0,60 65, 51,11 H. .: _.42 0.06 0.0 0,05 260 9.7 236 0. 140. 86.2 5.6 18. -9.594

<u>Lan</u> Lany

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

ł

ĸ

••

	· · ·																		
	steU ¥eznerefeA	}	M	m	÷	-	12	12	l M	ю	12	12	5	м	۳۱	12	M	*1	P •
	noinA≁noits) e⊃nsis8		-4.613	-0.688	-3,980	-1-439	0. 128		-4.152	14.836	-4.394	0.597	-4 . 534	-4, 076	-3.904	-0,009	-0,812	-3,865	े जन्म जन्म
ι 	olfqnoedAmulbo2 Sodfum Rafio (SA2)		10.7			4.5	1 . B	0,8	je je	8.5 -1	- 9*0	1.2	2.5	2.8 2	16.2 -	5	5	`` `	13.5
	Percent Sodlum (≴N≹)]	95.2 1			92,7	48.3	29.1		97.4 2	30.0	37.5	96.3 2	98.2 Z	96.6 1	26.9	94,5 26	97.2 21	6*56
	AIKelln147 as CaCO3		95 .	66	81,	69.	114.	83.	144.	129,	8	118,	366.	135.	124.	166.	653.	235.	121.
ness	etsnodrsO~noN		•	ď		ð	്	6		6	ď	്	ů	6	°	.61	•	0	•
Hardness	Carbonate Carbonate		4	. *	ę.	6	71.	ŝ	4	.:	44.	, . 16	.6	7	و .	185.	27.	7.	ų,
	bevlozzid istoT (201), sbilo2		8	287	223	248	210	661	297	52	114	525	491	282	300	1 895	858	795	255
	(bleit) Hq]	9.2	8 . 5	9	·e	8.0	7.5	ŝ	4	-2	8,0	7.8	5	9.6	7.8	۲	o,	5
	sitiseq2 Construction (fielt)		22.2	562 562	268 8,	300 9.	272 8	273 7	382 8,	243 8,	128 8,	306 8	7 03 7	387 9.	419 9	515 7	1339 7.	5 9Ú 7.	a Sec
	eincann A (≿ ^{HN)}		0.0	0"0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0"0	0.0	0.0	0.10	0.0	0*0	0.0	0*0
	60ron (8)	}	0"0	0*0	0.0	, O	0.0	0"0	0*0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
	etsitiN (₂ 0N)		0.04	0,02 0	02	0.10 0.	1.30 0	2.60 0	0.06	0.07 0	63 Q.	0.78 0	0*00	0.05 0.		0.15 0.	0.04 0.	Эб	03 0.
	(F) (F)	(p	3.10 0		0		B0 1.	0+70 2.		7.00 0.	5 50				0.0		20 0.	00 0*00	°0 00
	(10) (11)	(cont 'd	2,6 3,	2.9 10.00	Z.4 10.00	6+0 14+00	8.3 D.	14.0 0.	4.5 17.00	2.7 7.	2,3 0.	9*3 1*00	10.0 3.00	5.2 16.00	18.0 23.0	12.0 1.10	•0 2.	0 D.	6.1 20.0
	etsdesod¶ (₽04)	County	0.03	0.03	0, 03	0*0	10.0	0.01	0.04	0.04	0.20	0.01	0*02	0.03	0.05 11	0.02 1:	0.04 59	•03 29	¢.03 €
	etstiu2 (pO2)	Elmore	17.00	51.00	20.00	00"65	19-00	15.00 (14.00 (10.00 (6.60 (00.61	5.40 0	14.00 6	10.00 0	77,00 0	6,50 0	2,50 0,	0 35°E,
	etenodre) (₅ 00)		35,00	21,00	40-00	21-00	0.0	0.0	50.00	8	0*0	0.0	0.0	8.	42.00	0*0 7	0.0	00	50
	81carbonate (E ⁰⁰ 3)	1	45. 3	5.5	17. 4	41. 2	.951	108.	74. 5(90. 33	72. (144. (47. 0	81. 41	66. 42	202, 0	797. 0	270, 8.	15 .)ć.
	mula≥nto ^q (X)		00.1	1.80	92 I	1.60	6 . 50	5.80	0.60	1.70	30	5,60_1	3.70 4	0.80	0.80	7.80 2	11,00 7	00	
	mulbo? (ы)	[8	67	51	65	R	8	87	£.	σ.	2	160	82 (91	53	320	130 0.	U K
	(6M) Mulizengen		0,10	0,10	0, 20	0-40	6.90	5.60	0.0	0.0	2.80	8.10	0*20	0.0	0.0	14-00	1,00 3	0,20	0° C
	mu1ວ1ຄິວ (ຄິງ)		i.5	1-1	2,2	3.0	17.0	B.0	1 ,5	0.4	13.0	2°0	3.2	6°0	2.4 (21.0 12		2*5 C	2.5 0
	(ZOLS) 1115		69	100	72	78	48	59	86	100	41	65 2	96	85	81	73 5	58	46	57
	(i/win) Discharge]	0	1321. 100	1135.	•	6	•	2649.	6	0	់	Š.	°.	238.	6	ຜ່	204.	ೆ
өр 414	Reported Weil Dep Stor Land Suris (anters)]	6	•	5	6	128.	53.	183. 26	.	162.	184.	. 579.	358,	701. 2	137.	402.	285, 2	596.
	Mensured Surface J ^O Entered]	38	36	65	ጽ	5	କ	68	55	5	ĸ	BE BE	62	65	21	×.	38 2	32, 5
	elqmeč noitseiloj et50		8/29/72	8/17/72	S 8/17/72	7/ 0/55	8/10/76	8/13/76	8/ 14/72	21/5 /1	8/16/76	ו אבונ 1 אבונ	6/ 6/72	8/29/72	21/22/1	8/10/76	/ 5/72	6/22/12	6/19/72
	Spring or Well Lidentification Number and Name		PARADISE H S WELL 3N 10E 3380B1 8	NINEMEYER H S 5N 7E 24B001S B	DUTCH FRANK'S H S 5N 9E 788A1S 8	ATLANTA H S 6N 11E 350AD1S 7	JOHN MALOTÁ MELL 25 56 236BC1 8	LONG TOM RANCH WELL #1 35 7E IACAI 8	IESLIE BEAM WELL 35 BE 36CAD1 B	LATTY H 5 35 10E 31D0B15 7,	ROBERT BRUCE WELL 45 SE 2568C1 8	BEVERLY OLSON WELL 45 7E 1980B1 8,	NORTHMEST P SPEL (NE WELL 45 BE 36BBA1 6,	BILL DAVIS WELL 45 9E BACAI 8,	GARY LAWSON WELL 55 3E 140881 7,	MIKE WISSEL WELL 55 7E 16ABD1. 8,	CHARLES BOYD WELL 55 8E 348DC1 7/	MAGLC WEST CO. WELL 55:10E 528081 6/	CHARLES ANDERSON WELL 55 THE TADOL 6/

										rian	<u>krin</u> <u>c</u>	ouncy												
TREASURTON W S #1 125 40E 36ACD1S 9/ 6/73 3	50.	38,	54	265.0	68.00	563 127,	00 704	0.0	788.00	0.01	632.0	2, 20	0.93	1,30	3,40	4145	6. 6	.2846	941.	364.	577.	52.6 B.O	0,771	6
TREASURTON ₩ S #2 125 40E 36ADB15 9/ 6/73 33	3 O.	38.	52	259.0	64.00	517 137.	00 704	. 0.0	755.00	0.01	633.0	1,90	0.37	1.20	3.40	4199	6.6	2 765	909.	332 . [.]	5 77 .	50.9 7.5	-1,101	6
CLEVELAND H S ∦1 125 41E 31CAC1S 9/ 6/73 64	5 0,	76.	60	206.0	50.00	458 98.	00 71E	. 0,0	533.00	0.01	532.0	1.90	0.11	1,60	2,80	3229	6.4	2294	725.	136.	588.	54.0 7.4	-1.334	6
CLEVELAND H S #2 125 41E 310CA15 9/ 6/73 🛠	5 O.	38.	63	172.0	50.00	460 100.	00 583	. 0.0	538.00	0.01	532.0	1.90	0,76	0.80	2.80	3189	6.5	2204	635,	157.	478.,	56.7 7.9	-0.856	6
CLEVELAND H S #3 12S 41E 31CDB15 9/ 6/73 6	1 0.	189.	-64	178.0	50.00	460 102.	00 576	. 0,0	530,00	0.01	530.0	1,90	0.21	1.50	2.90	3375	6,5	2199	650	178.	472.	56.2 7.9	0.194	6
MAPLE GROVE H S 135 41E 7ACA15 9/ 5/73 70	з О.	76.	84	85.0	30.00	492 82.	00 494	. 0.0	256.00	0.01	59 6.0	1.10	0,07	1,40	2,30	290=	6.6	1869	335.	0.	405,	70.8 11.7	-0.057	6
MAPLE GROVE H S 138 41E 7ACA2S 9/ 5/73 72	20.	378,	85	93.0	29.00	501 82.	00 495	. 0,0	261,00	0.02	601.0	1.10	0.12	1,30	2.30	2979	6.8	1896	351.	0.	406.	70.5 11.6	0.670	5
MAPLE GROVE H S 13S 41E 7ACA3S 9/ 5/73 60	o 0,	3539.	86	93.0	25.00	492 80.	00 494	. 0.0	251,00	0.01	584.0	1.00	0.06	0.90	2,30	28 95	6,8	1854	335,	0.	405.	71.0 11.7	0,486	6
BEN MEEK WELL 145 39E 36ADA1 9/ 5/73 44	o 4.	٥.	89	24.0	6.60	368 22.	00 513	. 0.0	13.00	0.01	322.0	9.60	0.10	1,10	0.58	1809	6.5	1106	87.	0.	420.	87.4 17.2	0.144	6
ELDIN BINGHAM 155 39E 70BC1 8/24/77 63	30.	38.	68	320.0	36,00	4600 770.	930	. 0.0	46.00	0,12	7800,0	3.9 0	0.0	0.0	4.40	27995	6.2	74103	946.	184.	762.	83.8 65.0	0,469	10
BATTLE CREEK H S 155 39E 8BDC1S 9/ 5/73 8	z 0,	189.	109	174.0	19.00	3161 552.	00 696	. 0.0	35,00	0.01	5241.0	6.00	0,11	7.60	3.50	16619	6,7	9 639	512	0.	570.	84.9 50.8	0,613	6
ВАТТLE OREEK H S 155 39E 880C2S 9/ 5/73 4	30.	. 8176.	107	166.0	15.00	3071 535.	00 697	. 0.0	29.00	0.01	5048.0	6.00	0.42	7.30	3.40	15439	6.5	932 0	476.	0,	571.	85,2 61.2	0.786	6
BATTLE OREËK H S 155 39E 880C3S 9/ 5/73 8	1 0.	. 0.	109	162.0	19.00	3053 533.	00 757	. 0.0	37.00	0.01	5034.0	6.00	0,28	7,20	3,60	15943	6.5	9325	482.	0.	620.	85.1 60.5	0,318	6
BATTLE CREEK H S 15S 39E 880C4S 9/ 5/73 84	4 O.	19.	97	215.0	24,00	4184 686.	00 610	. 0.0	33.00	0,01	6967.0	6.40	0.06	10,00	5,30	18475	6.8	12512	635.	135.	500.	85.7 72.2	1,255	6
SQUAW H S WELL 15S 39E 17BCD1 9/ 4/73 84	4 2.	435.	124	279.0	24,00	4368 782.	00 791	. 0.0	35,00	0.02	7398.0	4.30	0, 12	8.10	4.30	20455	6.5	3403	795.	147.	648.	84.1 67.4	0, 836	6
SQUAW H S 15S 39E 17BDC1S B/22/73 69	ə 0.	140.	126	271,0	23.00	4184 708.	00 816	. 0.0	27,00	0.03	6877 . 0	4.30	0,16	7.30	4.20	20519	6.5	32621	771.	102.	669.	84.4 65.6	1,833	6
SQUAW H S 158 39E 178DC25 9/11/73 73	з [`] 0.	450.	126	241.0	26.00	3844 533.	30 866	. 0.0	23,00	0,02	6396.0	4.80	0.06	9.70	4,60	16859	6,6	11619	708.	Q.	710.	85.7 62.8	0.046	6
MYRON FONNESBECK WELL 165 38E 24ABC1 9/ 3/73 23	3 48.	*****	74	78.0	27.00	68 18.	0 418	. 0.0	4.30	0.03	91.0	0.50	0.08	0.10	0.42	889	6.8	566	306.	0.	343.	31.0 1.7	-0.017	6
										Fremo	nt Cou	пtu												-
DONALD TRUPP WELL 7N 41E 25CBD 7/20/76 32	z 0.	0.	76	23,0	3.30	88 12.0	00 181	0.0	26,00	0.0		6.20	0.0	0.0	0.0	524	7.5	348	71.	٥.	148.	68.9 4.5	9.829	9
WAYNE LARSEN WELL 7N 41E 26ACCI 0/0/0 22	2 0.	0,	94	19.0	2,70	93 12.0		. 0.0	23,00	0.0	28.0	7.10	0.0	0.0	0.10	53"	5,1	398	59.	0.	199.	73.3 5.3	-1,445	13
HENRY HARRIS WELL 7N 41E 34ADD1 6/16/77 33		0.		25,0	5.90	69 6.9			26,00	0.0	22.0		0.83	0.0	0.15		7.ć.	325	87.	° .	167.	61.1 3.2	0,083	12
NEWDALE CITY WELL 7N 41E 340C01 0/ 0/ 0 32		0.		31.0	6.40	73 8.6			0.0	0.0		4.70	0,0	0.0	0.10		5.0	339	104,	o.	193.	58.1 3.1	4.705	12
WALLACE LITTLE WELL 7N 41E 350DD1 8/ 9/72 36				28.0	6.30	76 6.0			33.00	0.02		5.40	0.79	0.0	0.0									د ه ب
10 415 10000 01 01 97 10	1266	~.		-010	0.00	0.0	<u></u>		90.00	0.02	44 a U	J.40	0.19	7+0	0.0	536	7.9	377	96	0.	197.	61.4 3.5	-0,853	2

Franklin County

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

and the second states of the

		-	·····																			_	-			Ţ			
Spring or We∣ Identification Number and Name	i Ω – [−]	Measured Surface Temberature OC	Reported Well Depth below Lend Surface	(meters) Discharge	Silica	(2012)	Calcium (Ca)	Maghasium (Mg)	Sodium. (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Carbonate (CO3)	Sulfate (SO4)	Phosphate (PO ₄)	Chlaride (CI)	Flouride (F)	Nitrate (NO ₃)	Boron (8)	a Increation (_E NN)	\$pecific Conductance	(field)	Total Dissolved Solids (TDS)		Non-Carbonate	Alkailnity as CaCO ₃	Percent Sodium (\$Ns)	Sodium Absorption Ratio (SAR)	Cat form-Anton Batance	Data Reference*
					-						:		Fremor	t Cour	nty (co	ont'd	.)												
CLAUDE HAWS WELL 7N 41E 360DA1	6/24/76	32	Û.	0.	. 68	24.	.0	7.30	44	4.90	186.	0_0	16.00	0.0	12.0	3.00	0.0	0.0	0.0	375	7.5	271	- 90.	0.	154.	49.9	2,0	-1.575	9
DEAN SWINDELMAN 7N 42E BCAA!	ÆLL 6/22/76	32	0.	0.	. 65	38.	.0 k	4.00	22	4.80	205,	0.0	8.80	0.0	14.0	2.00	0,0	0.0	0.0	388	7.6	269	152.	0.	168.	23.2	0,8	0.782	9
REMINGTON PRODUCT 7N 42E 19CCA1	E WELL. 7/19/76	26	0,	0.	. 33	35.	.0 1	7.00	15	2.20	144.	0.0	22.00	0.0	24.0	2.20	0.0	0.0	0.0	383	7.9	221	157.	39.	118.	16.9	0.5	3,179	9
ASHTON H S 9N 42E 23DAC1S	8/28/72	41	٥.	8.	110) i .	.)	0,10	36	1,60	92.	0.0	4.70	0.05	2.9	2. 20	0.24	0.0	0.0	166	7.6	204	3.	0.	75.	93.8	8.8	-4.591	3
BIG SPRINGS 14N 44E 34BBC1S	8/28/72	12	0.	****	47	5.	.6	0.60	14	3.00	46.	0.0	3,20	0.03	2.5	3.10	0.05	0.0	0.0	102	6.4	101	16.	0.	38.	60.0	1.5	-4.456	3
											-			<u>Gem</u> (County														
ROYSTONE H S 7N 1E BODA1S	11/24/72	55	0.	76.	. 120	58.	•7	0.60	160	7.70	187.	0.0	110.00	0.04	62.0 1	6.00	0.0	0.0	0.0	799	7.5	576	24.	0.	153.	91.1	14,2	-2,421	3
EAST ROYSTONE H 7N 1E 9CDC1S		45	0.	0,	, 94	15.	•0	2.40	99	5.30	169.	0.0	57.00	0.02	30.0	B.00	0.67	0.0	0.0	529	7.6	394	47.	0.	138.	79.9	6,3	1.154	3
-													<u> </u>	Goodin	g <u>Coun</u>	ty													
J. SHANNON WELL 45 13E 28ABB1	6/21/72	47	49.	0.	92	9.	.6	1,20	100	5,90	278.	0.0	19.00	0.05	8.2 12	2.00	0.49	0.0	0.0	497 ·	7.0	38 5	29.	0.	228.	85,5	8,0	-7.062	3
WHITE ARROW H S 45 13E 30ADB1S	5/26/72	65	٥.	3126,	97	۱.	.2 (0.0	91	1.60	141.	22.00	15.00	0.03	6.6 12	2.00	0,11	0.0	0.0	407	7.5	315	3.	0.	152.	97.5	22.9	~1.598	3
DAVE ARCHER WELL 55 12E 3AAA1	6/19/72	5 7	211,	0.	62	1.	.6 (0.10	90	0.80	83.	42.00	19.00	0.03	8.4 19	.00	0.17	0.0	0.0	413	8.6	283	4.	0.	138.	97.3	16.7	-4.755	3
														Idaho	County														
BURGDORF H S 22N 4E 1BDC15	8/ 1/72	45	0.	613.	73	2.	.3 (0.0	49	0.80	19.	41_00	18,00	0.02	3.0 2	z.00	0.03	0.0	0.0	218	8.1	198	6.	0.	84.	94.0	8.9	0.067	3
RIGGINSH 5 24N 2E 14DBD13	8/ 1/72	42	0.	189.	72	. 6.	.2 (0.10 1	60	3.40	11.	25.00	300.00	0.02	8.0 2	2.10	0.02	0.0	0.0	812	8.6	5 82 ⁻	16.	0.	51.	94.5	17.5	-1.703	3
BARTH H S 25N 12E 18DD 15	0/0/0	61	٥.	742.	70	1.	.6 (5. C	50	0.50	51.	29.00	5,30	0.0	3.6 5	5.70	0.0	0.0	0.0	0	9.0	190	4.	0.	90.	95.9	10.9	-1.300	2
RED RIVER H S	8/21/72		0.	132.	76	2.	7 (0.C	81	1.60	36.	36.00	44.00	0.01	4.4 23	.00	0.04	0.0	0.0	380	8.6	286	7.	0.	89.	95.3	13.6	-4.630	3
WEIR OREEK H S 36N 11E 13BCC15	·		ο.	151.	49	3.	.3 (5.6	29	0.50	21.	22.00	15.00	0.03	2.1 2	2,20	0.03	0.0	0.0	145	8.5	133	8.	0.	54.	87.7	4.4	-4.667	3
JERRY JOHNSON H 36N 13E 18ADD15	5/23/72	4ē	ο.	1135.	49	z.	7 (37	0,40	24.	25.00	25.00	0,04	1.9 1	.60	0.03	0.0	c.c	185 1	5.7	154	٤.	0.	61.	90.9	5.9	-3.915	3

Jefferson County

HEISE H S 4N 40E 2500ATS	7/27/72	49	0.	227.	30 4	\$50.0	82.00	1500 1	90.00	1100.	0.0	740.00	0.04	2400.0	3.10	0.10	0.0	0.0	8839	6.7	5936	1460.	558.	901.	65.7 17	۱ ۲۰۱	-1.000	1
						·							Jeron	e Cour	+v													
ROYAL CATFISH INDUSTRY 95 17E 290881	5/24/73	43	0, ⁺	*****	74	2.2	0.0	98	1.90	108.	42.00	17.00	0.10	16.0 1		0.0	0.0	0.0	454	9.0	315	5,	0,	158.	96.4 18	9.2	-1.775	ð
													Lemhi	i Count	<u>y</u>													
CRONKS CANYON H 16N 21E 18ADC15		46	0.	76.	37	11.0	1.40	160	11.00	339.	0-0	66.00	0.04	26.0	7,00	0.06	0.0	0.0	757	7.4	486	з.	0.	278.	88,0 12	2.1	-1.016	3
SALMON H S 20N 22E 3ABD15	8/24/72	45	0.	549.	33	23,0	11,00	190	- 28.00	565.	0.0	34,00	<i>.</i> .0• 04	50.0	1,80	0.03	9.0	0.0	1059	6.3	648	103.	0.	463.	.74.9	8.2	-1.960	3.
SHARKEY H S 20N 24E 34CCC1S	8/24/72	52	٥.	30.	91	7.3	0.60	270	17.00	470.	0.0	160.00	0.02	51,0	2.00	0.08	0.0	0.0	1269	7.4	840	21.	0.	385.	93,3 2	5.8	-2.196	3
BIG OREEK H S 23N 18E 220AD15	7/13/72	93	0.	284.	150	5.3	0.20	220	14.00	4 8-9	0-0	53.00	0.05	29.0	15.00	0.07	0.0	0-0	1009	7.5	726	14.	ο.	400.	93.7 2	5.5	-2.482	3
												<u>I</u>	Madisc	on Cour	ty	•												
LAVERE RICKS WEL 5N 40E SCBAT	L 0/0/0	21	98.	0.	42	34.0	12.00	18	3.10	174.	0+0	11.00	0.0	20.0	1.30	0.0	0.0	0.0	341	7.9	226	134.	0.	143.	22,1	0.7	-2,345	4
MARK RICKS WELL 5N 40E 88CC1	6/15/77	26	0.	0.	50	33.0	11.00	20	3.90	170.	0.0	12.00	0.0	12.0	1.70	0.81	0.0	0.03	٥	7.6	227	125.	0.	139.	24.7	Q . 8	0.489	4
PAULINE SMITH WE 5N 40E 9CCC1	LL 0/0/0	21	140.	0.	40	37.0	15.00	14	2.70	189.	0.0	11.00	0.0	16.0	0,60	0.0	0.0	0.0	365	8.0	229	154.	0.	155.	16.2	0,5	-0,920	13
GREEN CANYON H 5 5N 43E 68CA1S	8/ 9/72	44	0.	0.	25	140.0	32.00	3	3,60	167.	0,0	330.00	0.01	1.7	1.60	0,13	0.0	0.0	846	6.8	620	4 8 I.	344.	137.	1.7	0.1	0.412	3
WALZ ENTER. INC. NELL 6N 41E 10ACC1	0/0/0	26	0.	0.	65	31.0	6.90	65	9.00	232.	0.0	26,00	0.0	27.0	3.70	0.0	0.0	0.10	492	7.7	347	10 6 .	6.	190.	54.7	2.7	~1.945	13
WANDA WOOD WELL ∦1 6N 41E 1088B1	0/0/0	24	81.	0.	66	33.0	7.20	64	8. 50	240.	0,0	0.0	0.0	24.0	3,50	0.0	0.0	0.10	493	8.0	324	112.	0.	197.	53.1	2,6	4.162	:3
WANDA WOOD WELL #2																												
6N 41E 100881	6/16/77	27	0.	0.	80	31.0	7.60	70	8,50	217.	0.0	26.00	0.0	25.0	4.50	1.10	0.0	0.13	470	7.6	360	109.	٥.	178.	56,0	2.9	3.029	.5
												<u>(</u>	Oneida	Count	<u>.</u>													
KENT H S 125 34E 36BCB15	5/,17/72	24	0.	715.	33	56.0	19.00	15	4.30	226,	0.0	18,00	0.0	35.0	0.30	0.73	0.0	0.0	479	6.7	292	218.	33.	185.	12.7	0.4	0.293	2
MALAD W 5 145 36E 27CDA15	5/16/72	25	٥.	167.	19	240.0	79.00	1200	210.00	958,	0.0	25.00	0.0	2100.0	0.4 0	0.95	0,0	0.0	7 589	6.5	4345	924.	139.	785.	68.6	17.2	0.370	3
PLEASANTVIEW W S 155 35E 3AABIS		25	0.	****	21	110.0	33.00	280	29:00	331.	0.0	110.00	0,0	470.0	0,70	1.50	0.0	0.0	2189	6.8	1217	410.	139.	271.	57 . 7 ⁻	6.0	0,229	5
WOODRUFF H S 165 36E 10BBC15	5/11/72	27	0.	0.	29	130.0	45.00	910	87.00	454.	0.0	58.00	0,03	1600.0	0.60	1.40	0.0	0.0	5369	7.3	3084	509.	137.	372.	76.1	17.5	-1.735	;
·.												į	<u>)wyhee</u>	<u>Count</u>	ų.													

GIVENS H S IN 3W 2188015 5/ 0/57 49 0. 0, 75 1.0 0.0 126 1.40 150. 35.00 31.00 0.0 23.0 14.00 0.20 0.0 0.0 582 9.2 380 2. 2. 161. 98.5 34.7 -0.890

-213-

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

.

	Depth											P	Hardness	$\{ \ \$	Lion	
Spring or Well Spring of Well Spring of Spring	fensured Surla emperature OC eported Mell [below Land Su (meters) Discharge	102) Iclum Celum	agneslum (Mg) odlum (Na)	itas lum (K) (Carbonate (HCO ₃)	arbonate (CO ₃) ulfate	5 I O	llor Ide (CI)	lour (de (F) Itrate (NO ₃)	oron (J)	minon La (NH ₃)	Specific Inductance (fisid) PH	fleid) otal Dissolve Soilds (TDS)	srbonate on-Carbonate	Alkalinity as CaCO ₃	srcent Sodium (\$Na) (\$Na) (\$Na) dium Absorpt Rafie (\$AR)	Huraneau Huraneau Huraneau

Owyhee County (cont'd.)

WESLEY HIGGINS	wE: 1																										
IN 4W 12DBB1	6/13/72	36	195.	1552.	40	2.2	0,0	110	0,30	214,	0.0	8.60	0,01	28.0	7.90	0.04	0.0	0.0	463	7.2	302	5.	ο,	175.	97.6 2C.4	6.02	
EARL FOOTE WELL 15 2W 7CCB1	6/ 5/72	4 6	518.	640.	32	1.9	0.0	120	1.20	187.	12.00	45,00	0.01	19.0 1	11.00	0.04	0.0	0.0	545	8.7	334	5.	0.	173.	97.7 24.0	-1,65	
ALFRED HEYWOOD 3S 1E 350AC1	WELL 7/24/73	20	91.	٥.	55	43.0	9.90	35	6.00	246,	0.0	25.00	0.07	7.7	2.10	0.01	0.0	0,06	440	7.8	304	148.	0.	20 2.	32.8 3_3	-3_39	
WILLIAM COX WELL #1 4S 1E 250001	7/24/73	30	0.	19.	120	25.0	2.90	310	25.00	952.	0.0	5. 50	0.25	25.0	0.60	0.02	0.0	0.0	1419	7.3	98 6	74,	0.	780.	85.8 15.6	-2.5-	
WILLIAM COX WELL≇2 4S IE 26ABC1	6/ 8/73	27	518,	189.	96	13.0	2.80	250	29. 90	763.	0.0	3.60	0.16	13,0	0.60	0.01	0.0	0,78	1159	7.3	783	44.	0.	625.	87.0 16.4	-2. :**	
T. ADCOCK WELL 4S 1E 29CCD1	6/ 5/73	70	927,	5602.	83	1.2	0.0	100	6- 60	69.	51,00	39.00	0.01	12.0 1	2.00	0.0	0.0	0.15	476	9.2	332	3.	٥.	142.	98.2 25.1	-2.25	
GEORGE KING WELL 45 1E 348AD1	6/ 6/72	75	902.	0.	83	1.1	0.20	96	6,70	108.	33,00	40,00	0.03	12.0 1	2,00	0.05	0.0	0.0	454	7.9	333	4.	о.	144.	97.9 22.6	-3.90	
G. CHRISTENSEN WELL 45 ZE 29DBC1	7/27/ 7 3	28	305.	38.	100	21.0	6.90	330	24.00	1010.	0.0	4.50	0.0	31.0	0,30	0.0	0.0	0.62	1389	7.4	1014	61.	0.	828.	85.6 16.0	-3.0b	
R. KETTERLING WE 45 2E 32BCC1		43	824.	9 5.	110	5-8	0.70	150	8.50	3 83.	0.0	5.20	0.07	17.0	8,70	0.70	0.0	0.0	699	8.8	494	17.	0.	314.	92.0 15.7	-Z. :	
C, STEINER WELL 55 1E 3AABI	7/24/73	32	579.	0.	120	27.0	1.30	260	25.00	787.	0.0	7.20	0.22	18.0	0.50	0.0	0.0	0.80	1229	7.8	850	73.	0.	645.	83.7 13.3	ښت_ئ_	
E. LAWRENCE WELL #1 55 1E 10BDD1	6/ 5/73	64	902.	4542.	83	2,2	0,0	100	6.70	63,	49.00	42.00	0.01	13.0 1	5.00	0.0	0.0	0,16	514	9,3	335	5.	0.	133.	97.1 18-6	-2.54	
E. JOHNSTON ₩ELL #2 55 1E 21CBC1	6/ 6/73	65	201.	1382.	77	1.3	0.0	100	6.70	57.	50.00	42.00	0.02	13.0 15	5.00	0.05	0.0	0.17	465	9.2	327	3.	Ο.	130.	96.1 24.2	-2.4<-	
E. LAWRENCE WELL #2 55 1E 24ACD1	7/ 9/73	65	756.	7646.	89	1.1	0,0	100	1.30	82.	39,00	41.00	0.01	14.0 1	5,00	0.78	0.0	0,15	463	9.3	341				98.0 æ.3	-1.70	
E, LAWRENCE WELL #3 55 18 24ADB1	7/24/72	ьб	951.	4012,	82	1.2	0.10	100	6.50	105.	31,00	45.00	0.23	13.0 14	4.00	0.04	0.0	0.0	459	7.9	338		0.		95.0 25.6		
OSCAR FIELDS WEL 55 2E 10BC1	L 7/ 9/73	50	549.	95.	77	1.7	0.0	86	6.60	46.	59.00	7.10	0.0	16.0 15	5.00	0.36	0.0	0.0	423		285					-4.≩ -5.5.1	
CLARENCE HOPKINS																			-		,	••			27 47 :442		
WELL	6/ 7/75	37	750.	38,	₿ç	9.9	2.00	2 50	<u>51</u> .90	675	0.0	3,40	0,06	25.0 (6.40	0.01	0.1	0.20	1079	7.5	739	33.	0.	553.	89.9 79.0	-0 12 c	

ŧ

								r																					
	COX AND LA WELL 55 2E 1		6/ 5/73	43	613.	284.	110	5.2	1.10	150	6.70	228.	75.00	8.10	0.04	20.0	8,60	0.0	0.0	0.99	648	9.3	494	17.	0.	308.	92.6 15.6	-2.234	5
	H. DRISKE WELL #1 55 2E 13		6/22/73	23	533.	19.	110	13.0	2.60	260	28.00	767.	0.0	3.20	0,10	30.0	1.50	0. 0	0.0	0.0	1259	7,6	825	43.	0.	629.	87.8 17.2	-2.750	5
	N. MCKEETI 55 3E 24		7/13/73	60	738.	٥.	110	1.1	0.10	85	0.70	Z7,	61,00	6.40	0.01	15.0	19,00	0,09	0.0	0.78	396	9.6	311	3.	0.	174	97.9 20.8	-3,594	5
	BURGHARDT 55 3E 2					19.	110	42.0	3.90	230	19.00	703.	0.0	6,70	0.13	30.0	0.50	3.60	0.0	0.79	1129			121.	-		77.5 9.1	0.973	5
	LEROY BEN 55 3E 2	MAN WEL	_					19.0	3.40			683.	0.0	4,00	0.70	38.0		0.02	0.0		1279		809	61.			86.6 13.9	0.490	5
	COOK15 GR			2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											50,00		0.02		0120	12.77		007	Q 1.	••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.0 017	0.490	,
	WELL # 55 3E 24		6/ 7/73	83	905.	٥.	110	2.1	0.0	i 10	1.70	22.	64.00	62,00	0.02	15.0	15.00	0.01	0.0	0,57	530	9.3	390	5,	0.	125.	97.0 20.9	-0.837	105
	COOK'S GRI WELL #					_	-																						
	55 3E 2		6/ 8/73	67	905.	0.	100	1.5	0.10	110	1,50	37.	55.00	64,00	0.01	15.0	14.00	0,03	0.0	0.55	529	9.3	378	4.	0.	120,	97.5 23.5	-0.151	205
	55 3E 2	78001	7/13/73	60	684.	0.	69	1.4	0.10	81	0.90	63.	39.00	12.00	0.0	17.0	20.00	0,25	0.0	0.63	403	9,4	271	4.	0.	117.	97.2 17.8	-6.761	5
	A. WHITTE 55 3E 2		5/31/73	65	774 .	٥,	98	0.8	0.0	97	1.30	27.	67,00	9.80	0.02	15.0	21,00	0.0	0.0	0.62	437	9.4	323	2.	0.	134.	98.3 - 29.9	-1.421	5
	D. BYBEE 55 3E 3	WELL #2 50001	5/31/73	72	784.	0.	100	2.2	0 . 0	100	1.10	54	49.00	72,00	0.03	16.0	15.00	0.01	0.0	0.56	551	9.3	381	5.	0.	126.	96.9 18.6	-7.947	5
	IDAHO POW 55 4E 34		ELL 7/20/73	27	111.	٥.	94	85.0	7.B0	83	12,00	227,	0.0	240,00	0.03	18.0	1.70	0.0	0.0	0.13	. 845	8,3	653	244.	58.	186.	41.0 2.3	-3,235	5.
	CHESTER T 55 5E 3	INDALL 38801	ELL 7/31/73	22	76.	0.	40	86.0	66.00	170	6.90	425.	0.0	450.00	0.0	50.0	0.60	5.30	0.0	0.30	1649	7.2	1083	486.	138.	348.	42.8 3.4	~1.695	5
	CLAY ATKI 55 5E 3		7/31/73	25	z70.	٥.	87	29.0	12.00	190	26.00	625.	0.0	12.00	0.0	24.0	0.60	0.33	0.0	0.70	1099	7.5	688	122.	0.	512.	72.7 7.5	0,719	5
	LOWER BIR 65 1E 3	CH SPRI 288A1S	NG 7/12/73	25	0.	0.	45	37.0	8.50	22	1.60	126.	0.0	35.00	0.01	21.0	0.50	0.56	0.0	0.03	344	7.2	233	127.	24.	103.	27.0 0.8	1.067	5
	L. POST W 65 3E		5/31/73	62	930.	٥.	9 9	1.2	0.0	120	2.80	86.	52,00	45.00	0.02	19.0	17.00	0.01	0.0	0.85	599	9.1	398	3.	٥.	157.	97.5 30.2	-1.663	5
																				•									
	L, POST M 6S 3E	ELL #2 20001	7/ 6/73	53	591.	2725.	100	1.2	0,10	110	4.00	120.	37.00	27.00	0.02	18.0	17.00	0.03	0.0	0.76	504	9.2	373	3.	0.	160,	96.6 25.9	-2.158	5
	W. BUNT W 6S 3E		6/ 4/73	4 8	512.	с.	110	1.6	0.0	110	6.40	58.	74.00	42,00	0.02	11.0	12.00	0.0	0.0	0.44	534	9.4	395	4.	0.	171.	95.2 23.9	-2.106	5
	J, AGENBR 65 3E		L 6/ 4/73	61	1098.	· 0.	9 4	4.6	0.0	59	3,40	78.	12.00	20.00	0.01	9.7	11.00	0.08	0.0	0,15	320	8,6	252	11.	0.	84.	89.0 7.E	-1.290	5
	NIELSON & CAROTHERS			Ň			÷																						
	6S 3E	9ACC1	6/ 4/73	39	434.	6283.	130	3.6	0,10	97	8,10	157.	25,00	42.00	0.06	11.0	9.10	0.0	0.0	0.42	516	8.8	403	9.	¢,	170.	91.4 13.8	-4.844	5
	TRIANGLE WELL #1 65 3E 1		7/25/73	34	427.	0.	120	5.6	0,30	8 6	6.10	155.	0.0	33.00	0.12	11.0	11.00	0,03	0.0	0,40	433	8.9	349	15.	٥,	127.	89.0 9.6	0.639	5
,	LITTLE VA IRR. WELL		£ /7 A /77	54	501	5602	140	5 0	0.10	110	4 70	20	74.00	65.00	0.04	10.0	34.00	0.03		а г <i>і</i>	507	~ .			_		/		
	65 4E 1 KENT KOHR		5/30/73			5002.	140	5.0	0.10	110	4,70	20.	74.00	65.00	0,06	19*0	24,00	0.02	0.0	0,54	583	9,4	451	13.	0.	140.	92.7 13.3	-7.328	5
	65 4E 2			20	534.	341.	73	41.0	2.30	9 5	13.00	129.	0.0	190.00	0.03	14.0	3,90	0.23	0.0	0.13	702	7.0	495	112,	6.	106.	61.7 3.9	0.012	5

.

. A la seconda de la constante de la seconda de la second

-215-

.

.

<u>.</u> .

(Standard))

والمشترين المصادلات

Sec. Oak

		_	_	<u>.</u>	_							·											_	_				
Spring or We Identificati Number and Na	ກຸ່ທີ່ສີ	Measured Surface	ban wel	(meters) [U scharge ([/min]	5114cm (510a)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potasslum (K)	Blcsrbonate (HCO ₃)	Carbonate (CO ₃)	Sulfate (SOA)	Phosphate {Pq}	tert) tert)	Flouridu (f) .	Nitrate (NO ₃)	Boron (8)	Annon La (NHy)	Specific Conductance	pH (fleid)	Total Dissolved Solids (TDS)	Gartkinate	Nen-Carbonate	Alkalinity as CaCO5	Percent Sodium (\$Na)	Sodium Absorption Ratio (SAR)	Cation-Anion Balance	lata Referupre ⁴
												Owyhe:	Courre	= =>-	≓'d.	,							_					
DICK WARD WELL 65 4E 35CDA1	6/26/73	33	303.	0,	95	4.6	0.10	47	8,90	96.	0.0	24.00	0.04		_00	0.0	0.0	0.10	273	8.5	244	12.	٦.	79.	61.5	5.9	-5,182	5
COLYER CATTLE C 65 5E 100001	0. WELL 7/ 5/73	39	508,	19.	78	2.6	0,30	120	4.30	159.	19. 00	24.00	0.02	* ∠2 25	-00	0.04	0.0	0,69	508	B.4	370	e.	۵.	162.	95.2	18.8	-2,129	Ę
J.R.SIMPLOT WELL #1 65 5E 18CCB1	6/26/73	27	902,	0.	120	3.9	0.10	100	7.30	93.	25.00	52.00	0.03	ن است	.00	0.13	0.0	0.54	520	7.6	387	7Q.	G.,	118.	91.8		0.356	5
J.R.SIMPLOT WELL #2 65 5E 20AAB1	5/3 0/73	44	0.	19.	59	4.7	0.10	110	5.60	198.	18.00	3.70	G. 04	- 24	. 96	0.0	0.0	0.95	562 8	3.8	339	12.	ς.	192.	92.5	13.7	~4.79 6	
GEORGE HUTCHINS WELL 6S 5E 24BCA1	0N 6/25/73	34	334.	19.	89	3.6	0.0	120	4.60	149.	21.00	28,00	0,02		.00	0.0	0.0	0.57	509 9		379	9.	54	157.	94.6	17.4	-0.106	÷
BRUNEAU CITY WE 65 5E 2400B1	LL 7/25/73	33	591.	0.	79	2,8	0.0	9 9	2,30	127.	10.00	35.00	0.05	Z	•x	0.0	0.0	0.38	418	.0	326	7	<u>.</u>	121.	95.6		-2,959	5
DON DAVIS WELL 6S 5E 290CC1				19.	120	7. 1	0,30	67	6.30	147.	4.00	42.00	0. 64		.00	0.05	0.0	0.40	435 8			15.			87.5		-0,672	5
CARL & HARRY LOOS WELL 6S 5E 350CA1	7/19/73	22	140.	0.	73	38.0	3.30	54	8.60	166.	0.0	66.00	6.02		.90	0,17	0.0	0.19	462 9	. 1	342 1	lóā.	٤.	136.	49.6	2.3	-0.773	E.
IDAHO PARKS DEPT, WELL 6S 6E 12CCD1	7/ 6/73	37	302.	0.	120	10.0	0,60	180	15.00	493,	0.0	3.60	0 ∎37	B 5	. 90	3.00	0.0	0.1ū	843 8	•2	599	ż7.	. .	404.	89.4	15.0	-1.910	
MILDRED BACHMAN WELL 65 68 19CCD1	5/22/73	38	278.	19.	85	3.0	0.0	93	3.10	94.	19.00	38.00	0101		. 06	0.01	0.0	0.34	457 9	.0	326	7.	<u>.</u>	109.	94.6	14.8	-3.875	÷
BRUNEAU CEMENTA WELL	₹Y																											-
6S 6E 19DBD1 ACE BLACK WELL	7/18/73	42	333.	0.	84	2.3	0. 0	94	1.90	87.	24,00	26.00	5. 5		- 20	0.02	0.0	0.34	421 9	. 2	312	÷.	Ξ.	211.	96.2	17.1 -	2.650	5
65 6E 32BOD1 W1LBUR WILSON	6/25/73	35	427.	95.	67	3.1	0.10	94	3.10	132.	8.00	28.00	9.62		. DC	ü ₊ 01	0.0	0,35	413 9	.3	526	έ.	e.,	:22.	94.4	4.3 -	4.688	5
WELL #1 6\$ 7E 1ACB1	8/ 1/73	41	305.	19.	73	7.0	0.60	260	8.00	614.	0.0	3.40	c . 0	i	41	6.0	0.0	0.50	239 8	.0	720	20.	2-	503.	94.9	5. 3 ·	1.045	1
WILBUR WILSON WELL #2 65 7E 1DBD1	8/ 1/73	33	320.	38.	72	8.1	1.20	250	8,20	585.	0.0	3.60	3.0	7. J.	27	6.02	0.0	0 .9 0	169 8	.0	712	z.	.	±79.	93.9 1	21.7 -	2.089	5
CARL JOHNSON WEI 6S 7E 20001	.L 6/25/73	35	412.	19.	75	5,8	0.50	210	7,60	524.	0.0	2,80		<u> </u>	.÷.:	0,30	0,0	0,70	951 B	.0 +	523	17.	1.	29	94.6 2	22.5 -	5,056	5
SAND DUNES Farms Well 65 75 886a1	7/26/73	23	111.	5.	67	26.0	17.00	240	3:.00	530.	0.0 ;	250.00			.= <u>:</u> .	0 1 01	0.0	0,28	209 7	.0	929 1	55.	.	234.	75.0	9.0 -	1,708	÷

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continues)

-216-

	u u	n w	. r	۲ III		رد .	ĥ	Ś	. r	. <i>"</i>	n in	r	. L				- in	. r		e)
	-1.210	-5.188	185.92	-5.270	1.994	-1 . 866	0,200	-2, 830	-9,08)	-1.571	-37,484	-1.873								
								'								•				
		80.4 5.2																		
							84. 78.4													
	3 12 3 3				. 0		а 6	8 0												
			•				27.													
	51 545 51 55						255 2	240 1:												
																				252
	4.57 7.4 778 8.6					0-9 9-0	261 8.7	275 8.6	359 B.Q			300 8-2		332 9 . 0						6 a.7
	0.08 4 0.10 4					0.10 2	0-03 0-03	0.11 2	0.11 3							152	290 290	2 361	3 284	9 276
															60-0	11.0	0-06	0.12	C. 13	50°0
						0-0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0*0	0.0	0*0	0.0	0.0	0*0
	52°0	0, 12	0.26	1.30	0.29	0.26	0. 25	1-20	0.60	1.10	0, 58	0.82	1.90	0.0	0.95	0.25	0.71	0.15	0.13	0.26
:	01.1	0°-8	9.40	8.20	8.70	00*6	11.00	6,00	14.00	11.0 10.00	15.00	8.20	6.60	8.20	9.70	9.3 11.00	11.00	10,00	11_00	9.8 16.00
ŕ	2*7 8*6	8.7	8.6	6	8.4	6,0	0.6	ۍ. ۲.	6*6	11-0	11.0	12.0	14-0	€ * 6	9.8	5.6	0*6	10.01	0°6	1 8 6
	0.02	• • •	0.04	0.03	0.02	0,06	0.02	0.04	0.04	0"0	10 0	0.05	0,06	0, 02	0.04	0.01	0.0	0.04	0.04	Ú+02
90 72	00.17	20, 00	24.00	30.00	17.00	00*0Z	00*61	16,00	54.00	00 °9 5	0°%	22,00	00 * 9 2	48.00	17.00	19.00	18.00	50.00	19,00	20,00
c	00.00	5, 00	0.0	0*0	0"0	6.00	11-00	0.0	0*0	6.00	0*0	0.0	0.0	4,00	0.0	11,00	00*6	0*0	5.00	0.0
22			106.	113.	-16	89.	B0.	104.	123.	108.	108.	103.	109.	87.	96.	- - -	85.	100.	86.	101.
ž	6.70	7. 40	8,30	00.6	7.00	7.80	7.50	7.80	06*6	8.70	5.40	8.30	7.70	6, 10	7.40	6*90	6.80	. 20	7.10	ċ.50
ş		46	47	45	5	49	53	45	48	• 95	25	45	9	63	51	55	50	5	50	53
08.0	0.20	0, 10	0*10	0.30	0-10	0* 20	0" 10	0,10	0.80	0.20	0, 10	0.40	1.30	0.10	0.20	0.10	0.50	2.30	0.0	0.10
0	6 . 9	5.8	7.2	16.0	7+0	7.3	8.7	7.2	2°0	12.0	6.8	13.0	16. O	4.4	8.5	5.9	12.0	18-0	6.7	6.7
ŶĊ	53 53	95	66	66	96	56	16	96	100	8	100	16	76	75	91	06	68	93 1	83	06
3775	549. 2896.	348. 6283.	349. 1874.	457 1475	•	5602.	4750.	6283.	****	****	001 =****	4920 .	5261.	9 5 ,	****	3066.	3406.	1325.	់	0
745					337.	323.	305.	349.	325.	247.	224	264.	424.	733.	495.	457. 3066.	630.	46.	596.	462.
\$		42	\$ <u>2</u>	×	43	65	40	65	33	\$ 1	51	5	21	32	65	40	40	Я	36	40
67.8.73	u u u L 5/21/75	6/ 2 8/13	: 5/11/73	6/12/75	£LL 5/21/73	נג/92/1 ווו	<i>11</i> 2/30/73	6/12/73	لد 6/12/73	6/13/73	5/24/73	£7/01/T	LL 1/ 10/ 73	6/25/73	7/ 6/13	5/21/73	6/14/73	51/21/2	L 6/21/75	5/30/73
SHARDT	AS WEL	ABD1	۲ 808 1804	ETT SBCI	HERS 1	¥ X N N N N N N	NEN JODI	ETT ABCI	₩ So So So So So So So So So So So So So	L INS 2882	RC1 BC1	3081	VEN VE	< 50BC1	lERS UB1	HERS COCI	1001 MELL	ACI	85 19 19 19 19 19 19 19 19 19 19 19 19 19	ALL # COT #
BILL BURGHARDT WELL #2 75 #5 AACDI	KEITH THOMAS WELL	PETE MERRICK WELL #1 75 4E 3ABD1	PETE MERRICK WELL #2 75 4E 108081	FRANK MILLETT WELL #1 75 4E 110BC1	FARIA BROTHERS WELL 75 4E 128001 5/21/73	CLARENCE 000K MELL 75 4E 13B001 7/26/73	DAVE LATHINEN WELL 75 4E 130CD1 5/30/73	FRANK MILLETT WELL #2 75 4E 14ABC1	ROBERT BLACK WELL 75 4E 15ACD1	BLAINE RAWLINS WELL #3 75 4E 2508B2	BELL BRAND RANCHES WELL 75 4E 25ADC1	GUTHERIES RANCH WELL 75 4E 26BCB1	DAVE LATHINEN WELL 75 4E 278001 1/10/75	ACE BLACK MELL #2 75 5E 5D	DAVIS BROTHERS WELL #1 75 5E 7ABB1	DAVIS BROTHERS WELL #2 75 5E BCCCI	HARRY LOOS WELL 75 5E 90001	ROY DAVIS WELL #2 75 5E 15AAC1	CARL STEINER WELL 75 5E 13GBE1 1	ROBERT TINDALL MELL 75 5E 16ACD1 5/30/73

-217-

· ·

չեւան խվերը Եվերի		N :	y .	н,	• •	64			u.	а,	a.							
11-318(19) 11-318(19) 11-318(19)		-2+36.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 E		10 10 10 10	5 *	-6. 85 <i>4</i>		. 4	-1. 	-2-24	101			11. 12.		
noitqhoadAimulbo2 oitefi (FAR2)		5.4	а •	9 9	0.0	4.8	5*9	7.4	6*2	2.2	3.6	5 5	0.5	ň	٥,	7		0.
Percent Sodium (\$Ve)		80.3	0.17		96, 1 19	0.08	18 1.	15.9	72.5	36.5	71.1	83 . 4	62°6	5°-5	97 . 3 16.	94.1 10.		
Alfarity Alfarity Alfarity		4	к. Г	3 2.	S.	8	8	8.	103. 7	() ()	106. 7	ж Ж	हुन् <u></u> , 6	۵۵ با	۰. ۱	.		:
Non-norte Norte		6	6	5	°0	്		ð	ď	ð	÷ 3	0	e	¢.	å	.:		
b etanovina() g atenodraO⊷novi atenodraO⊷novi		พ่	Ŕ	* [*	պէ	N	ý	1	, K	ů.	, K	r.*	ų,	5	र्ष सं	*		.d
beviozziű istol (2011) ebitaž		83	Ř	592	357	230	23.7	233	Ś.	32	246	24.2	244	245		160		
Hq (bielt)		8.4 1	8.6	9.2	4. 6	8.5	8.5	7,2		8.0	9.2		8.5	8.3	0.8	7.1		5.1
olitoeq2 epnetoubno0 (bleit)		8 502	8	310 5	461 9	267 8	287 B	Z87 7	327 8	288 8	2679	288	267 B	500 8	360 8	137 7		2 6501
strommiA (≿HN)		0,11	0.13	0, 14	0, 21	0,06	0.07	0.0	0,12	01.0	0.08	10*0	11.0	0-08	0-0	0.0		0.0
80° οπ 80° οπ		0.0	0"0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0"0	0•0	0.0	0.0	0.0	0.0		0.0
eteriN (₅ 0N)		0.24	ស	0.01 (0*0ę	33	0.26	05.1	54	0.66	0.59 (0.46 (0*60 (0.66 (0.06	0.64 (0, 13 0
Fiouride (F)	(•p;		8		00	-0 06			ю. Х	3.10 0	5.40 0	8.50 0	4.50 0	6 - 00		3.65 0		
(Ci) Chloride	(cont'd	11.0 12.00	9.5 11.00	10.01 0.00	10°0 24.	. 0*6	9*0 12*00	00*01 0*6	8.7 8.	8,6 J.	8.6	8.8 8.	8.8 4.	9.1 6.	8.4 14.00	2.3 3.	County	0 0,70
etsdqeor9 (₽04)	County	t 0.0	0.01	0-03 1	0.04	o			10*0	0*05	0.03	0.03	0*03	0•06	0*04	0,10		02 220.0
([†] os)			000	00	00 00	00	0.0 00.	0*0.00	-00				00.00				POWEI	0*05
etetlu2	Owyhee	24,00	73	р	2	0 18,00	. 18	17.00	17	15.00	17_00	0 18.00	15.0	0 15.00	24.00	0- 4.70		CO 161 .
Carbonate Carbonate (CO3)		0"0	0"0	16,00	43,00	3.00	7,00	0.0	0.0	0.0	0*0	6.00	0•0	5.00	30°00	1.00		ڻ• 0
(H) Blcarbonate (HCO ₃)		103.	97.	80.	59.	. 66		110.	- 92	134.	129	.501	126.	113.	67.	67,		22.
(sv) mulassto9 (K)		7.60	9.20	6.80	2.80	5.10	4.60	6.10	7.20	6*90	6,20	5,50	6.70	6.70	0.60	2*00		10.00
un i pos (6w)		55	52	61	100	49	54	51,	53	×	48	55	43	53	75	30		110
wn _i seubew (°C)		0.10	0.30	0.10	0.30	0.40	0.30	1.20	1.10	2.80	1.10	0*30	1.80	0.60	0*0	0"0		19,00
(2012) (2012)		1.1	8.3	2. B	1.6	7.4	5.9	0*6	12.0	16.0	12.0	6.2	13.0	6.5	-2	0.6		76.0
Sitica (i/win) Sitica		3 . 95	94	0, 100	0, 100	0, 81	0, 82	0. 75	0. 100	3. 82	i. 84	5. 83	0. 89	. 87	s. 75	5 . 83		. 20
below Land Surface (aneters)		232. 4428.	6. 4239.					5		305 3899	2044.	0. 1703.		0. 1699.	0, 6548.	0. 265.		0. 5829.
Measured Surface Temperature ^{OC} Reported Wall Depth		37 Z3	¥ 306.	Z5 331.	51 277.	43 156.	43 232 .	47	44 396.	R R	43 122.	4	40	9 62	69	51 (32 0
elmas Coliction Date Date		ET/22/F				6/14/73	6/14/73 4						7/18/73	5/73	2/72 6	5/22/12		
			ЕLL 5/2	с жеце 31 7/19/73	1	6/1		11/ 0/53	1 VELL	5/2	MELL 6/19/73	H S S 6/19/73		5 + S / L	/9			57/12/2
Spring or Yell I dentification Number and Name	BELL BRAND	INC. NELL 75 5E 190001	GENE TINDALL WELL 75 5E 28ACD1 5/24/73	GEORGE TURNER 1 75 6E 7AAC1	COLYER CATTLE CO. WELL 3 75' 6E 98AD1	R.L. OWENS WEEL J2 75 6E 16CDC1	HOT SPRINGS RANCH WELL 75 6E 210BC1	R.L.OHENS MELL #4 75 6E 238881	ROSE WILLIAMS W 75 6E 23CAD1	R.L. OWENS WELL #7 75 6E 26ADA1	JAKES PRESCOTT 75 66 27ADB1	JEAN PRESCOTT H 75 6E 34DCB15	PRESOTT M S 75 6E 35BBB15	INDIAN BATHTUB - BS 6E 3BDD1S	125 7E 33C 1S	ы, UPP, PY H S 165 9E 24 BBB 15		HACHAN SPRINGS 65 316 180AB15

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

-218-

ROCKLAND WARM SPRINGS 105 306 130DC15 7/27/72 38 0, 1582, 22 92.0 33.00 62 14.00 160, 0.0 23.00 0.02 250.0 0.80 0.02 0.0 0.0 (1109 7.6 575 365. 234. 131. 26.0 1.4 0.795 Twin Falls County MIRACLE H S 65 14E 31ACB15 5/24/72 54 0, 1325, 93 2.2 0.0 120 1.50 63, 54.00 29.00 0.03 35.0 20.00 0.50 0.0 0.0 560 0. 142. 97.2 22.3 -1.125 9-0 396 3 5. HARRY HITTANUS WELL #2 85 14E 33CBA1 5/24/72 59 64, 227, 97 1,1 0,0 100 1.50 88, 38,00 26,00 0.03 27.0 15.00 0.54 0.0 0.0 479 8.5 349 ъ. 0. 135. 97.9 26.3 -4.029 3 ED KERPA MELL 95 14E 9ADD1 10/ 8/76 31 0. 1699. 51 7.3 0.30 61 3.20 27.00 3.20 120. 6100 0.0 16.0 0.0 0.0 0_10 300 9.3 754 19 ٥. 108. 84.9 6.0 -3.949 0 SAM HIGH AND SONS WELL. 115 19F 330001 5/25/72 33 189, 7305, 63 27.0 3.90 17 8.60 138. 0.0 12.00 0.04 15.0 0.30 1.00 0.0 0.0 266 6-6 205 83. 0. 97. 28.1 0.8 -1-971 T. STURGILL WELL 115 20E 34COC1 9/ 0/52 32 0. 13.00 5.0 0.70 0.60 0.0 0.0 0. 28 43.0 8.90 11 7.40 185. 0.0 0.0 326 7.5 200 144 0. 152. 13.5 0.4 -0.515 5.6 2.20 0.09 430 7.3 282 133. 125 17E 6C8B1 9/28/77 37 0. 7570, 28 37.0 9.90 46 11.00 250. 0.0 20,00 0.01 0.0 0.14 0. 205. 40.5 1.7 0.779 10 NAT-SOO-PAH ¥ 5 125 17E 31BAB1S 7/25/72 36 0, 114, 19 34.0 14.00 43 11.00 266. 0.0 18.00 0.01 8.0 1.90 0.02 0.0 0.0 469 7.6 279 142. 0. 218. 37.4 1.6 -0.602 10AHO STATE WELL 125 18E 18841 7/25/72 38 236. 2055. 67 18.0 2.00 16 6.00 95. 0.0 9.30 8.0 0.60 0.63 0.0 0.26 0.0 198 7.6 174 53. ٥. 78. 36.4 1.0 -2.647 3 HOLLISTER VILLAGE WELL 135 17E 7BAB1 9/28/77 35 0. 946, 22 34.0 10.00 44 12.00 250. 0.0 15.00 0.0 5.5 2.20 0.04 0.0 0.13 450 0. 205. 40.4 1.7 7.2 267 126 0.630 10 MAGIC 8 5 165 17E 30ACA15 5/23/72 46 0. 1457. 23 30.0 8.90 13 4.50 162. 0.0 15.00 0.03 3.8 0.30 0.42 0.0 0.0 -4.542 281 6.4 178 111, 0, 133, 19,4 0,5 - 5 Valley County BUILING SPRINGS 12N 5E 2288C15 8/ 3/72 85 0. 625. 94 1.9 0.10 71 1.70 81. 24.00 12.00 0.02 12.0 13.00 0.04 0.0 0.0 331 8.8 269 5. 0. 106. 95.5 13.6 -2,902 3 STEVER OREEK PLUNGE 12N SE 360BA1S 10/ 0/55 39 0. 0, 53 2.0 0.40 52 5.10 70. 12.00 20.00 0.0 6.0 7.50 0.20 0.0 0.0 Z54 9.0 192 7. 0. 77, 89.6 8.8 -0.760 CABARTON H S 13N 4E 31CABIS 6/ 3/72 71 0. 265. 78 1.90 70. 26.00 46.00 0.02 49-0 11.00 1.7 0.0 100 0.05 0.0 0.0 511 7.7 348 4. 0. 101. 97.0 21.1 -5,041 3 CASCADE CITY WELL 0, 45 14N 3E 36ABD1 8/ 3/72 43 15. 1.6 0.0 58 0,40 62. 22,00 17,00 0-04 15.0 3.80 0.09 0.0 0.0 275 9.2 193 87, 96.6 12.6 0. -2.346 3 VULCAN H 5 14N 6E 1180A15 8/ 2/72 87 0. 1892. 120 1.8 0.10 94 3.00 120. 0.0 43.00 0.02 17.0 24.00 0.05 0.0 0.0 451 8,5 98. 95.9 18.5 -3,955 36.1 ٥. - 3 ARLING W S 15N 3E 138BC15 8/ 2/72 34 0.3020.60 1.3 0.10 60 0.60 17. 45.00 16.00 0.02 16.0 2.60 0.0 0.0 0.0 279 9.8 200 ٥. 89. 96.7 13.7 -0.475 3 MOLLY'S H S 15N 6E 14A8815 8/ 2/72 59 87 2.0 0.0 70 1.50 48. 30.00 17.00 0.02 10.0 17.00 0.03 0.0 0.0 326 ٥. 76. 7.7 89. 95.7 13.6 +2.277 258 ο. 3 5. SOUTH FORK PLUNGE 15N 6E 14COB1S 8/ 0/55 55 0. 0. 62 4,0 0,30 60 1.30 59. 22.00 14.00 0.0 9.0 12.00 0.20 0.0 0.0 284 9.3 213 11. ٥. 85, 91.0 7.8 -0.737 PISTOL OREEK H 5 16N 10E 14DBC25 0/ 0/ 0 46 Ο, 13. 67 5.0 0.0 83 1.40 9à. 0.0 67.00 0.0 12.0 10.00 0.0 0,0 0.0 0 293 12. Ο. 80. 92.7 10.2 0.241 2 6.3 SUNFLOWER FLAT HS 16N 12E 1586815 7/ 3/71 65 0. 136. 82 3.0 0.10 77 9.0109.00 1.60 51. 30.00 41.00 0.0 0.0 0.0 0.0 369 8.8 377 8. ۵. 92. 94.4 11.9 -42.244 12 RIVERSIDE H S 16N 122 16CB615 7/ 4/71 43 0. 0. 75 3.2 0.0 79 1.80 62. 19.00 56.00 0.0 8.9 9.90 0.0 0.0 0.0 377 8,8 283 8. 0. 82. 94.4 12.2 0.466 2

-219-

Basic Data Table 1. Chemical Analyses of Thermal Water from Selected Springs and Wells in Idaho (continued)

- f

	.	_				· · · · · ·							·	· · · · ·			-	.							r	_		
Spring or Well Identification Number and Name	3 = 0	Measured Surface Temperature ^o C	Reported Well Depth beiow Land Surface	(meters) Discharge (1,/mln)	5111ca (510 ₂)	Calcium (Ca)	Magnesium (Mg)	Sodtum (Na)	Potassium (K)	Blcarbonate (HCO ₃)	Carbonate (CO3)	Sulfate (SO4)	Phosphate (PO ₄)	Chlorlde (CI)	Flouride	Nitrate (NO ₃)	Boran (8)	Ammonila (NH4)	Epecial Conductions	(fileid) . Itield)	Tertari () wwei vad Seitige (1) 15)	Darlamate 8	Nen-tarbahala 🚦	Alkailnity as CaCO ₅	Percent Sodium (\$Ne)	Sodium Absorption Ratio (SAR)	Catlon-Anlon Balance	Data Refervice ^a
				-								Valle	u Cour	atu (a	ontid	,												
HOLDOVER H S 17N 6E 2BAA15 1	0/18/77	46	ο,	95,	67	1.6	0.0	60	1.00	62.	34.00	9,90	0.01		8.90	0.02	6-0	0.05	23U	9 -D	222	4.	L .	107.	96.1 1	3.1 -	-6.623	10
K₩ISKWIS H S 17N 10E I1BBA1S	0/0/0	69	0.	57.	77	2.3	0.0	110	2.00	87.	22.00	73.00	0.0	19.0	17.00	0.0	GL_6	0.0	Q.	8.7	365	Én.	D.,		96.6 2		-1,588	2
MID FK INDIAN CRK HS																												-
17N THE 16ACETS	0/0/0	72	0.	6.	110	2.1	0.0	120	3.70	116.	25,00	64.00	0.0	14.0	17.00	0.0	G.C	0.0	5	87	412		Б.	U7.	96.3 2	2.8	0.410	O
17N 11E 218 15	0/0/0	88	0.	151.	110	2.0	0.0	110	3.60	131.	14.00	62.00	0.0	14.0	18.00	0.0	C.5	0.0	C	ĉ£	396	5.	Đ.	в і.	96.1 Z	1.4	-2.802	Z
COX H S 17N 13E 27AAC1S	0/0/0	55	0.	68.	69	1.9	0.0	84	1.00	83.	20.00	42,00	0.0	9 .0	15.00	0.0	<u>.</u> 0	0.0	5	8-5	32	5.	Ŀ.	121.	96.8 1	6.8 -	Z Z13	Z
HOSPITAL H S 17N 14E 5CBC1S	0/0/0	0	0.	в.	55	3,4	0.0	87	1.30	149.	0.0	43.00	0.0	14.0	13.00	0.0	Q.C	0.0	5	8 . 3	Æ	<u>i.</u>	٥,	:22.	94.9 1	3.0 -	-5,208	2
TEAPOT H S 16N 6E 9ADC1S 1	0/18/77	60	0.	95.	69	2.3	0.0	63	1.20	66.	31.00	12.00	0.01	6.2	9.90	0.0	<u>5</u> _C	0.07	36 0	<u>≉</u> _ş		ć.	D.,	196.	95.0 1	1.4	-3.033	16
HOT OREEK W S 18N 8E 176DA1S	9/ 0/58	35	0.	0.	60	3.0	0.0	63	1.80	58.	12.00	45.00	0.0	10.0	6.40	0.0	6. C	0.0	₅سخ	8. 7	Z25	ī.	D.,	6ĉ.	93.3 1	0.0	G . 151	;
	-											Was	hingt	on <u>Co</u>	unty													
COVE OREEK H S 10N 3W 9CCC15	8/ 9/73	74	0.	19.	130	20.0	0.20	320 ·	22.00	107.	0.0	310.00	0,12	310.0	4.70	0.0	546	7.80	1939	7.4	1169	5.	£.	6 5.	89.B 1	9.5 -	5.286	4
ELVIN ORAIG WELL 11N 2W 16AAB1	8/14/75	20	41.	0.	81	31.0	19+00	26	13.00	283.	0.0	11.00	0.0	2.2	0.30	0.0	1.4	0.0	4.4.S	a_ 1	<u> 111</u> 7	53.	ъ.	Ξz.	24.7	0.9 -	3.909	9
CRANE OREEK H 5 11N 3W 7B0B1S	8/ 2/73	92	0.	19.	180	29.0	0.50	280	18.00	201.	0.0	250,00	- 0.0	200.0	3.20	0.01	ā.	10.00	1629	7.5	:0 5 9	·4.	5.	165.	86.2 14	4.1 -	6.795	4
CRANE CREEK H 5 11N 3W 7BDB2S	B/ 2/73	57	0.	19.	190	29.0	0.60	280	19.00	202.	0.0	250.00	0.0	200.0	3.20	0.03	۵لک	10.00	1569	e. :	.c	75.	Ĺ.,	155.	86.0 14	4.1 -	C . 762	4
DOUGLAS MEGINNIS WELL																												
11N 5W 20B0D1	8/ 9/73	21	59.	0.	. 54	31.0	5.30	21	6.90	136.	0.0	25.00	0.0	6.8	0.50	1.80	510	0.00	Z‴ -	7.1	279	9 5.	Ŀ.	1:1.	29.7	0.9	Ç•ç94	4
11N 6W 3DBB1 GLENN HILL WELL	8/ 8/73	24	183.	0.	542	4.4	0.0	120	0.60	67.	0.0	160.00	0.03	26.0	1.90	0.01	4 .1	2.00	614	8. ÷	909	· : _	Б.	55.	95.7 1	5.8 -	2,580	4
	8/ 7/73	25	66.	0,	577	4.0	0.10	130	1.20	15.	36.00	150.00	0.0	55.0	0.60	0.0	c. c	2.40	575	7 . ±	9e \	ċ.	£.	32.	96.0 17	7 . 5 -	2.274	4
11N 6H IDACBIS	8/ 6/73	22	0,	19.	31	12.0	1,80	50	1.40	44.	0.0	53.00	0.08	17.0	1.20	8.00	2.2	0.82	33 .	7_3	197 (<u>.</u>	.	ж.	73.5	5.6	97	4
GEOSOLAR GROWERS WELL #1 115 GW 16600A1	b/ 2/73	7ċ	25,	Ο.	14Û	2.6	0. 0	140	4.80	32.	37.00	150.00	0,0	56,0	2,90	0. 01	1.7	Z, 10	734	4 .1	Fa F	÷.	5.	€5 .	96.0 23		2.265.	4

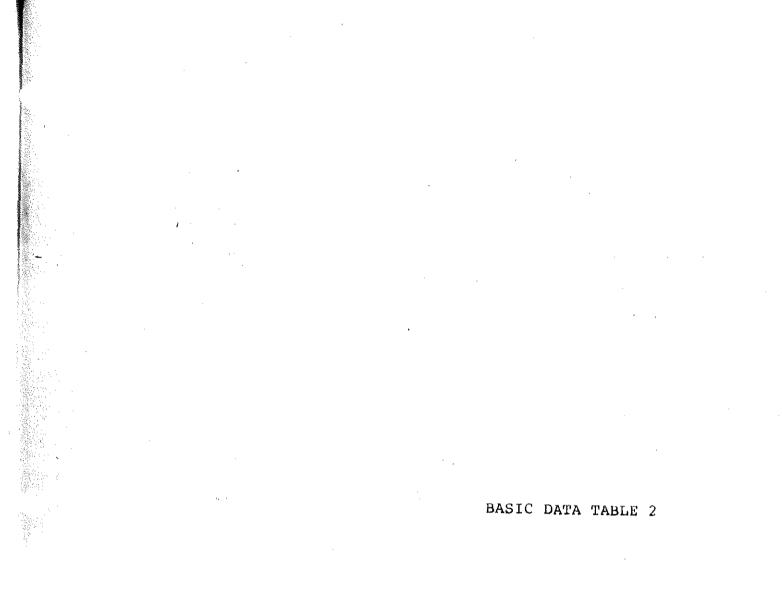
and the second second

GEOSOLAR GROWERS WELL #2 11N 6W 16CCA2 8/23/73 i	17	31.	0.	130	2.7	0.10	140	5,30	33.	41.00	150.00	0.01	52.0	3.90	0.01	0.0	2.20	683	9.1	-	 	<u>.</u>	Ð.	95.6 2	22.8	-2.698	4
GEOSOLAR GROWERS WELL #3 11N 6W 100CA3 8/ 2/72	70	122.	0,	140	2.9	0.0	140	5.00	35.	38,00	150,00	0.06	56.0	3.30	1,00	0.0	2, 20	7259	9.3		-	<u>`</u>	57.	95.7	22.6	-2,856	4
MIDVALE CITY WELL 13N 3W 80001 6/28/72	28	294.	0.	84	8.7	0. 80	73	23.00	225.	0.0	14.00	0.04	3.1	0.70	0.04	0.0	9.0	338	8.3		-	-	154.	74.5	6.4	1.122	3
FAIRCHILD LUMBER CO. 13N 4W 13BAC1 6/26/72	28	412.	٥.	73	3.5	0,20	86	0.70	188.	20.00	14.00	0.03	3.2	0,70	0,04	0.0	0.0	375	8.5	-14+-	1 .		æ.,	94.7 1	12.1	-3.114	3
LAKEYH S 14N 2W 6BBA1S 6/28/72	70	0.	1631.	72	17.0	0.10	200	3.80	24.	20.00	200.00	0.09	140+0	1.90	0.06	0.0	0.0	999	7.B	Ó tana	-		₹.	90.1 1	3.3	1.830	3
CAMBRIDGE CITY MELL 14N 3W 3DDC1 6/28/72	26	282.	٥.	70	2.6	0.20	73	6.80	157.	16.00	15.00	0.04	3,6	1 .0 0	0.04	0.0	0.0	: 309	8. T	-	 304			90.8	11.7	-1.722	3
FAIRCHILD H S 14N 3# 1908015 6/27/72	50	0.	220.	55	8.0	0.80	80	1.90	B1.	1,00	110.00	0.05	15.0	0.80	0.30	0.0	0.0	406	6.5	:==	<u> </u>	<u>.</u>	÷ż.	87.1	7.2	-2.676	3

.

.

.


.

.

.

.

· · ·

BASIC DATA TABLE 2

ESTIMATED AQUIFER TEMPERATURES, ATOMIC AND MOLAR RATIOS OF SELECTED CHEMICAL CONSTITUENTS, FREE ENERGIES OF FORMATION OF SELECTED MINERALS, PARTIAL PRESSURES OF CO2 GAS AND R VALUES FROM SELECTED THERMAL SPRINGS AND WELLS IN IDAHO

			Γ							-					Ι	_		A	tomic	atios					Mola	r Ratio	5			e Energi ormation]	
		ed Surlace åture (^O C)	Á	quife E≤	er Te stíma	ted	from	es ar Geor	cherni	≄rcen ical` as)	tage Therm	of C somet	iold iers	Wate	Sodium	Potasslum	calclum	Magnesium. Calcium	Catclum Fluoride	Chloride Boron	Chilaride Filuoride	Calcium Sodium	Calcium Bicarbonate	Chloride Carbonate &	orceruoliare Annion Ia Chriorida	Antmonia Fluoride	Chtorlde Sulfate	Calclum Sodium	quartz	Chat cedony	Amorphous Sitica	Partlal Pressure of 002 Gas (atmoSpheres)	R= Magnesium Magnesium + Calcium + Potassium
Spring/Well Identification Number & Name	Discharg (1/mln.)	Maasured Tomperati	т,	Ť2	∓3	т ₄	т ₅	т ₆	. ^τ 7	т _в	Tg	10	۲ ₁₁ ۶	9 \$	Ne K	<u>a</u>	Na Ca	Mg Ca	Ca F	<u>CI</u>	<u>Çi</u>	Ca Na	िक मळ _उ	<u>Сі</u> 003 н003		NH4 F	<u>CI</u> 504	- <u>/Ca</u> Na	G Quartz	∆ G Chal- cedon	<u>∆</u> G 74mor- y Phous	PC0 ₂	<u>Mg</u> ** Mg+Ca+K
																			<u>Ada</u>	Coun	ty												
LILLIE COLLIAS IN IE IADCI	WELL O.	25	80	84	-31	49	48	48	122	113	97	91 ;	999 I	36 (31.4	4 3	5.80	0.43	13.02	0.0	14.90	0.26	0.22	0,19	0.0	0.0	1.40	11,22	0,93	0.34	-0.38	0,00119	0.0
NICHOLSON WELL IN 1E 250BA1	0.	25	89	91 -	-24	58	45	45	154	120	154	128	103 9	92 BE	22.	2 3	6.08	0.25	9.11	0.0	20.15	0.33	0,22	0,10	0.0	0.0	1.23	15,78	1.05	0.47	-0,26	0.00155	0.0
AGRI-DON WELL # IN TE 36AAD1		22	97	99	-17	67	232	232	346	232	265	167 ;	229	6 96	6.	1 2	2.05	0.46	577.65	0.0	661,92	0.49	0.0	0.0	0.0	0.0	1.49	5.02	1,23	0,63	-0.08	0.0	28.2
IDU LAND AND BE IN 2E GABAI	EEF 0.	25	78	81	-34	46	50	50	102	50	999	72 9	999	0 0	39.	7 E	5.10	0.34	7.80	0.0	6.03	0,16	0.16	0,20	0.0	0,0	1.97	8,77	0.68	0.29	-0.43	0 ,0006 7	0.0
TOM BEVINS WELL 2N 1E 2200B1		31	73	77	-37	41	195	185	196	129	9 99	47 9	999	0 (15.	36	5.92	0.04	76.04	0.0	66.37	0.14	0.05	0.06	0.0	0.0	0.61	1.93	0.73	0.16	-0,58	0.04476	3.5
GEORGE WHITMORE WELL 2N IE 24DAD1	E 0.	27	79	83	-32	48	192	177	203	114	999	83 9	999	0 0	14.4	4 3	5.89	0.19	373.26	0.0	319.14	0.26	0.08	0.10	0.0	0.0	0.76	2.65	0.91	0,33	-0.40	0.15199	14.5
WARREN TOZER WE 2N 3E 108CB1	ELL O.	20	82	85	-30	50	21	21	157	21	117	108 9	999 9	94 (21.0	6 1	.44	0.41	13.04	0.0	26.86	0.70	0,34	0,16	0.0	0.0	1.24	33.82	1,04	0.44	-0.27	0.00093	0.0
ST, TRANS. DEPT WELL 2N 3E 26CAC1	т. О.	22	95	97 -	-19	65	27	27	164	105	243	161 2	224 9	96 96	20.1	2 1	1.44	0.35	8,22	0.0	36,34	0.69	0.29	0.07	0.0	0.0	1.64	28.99	1.20	0.60	-0.11	0,0047}	0.0
FERD KOCH WELL 3N 2E 2CRD1	76.	49	90	92	-23	59	34	34	-67	34	109	103 9	9 99 (52 (2040.9	9 416	3.41	0.05	1.26	0.0	0.46	0.00	0,05	0,12	0,0	0.0	0,79	0.28	0.42	~0.10	-0,88	0_00009	0.0
BEARD WELL 3N 2E 11ABC1	568.	76	125	122	6	97	62	62	37	62	164	131	75 5	ie (108.	1 26	.21	0.0	0.10	10.49	0,15	0.04	0.07	0,04	0.0	0.0	0.40	3.03	0.56	0.12	-0.70	0.00065	0.0
WARM SPRINGS WATER DIST 3N 2E 12CDD1	727.	75	123	121	5	95	79	79	42	69	162	130	75 :	×8 (98.	1 65	5.38	0.0	0.21	0.0	0.04	0.02	0.02	0.11	0.0	0.0	1.09	2.17	0.71	0.27	-0,55	0,01609	0.0
OLD PENITENTIA 3N 2E 13ACB1			93	95	-20	63	68	68	15	68	111	104 9	999 5	53 (167.9	9 83	5.90	0.01	0.27	5,42	0.04	0.01	0.02	0,13	0.01	0.00	0.0	1.59	0,38	-0.11	-0,91	0.00025	0.0
BOISE WATER CORP. WELL 3N 2E 36ABC1	٥.	21	68	73	-41	36	22	22	115	89	999	999 9	999	0 0	34.0	5 2	2.02	0.07	6,32	59.92	18.01	0.50	0,30	0,10	0.0	0.0	1,14	22.75	0.84 ·	0.24	-0,48	0.00460	0.0
DENNIS FLAKE WE 4N 1E 24DCC1		27	110	115	-6	81	5 8	68	215	131	999	174 :	282	0.95	13.3	23	5.33	0.16	2.32	7.20	17,38	0.30	0,17	0.02	0.0	0.0	2,27	12.62	1.30	0.72	-0,01	0,00538	0.0
CARL RUSH WELL 4N 2E 4BDC1	0,	29	75	75	~36	43	18	16	97	77	999	55 9	999	0 0	42.	5 1	. 54	0.15	1.05	59.41	8.06	0.65	0.35	0.04	0.0	0.0	0.29	Z2.32	Ű.75	0.22	-0,52	0.00829	0.0
EDWARDS GREENH WELL 4N 2: 29ACU1		47	97	27	- 17	67	72	73	:04	51	126	17	91 -	70 5C	39.1	5 21	1_31	ĉ . 11	G.24	0.0	0.t°	0.05	0.05	6.05	5.0	0.0	0.57	4,43	J.62	0.29	-G.4ē	0.01732	7.6

-224-

	0*0	0.0	0.0	0.0	0.0	0.0	0*0	16.1	0.0	25.6	38.2	ű*0		1-0	4.5	1.2	0.01	0.0	0-0		37.8	33.6	
	0.00036	0+00151	0.00476	0.00155	0*00870	0+00350.	0,00101	0.22100	0.02867	0.00278	0,00085	0,00088		0,00296	0_00012	0.00017	0.0	0.0	0.00018		0,02061	0.01166	
	-0-36	-0.42	-0.58	60 °0 -	60 ° 0-	-0. 25	0,10	-0-21	-0-28	0.11	-0,21	-0.33		-0,18	6Z*0-	-0-67	-0.14	-0.47	-0.63		-0, 26	16.0-	(055)
·. •	0.57	0.31	0.18	0.62	0.62	0.47	0.62	0.51	0.44	0.83	0.52	65.0		0.62	9.48	0.13	0.59	0.25	0.16		0.47	-0,15	AM LOSS) LOSS) STEAN LOSS)
	0,95	0.88	0.72	1.22	1,22	1.06	1.21	1.10	1.05	1.42	1.10	0,98		1.10	1.02	19"0	1.16	0.84	0.66		1,05	6 (*0	Z-ND STEA Z-STEAM L EDONY-NO
•	25.28	14.56	4.86	16.56	12,84	20.69	13.17	4.02	18.68	26.7 8	15.9	9.27		1.71	1.69	2.09	2.79	9.47	2.85		6, 29	6.41	 (QUARTZ-ND (QUARTZ-STE (QUARTZ-STE (QUARTZ-STE (QUARTZ-STE (QUARTZ-ND (QUARTZ-STE SSIBLE
	0.21	0.28	0.58	1.16	0.66	1.15	1,10	0.95	0.50	0.71	0.99	0,87		0,62	0,37	0.26	0.28	. 0.34	0.25		3.96	2.48	R POO2 MODEE 1 TEMP (Q) MODEL 2 TEMP (Q) MODEL 1 TEMP (Q) NDEL 1 TEMP (C) ND TII CALCULATIO IN TII CALCULATIO IN TII CALCULATIO IN TII CALCULATIO
• * • •	0-0	0.0	0.0	0*0	0*0	0.0	0.0	0*0	0.0	0*0	0*0	0.0		0"0	0.0	0*0	0*0	0*0	0.0		0.0	0*0	CTED FOR POO2 MIXING MODEL MIXING MODEL MIXING MODEL MIXING MODEL MIXING MODEL MIXING NODEL MIXING NODEL MIXIEN IN TJ C MATER IN TJ C MATER IN TJ C
1	0.0	0"0	0*0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0-0	0.0	0*0	0.0	0.0		0.0	0.0	CA TEMP CORRECTED FOR HER-TRUESDELL MIXING HER-TRUESDELL MIXING HER-TRUE
	0.05	0,07	D.07	0.43	0.17	0.85	0*50	0*0	0.14	0.03	0,19	0.30		3.58	0.49	0.97	0*50	0.11	0.36		0,91	15.0	TB-MA-K-CA TEWP CORREC T9FFOURNI ER-TRUESDELL T10-EFOURNI ER-TRUESDELL T10-EFOURNI ER-TRUESDELL T11-EFOURNI ER-TRUESDELL T11-EFOURNI ER-TRUESDELL #12-EFOCKATGE OF COLD #12-EFOCKATGE OF COLD #12-EFOC
	0.39	0.30	0"06	0.46	0,26	0.97	0,23	0.10	0.44	0.22	0.18	0.25		0.84	0.10	0.39	0.19	0,56	11.0		0.33	0.22	TB-MA-K-CA TEMP CO T9=FOURNI ER-TRUEED T10=FOURNI ER-TRUEED T11=FOURNI ER-TRUEED S9=PERCENTIAGE OF C 511=PERCENTAGE OF C 11=PERCENTAGE OF C 11=PERCENTAGE OF C 11=PERCENTAGE OF C
•	0.78	0.34	0-05	0,60	0.43	0.87	0,29	0.42	0.68	0.78	0,19	0.20		0.05	0.02	0,04	0.04	0, 20	0.03		0.30	0,27	T8=NA-K T9=F0UF T1=F0UF \$9=PERC \$9=PERC \$11=PERC \$11=PERC \$11=PERC
	10-01	2.95	0.19	123.25	71.11	165.92	31.50	884.21	140.64	32.24	15, 17	18,01	<u>ty</u>	2.10	06.0	2.47	2.63	8.05	2.37	County	16.33	10.37	
	21.23	292.47	0-0	0.0	0-0	29.37	0.0	0*0	113.16	0*0	0.0	0.0	County	0.0	0*0	0.0	8.31	0.0	0.0		0-0	0.0	
	, 72	0.74	0.24	115.23	48-24	147.39	26.80	792.30	46,45	4.50	16,08	21.44	Adams	9.14	4,98	7.46	7.15	2,68	8.34	Bannock	45,26	14.57	(055)
	0.19	0.14	0*0	0.63	0.66	0.21	0.58	0.22	0.37	0.39	0.71	0.49		0.01	0,06	10"0	0, 28	0*0	0*0		69 * 0	0.59	K STEAM LOSS)
	1, 28	2.93	19.87	1,68	2.32	1,15	3.40	2.40	1-14	1.28	5.23	4.95		18.77	46.05	27.60	22.66	5,13	33.32		3,30	3.74	4_PY (MAX
	13.2	18 . 0	0 *9 2	12.5	16.7	16.6	B.5	10.2	36.5	9 - 4	17.4	20.02		42.0	72.2	3 ° 58	56.2	212.6	91.4		12.0	12.1	M LOSS) LTAVE BAT-LLP COOLING (NO
	88 83	82 0	67 0	16 0	16 0 3	06 26 1	36 92	95 90	92 0	0	06 56	0 68		17 57	B1 74	52 27	85 80	0	58 40		86 0	0 0	STEAM LOSS) CONSTANT BAT- IVE COOLING (
	121 97	666 96	959 <u>9</u> 99	170 260	171 262	123 100	164 227	130 105	105 999	222 999	141 134	101 999		50 186	137 127	117 86	114 97	666 66	03 B6		566 801	666 666	
	139	38	95	666	666	144	2 2	161	113	666	189	103		201 150	169	121	123	666 666 g	70 116 109		118	666	DOL ING PANSIO AND CO AND CO
	5 42	051 130	9 118	5 1	115	16 IŽ0	2 149	611 69	57 60	5 179	11 71	668		98 117	60 96	47 83	74 85	4	46 70		151 6	7 136	TIVE C LLICA EDONY WAS NO
	42 215	54 177	87 139	52 223	61 185	43 186	66 212	194 253	27 109	70 415	181 12	68 166		145 5	96 9	83 4	85 7	æ	10		187 229	185 227	CONDUC AD FABA AD FABA COUS SI COUS SI COUS SI THERE
	42	54	87	24	¢1	43	66	202	12	20	12 1) 68		5 145	96	1 83	65	62) 	70		187	31 185	IN AND IN AND ANORPH MORPH IN MITH
	-24 56	0 <u>4</u> 0 <u>4</u>	-29 52	ر 18 66	-19 6f-	-27 54	-16 65	-25 57	-30 50	-5 83	-19 64	-30 50		21 116	2 91	-3 18	-10 76	-15 57	ΓL 6-		-24 58	-46 31	
	5	85 -	98	r 96	- 96	88	100	06	85	Ĩ	- 96	85		137	811	112	106	96	107		5	1 89 ,	Z EQUI Z EQUI HBRIUM MG.
	69 87	Z 9 62	40 83	21 96	20 34	22 85	23 98	23 88	21 82	20 112	75 25	23 82		65 142	43 120	65 113	30 106	8 8	56 107		68 92	41 63	QUART QUART QUART SCUALL SSUMLNC SSUMLNC
			83.		ð			3	WELL 0.	0	6		•	114.	151.	6	38	19.	492.			- 4	SSUMING SSUMING SSUMING SSUMING ATURE A ATURE A CORRECTI
	SHADOW VALLEY WELL 5N 1E 25BCC1 1703.	BEN STADLER NELL 5N 1E 260001 3406.	3	av IS . 7ACCI	CLATER FORSGREN WELL 1N 1W 7BUCI	IRVIN BOEHLKE WELL IN IW BOBAI 3028.	SHANE BUES WELL IN IN ISDAAT	r TLUCEK #1 1W 220001	BISCHOF REALTY WE 3N 1W 25ADD1	LETHA FISHER WELL 5N 1W 16CAB1	HARTERS 5ABC1	INITAL BUTTE WELL 15 1W 368BC1		WHITE LICKS H S 16N ZE 33BCC1S	KRIGBAUM H S 19N 2E 2200A1S 1	ZIM'S RESORT 20N IE 26DDA1S	STINKY N S 21N 1E 23ABA1S	ER DREEK IT 1E 340AD1S	STARKEY H S 16N 1H 3408B1S		55 34E 260BA1 378.	ROMN 26DAB1	TIESTLICA TEMP ASSUMING QUARTZ EQUILIERIUM AND CONDUCTIVE COOLING (NO TZESILICA TEMP ASSUMING QUARTZ EQUILIERIUM AND CONDUCTIVE CRANSION AT TZESILICA TEMP ASSUMING EQUILIERIUM ANTH- AMORPHOUS SILICA TEMP ASSUMING EQUILIERIUM ANTH OMALCEDONY AND CONDUCT TEMEMA-4-CA TEMP CORRECTED FOR MC. IF $T_5 = T_6$, THERE WAS NO CORRECTION TTEIX-4-CA TEMP
	N NOOM N	BEN STAC 5N IE	JULIUS JEKER ME SN JE 35ACAI	JERRY DAVIS WELL #1 1N 1W 7ACCI	CLATER I WELL IN 1W	IRVIN B IN IW	SHANE B IN IW	TERRY TLUCEK WELL #1 IN IW 2200	BISCHOF 3N 1W	LETHA F 5N 1W	HARRY CHARTERS WELL 15 1W 5ABC1	INITAL IS IN		NHETEL 16N 2E	KR1GBAU 19N 2E	ZIMIS R 20N IE	STINKY 21N 1E	BOULDER DREEK RESORT 22N 1E 34DAD1	STARKEY 16N 1H		55 34E	ROBERT BROWN WELL #1 55 34E 26DA	11=SILICA TE 12=SILICA TE 12=SILICA TE 15=SILICA TE 15=SLECA TE 15=SECA TE 15=SECA T 15=SECA T

-225-

· .	[]			A†	omic Rat	tios					Mola	- Ratios	;		Free	Energi	es of of	T	
ge d Surface ture (⁰ C)	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (see footnotes)	Sodlum Potasslum	Calcrum	Mépnes / um Calcium	Calctum Fluoride	Chioride Baron	Chioride Fluoride	Caicium Sodium	Calclum Bicarbonate	Chibride Carbonate & Bicarbonate	Ammonia Chioride	Anmonia Fluoride	Chloride Sulfate	VCalctum Sodium	quartz	Cha!cedony	Amorphous SIIIca	Partlat Pressure of CO2 Gas (atmoSpheres)	R= Magnesium Magnesium - Calcium + Potassium
Spring/Well Identification Number & Name	T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₇ T ₈ T ₉ T ₁₀ T ₁₁ \$9\$11	<u>Na</u> K	Na Ca	Mg Ca	Ça F	<u>či</u>	CI F	Ca Na	<u>िक</u> मळ् _उ	<u>Cl</u> CO₃ + HCO ₃	NH4 CT	NH4 F	<u>C1</u> 504	/Ca Na	¯∆ G Quartz	C Chal- cedony		PC0 ₂	Mg ** Mg+Ca÷K
			2	Banno	ck <u>Cou</u>	<u>nty</u> (cont'd	••)											
DEAN MORRIS WELL 9536E 300B1 0, 22	72 76 -39 40 18 18 233 111 999 999 999 0 0 11	.6 (52	0.34 12	28.63	0.0 2	08,56	1.94	0.47	0.28	0.0	0.0	5.00	58.59	0.87	0,27	-0,44	0,00894	0.0
LAVA H S 95 38E 2100A15 0. 45	82 85 -30 50 211 211 307 126 82 81 999 51 0 7	4.4	2.47	0.44 14	5.48	0.0	81.27	0,40	0.34	0,59	0.0	0.0	4.68	7.40	0.63	0,10	-0_67	0.1741ú	27.4
DOWNATA H S 125 37E 12C00151855+ 43	78 81 -34 46 63 63 472 145 999 69 999 0 0 3	5.7 (0.81	0.57 3	26.80	0.0	50.96	1.23	0.31	0.16	0.0	0.0	3.01	37.55	0.60	0.06	-0.71	0.05768	0°ū
				B	ear La	ke Co	unty												
PESCADERO W 5 115 43E 36BOA15 38. 26	80 84 -31 49 58 58 301 105 145 120 99 88 81 7	7.7	0.58	0.57	24.71 9	97,26	49.51	1.71	0.43	0.21	0.00	0.01	1.00	24,99	0.93	0.35	-0.38	0,24883	0.0
BEAR LAKE H S 155 44E 13CCA1S D. 48	85 88 -27 54 232 252 391 149 113 104 999 62 0 5	5.0	1,49	0,43	5.96	0.0	14.02	0.67	1.25	0.52	0.0	0.0	0.27	9.25	0.64	0.11	-0.66	0.08206	27.3
					Bingha	ип Сон	inty												
YANDELL SPRINGS 35 37E 31D8B15 568. 32	67 72 -43 35 34 34 382 134 999 80 999 0 0 5	5,2 1	0,26	0.38	17.27 17	76.70	79,01	3.91	0,95	0.20	0.0	0.0	0,24	63,93	0.62	0.05	-0.69	0.02025	0,0
ALKALI FLAT W S 4S 38E 28DDD15 O. 34	61 67 -47 29 79 79 899 170 999 62 999 0 0 1	1.6	0,28	0.53	10.12	4.71	10.61	3.54	0.50	0.04	0,0	0.0	0,14	48.94	0.50	-0,06	-0.81	ū.17022	52 . 9
					Blaine	соил	ity												
HAILEY H S 2N 18E 18DBB15 265. 59 1	128 125 9 100 83 83 56 83 189 142 151 71 63 77	7.1 59	9.27	0.0	0.45	0.0	0.08	6.02	0.03	0.19	0.0	0.0	0.53	2,39	0.85	0.35	-0.44	0+00525	0.6
CLARENDON H S 3N 17E 270CB1S 378+ 47 1	125 122 6 97 87 45 53 87 203 148 160 79 74 81	1.0 64	4.19	0.07	0.39	0.0	0.07	0.02	0.12	0.32	0,0	0.0	0.44	2.10	1.13	0.60	-0.17	5.00621	5,1
GUYER H S 4N 17E 15AAC1S3785. 71 1	128 125 9 101 88 88 64 88 172 135 129 61 48 68	5,0 5	0.50	0.0	0.37	0.0	0.09	0.02	0.09	0.25	0.0	0,0	0.4)	2.33	0.80	0.34	-0.47	0.60092	Ú.Ľ
WARFSTO H S	135 131 15 108 85 85 72 85 200 147 159 71 64 60	0.0 4	4.93	0,0	0.31 24	46.77	0.09	0.02	0.07	0.15	0.0	0.0	0.63	2.76	0.88	0.39	-0.43	0.00009	0.0
FASLEY H S	105 105 -10 75 43 43 8 43 164 131 123 80 73 195	5.6 3	.66	0.04	0.15	0 .G	0,09	0.03	0.24	0.19	0.0	0,0	0,35	3.24	û.79	0.24	-0.51	0.00000	0.5
RUSSIAN JOHN H S 6N 16E 3300A1S 4. 35 1	105 105 -10 75 5z 52 7 52 169 134 126 62 76 198	5,4 5;	3.06	0.07	0,18	0.0	0.06	0.02	0.14	0,20	0,0	0,0	0,36	2,49	6.99	0.43	-0.31	0.00003	0.0
WALLER & STRANDING WELL	137 132 16 110 162 96 127 81 192 143 153 65 56 25	9.5 2	6.15	0- 10	3.42	C .0	0.60	0.04	0.64	0.15	0.0	0.0	3.75	1.63	0,9ć	6.50	-0.31	0.61434	6,3
MAD (1) F S LAND(NS WELL 15 17日 2014日 3日、 72 1	139 135 15 113 174 172 106 99 196 145 157 65 \$1 25	₹. [–] ź	-, eş.	0.01	4,50 52	25.70	0,95	Ũ.04	0,64	J, 20	0,60	0.0)	4,43	1.50	0.97	G.52	-0.29	0.16929	1.6

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

and a second second second

- <u>-</u> - - - - -

																												and the second	
						An De ja Visione				ria fac En la																	Mar Man		
	CONDIÈ H 5 15 21€ 1400C151310.	52	76 E	30 -35	45 8 9	89 3	839	145 7	8 78	99 9	36 0	6.3	1,96	0.32	4.41	0.0	15.62	0.51	0.24	G ,07	0.0	0-0	1.35	13.64	0.42	-0.10	-0.68	0.02715	21.9
	MILFORD SWEAT H S 15 Z2E IDAB15 76.	44	73	-37	41 64	64 3	269	126 9 9	970	99 9	0 0	9.2	1.39	0.33	1.51	0.0	12.37	0.72	0,31	0.04	0.0	- 0.0	0,28	18,53	0,51	-0.03	-0.80	0.01972	0.0
															Boi	se Cou	inty												
	TWIN SPRINGS 4N 6E 24BCB15 0.	67 1.	51 12	7 11	104 60	60	36	60 18	9 14 1	151 6	9 60	110.5	45.33	0.0	0,22	0.0	0.20	0.02	0.14	0,06	0.0	0.0	0.25	3.12	0.23	-0.24	-1.04	0.0	0.0
	DANSKIN OREEK H S 8N 5E 18CC15 8,	40	99 10	0 -15	69 63	63	29	63 144	123	100 7	8 68	124.7	47.94	0.07	0.88	0.0	0,37	0.02	0.04	0, 10	0.0	0.0	0,33	2.70	0.82	0.27	-0.49	0.00014	0.0
	HOT SPRINGS CAMPGROUND 8N 5E 6DCB1 19.	48 1	13 11	2 - 3	84 65	65	44	65 17	5 135	129 7	869	95.5	32.63	0.0	0.26	22,24	0.12	0.03	0.08	0. 13	0.0	0.0	0.82	3,11	0.81	0.29	-0.49	0.0	0.0
r.	DONLAY RANCH H S 8N 5E 1080015 265.	55 10	09 10	9 -7	80 74	74	38	74 146	3 125	104 6	8 54	105.1	62.39	0.0	0.21	0.0	0.06	0,02	0.07	0.14	0.0	0.0	0.40	2.33	0.72	0.21		0.00011	0.0
	DEER H S 9N 3E 258AC15 76.	80 14	\$7 14	1 26	122 139	159	91	139 209	9 149	196 6	6 65	46.1	50.36	0.0	1.40	0.0	0.16	0.02	0.04	0.36	0-0	0.0	1.17	1_87	0.87	0,44		0.00267	0.0
	KIRKHAM H S 9N BE 32CABI5 946.	65 t	17 11	50	88 79	56	49	93 15	5 128	197 6	3133	86.3	60.56	0.09	0,11	0.0	0.06	0.02	0,06	0.08	0.0	0,0	0.18	2.40	0.77	0,30	-0.51	0.00133	6.0
	BONNEVILLE H-S TUN TOE 3TBCC151374.	85 1	37 13	2 16	110 142	142 1	03	142 170	5 137	152 5	656	39.3	53.09	0.07	0,23	0.0	0.06	0.02	0.06	0.15	0.0	0.0	0.37	2.54	0,65	0.24		0.0 0091	4.3
														Be	onnevi	lle C	ounty												
	FALL CREEK MINERAL SPG IN 43E 9CBB1S 265.	25	42 5	0 -63	9 191	191 1	93	102 999	9999	999	0 0	15.7	4,40	0.36	599.02	0.0	122.70	0.23	0,56	2.68	0.0	0.0	13,19	2.17	0.35	-0.23	-0.96	0.50716	24.0
і N	BROCKMAN OREEK # 5 25 425 2600015 49,	35	70 7	5 -40	38 119	119	38	50 89	9 86	999 6	60	105.0	24.41	0.45	121.62	0.0	27.35	0.04	0.12	0.53	0.0	0.0	0.64	0.67	0.64	0.08	-0.66	0.77384	28.6
27-	ALPINE W S 25 46E 19CAD15 38.	37	91 9	3 -22	61 200	200 2	06	114 146	5 122	100 7	9 68	14.2	4.67	0.29	555.82	164.04	98.32	0,21	0.97	5.39	0.0	0.0	7,58	1,81	0.93	0.37	-0,38	0.26729	20.ž
															Butt	e Cour	ıty												
	LEWIS ROTHWELL WELL 3N 25E 32CDC1 45	41 1	06 10	6 -10	76 91	91 3	56	126 17	1 154	127 8	2 75	5.8	1.70	0.53			10.96	0,59	0.35	G. 11	0.0	0.0	0.33	13,72	1.03	0.49	-0.27	0.20374	31.8
	BUTTE CITY WELL #1 3N 27E 9A8P1 - 0.	35	83 E	36 29	52 54	54 3	22	132 9	7 94	999 7	'3 O	6.8	0.84	0.62	14.74	0,0	37,92	1.18	0,31	G.12	0.0	0.0	1.06	29.63	0.81	0.25	-0,49	0,02306	0,0
															Camas	Cour	rty												
	WARDROP H S 1N 13E 32A0815 731.	66 I.	20 11	8 2	91 154	154 1	24	154 150) 128-	467 6	2***	30.6	67.24	0.0	0.67	0.0	0.16	0.01	0.04	0.10	0.0	0.0	1.15	2.52	0.77	0.30	-0.50	0.00091	0.0
	HOT SPRINGS RANCH IN 13E 32ABC1S 0.	6C 1	25 12	36	97 74	74	30	74 174	137	129 7	1 60	122.1	97.63	0.0	0.83	434,13	0,13	0.01	0.03	6.12	0.0	0.0	1.40	2,05	0,51	0.02	-0.78	ũ . 0	0.0
	HOT SPRINGS RANCH IN 13E 32ABC2S 95.	67 1	23 12	1 5	95 136	136	88	136 161	131	122 6	4 50	47.6	97,63	0.0	0.93	0.0	0.14	0.01	0,03	5.1 1	0.0	0.0	1.29	2,05	0,32	-0.15	-0.95	0,00000	0.0
	HOT SPRING RANCH IN 13E 32ABC3S 0.	64 1	23 12	15	95 84	84	55	84 165	5 133	124 6	7 54	78.0	79,90	0,16	0,95	0.0	0,18	0.01	0,03	c . 11	0.0	0.0	1.40	2.29	0,39	_ -0. 08	-0.39	0.0	9.6
	ELK CREEK H S IN 15E 14ADAIS .95.	55 1	26 12	37	98 94	57	56	94 181	1 142	150 7	670	77.4	72.11	0.09	0.68	700.71	0.06	0.01	0,05	Q . 58	0.0	0.0	1.42	1.87	0.81	0.31	-0.48	0,00006	5,8
	ELK CREEK H S IN 15E 14ADA2S B.	55 1	27 12	4 7	99 84	54	42	84 189	9 143	151 7	670	97.8	66.83	0.08	0.77	500,50	0.07	0.01	0.04	G.40	0.01	0.01	1.42	1.93	0.92	0,32	-0.47	0,00012	5.8
	ELK CREEK H 5 IN 15E 14ADA3S 8.	45 1	23 i2	1 5	95 86	86	42	86 20	148	159 8	379	97.8	72.90	0.0	0,76	522.26	0,06	0.01	0,03	G.41	0.00	0.00	1,35	1.85	0.99	0.45	-0,32	0.00011	0+9
	LIGHTFOOT H S 3N 13E 7DCA15 38.	56 1	19 11	7 1	91 99	99	62	99 164	133	124 7	2 61	69.7	84.09	0.0	0,66	44,31	0.06	0.01	0.02	C.21	0.0	0.0	1.67	1.83	0.60	0.30	-0,49	0.0	0.0
	BAUMGARTNER H S 3N 12: 700015 76;	44	95 9	7 -19	65 5 6	56	34	56 103	7 101	999 6	70	114.8	37.66	0.0	1.24	65,28	0,18	0.03	0.05	C.28	0.0	0.0	1,85	3.35	0.60	0,27	-0.50	0,0	G. ⁴ .

												L	•		A	tomic F	iatios					Mola	r Ratio	s		Fre F	e Energ	ies of 1 of		
	l Surface ure (^O C)	Aqui	er T Estim	empe ated	fror	resan Geo ⊧foo	chenai	calT	age of	Coli seter:	d Wate	ar log	Porass ium	Calcivm	Magnesium Calcium	Cetctum Fluoride	Chioride Boron	Chiorida Fluorida	Carl cium Socium	Calcium Bicarbonate	Chloride Carbonete A	Ammonia	Ammonia Filuoride	Chioride Sulfate	Calc(um Sodium	quartz	Chalcedony	Amorphous Silica	Partlal Pressure c 02_6as (atmospheres)	R= <u>Magnesi</u> Magnesi + Calcium + Potassi
	Measured Temperat	т₁ т	z ^T 3	т4	т5	T ₆	17	^Ţ 8	т ₉ т ₁₁) Т ₁₁	1 9 1		la	Na Ca	Mg Ca	Ca	<u>Ci</u> 3	<u>C1</u> F	<u>Ca</u> Na	<u>Са</u> НСО ₃	<u>Сі</u> Со _з н нсо _з	- NH4 C1	NH4 F	<u>Ci</u> 504	-√Ca Na	<u> </u>	∆ G Chal- Cedon	Amor- y phous	PC02	Mg * Mg-Ca⊬K
															Сапа	is Car	intv (cont'd	• }											
SWICK H S				107	93	93	70	07.1	71 134	\$ 117	57 A	5 41	D 66	: 03	0.0	0, 18	0.0	0.06	0-01	0.05	0, 11	0.0	0.0	0.39	2,23	0.76	0.33	-0.40	0.00620	0.0
14E 28CAA151764. EP H S		4 130							67 13						0.0		639,77		0.01	0.0	0.12	0.0	0.0	1,48	2,34	-0.02	-0,55	-1,33		6.0
12E 16CAB15 0. FHS		6 115				73														0.25	· 0.10	0.0	0.0	1.06	2,10		-0.42	-1.20		6.0
12E 16CBA1S 0. TH STROM WELL		6 115			57	57	4		74 13						0.0		243.72		0.01							0.11				
12E 310801 57. BARRON	31	87 89	-26	56	51	51	11	51 9	99 6	5 999	0	0 181.	.4 92	2.96	0.0	1.41	0.0	0,36	0.01	0.03	0.06	0.0	0.0	1.72	2,78	0,70	0.12	-0.61	0.00001	3.0
L #1 13E 220001 4.	26 1	23 121	5	95	92	92	71	.98 9	99 18	9 999	0	0 60,	9 49	9.96	0.34	0.55	190,41	0,15	0.02	0.02	0.09	0.27	0.15	5.11	2,31	1.47	0.88	0.16	0.00322	19.2
BARRON L ∦2 13E 27CCB1 303.	35 1	27 124	7	99	79	79	41	79 2	69 16	8 253	92 9	1 9 9.	.9 54	I ∗ 63	0.07	0.54	197.13	0,13	0,02	0.02	0,09	0.09	0.05	5,14	2.12	1,36	0.80	0,05	0.00022	4,9
BARRON L ∦3 13E_27CCB20.	45 1	13 112	-3	84	95	58	51	95	65 13	3 124	797	184,	.2 78	3.45	0.09	0.64	0.0	0,10	0.01	0.02	0-09	0.01	0.01	3,57	1.72	0.96	0.44	-0.33	0.00089	5.8
RON H S 13E 34BCB15 38.	72 1	27 124	- 18	99	127	127	73	102 1	65 13	3 124	61 4	7 59.	3 52	2.30	0.05	0.54	198,03	0.13	0.02	0.02	0.10	0.01	0.01	2.71	2.02	0.72	0.27	-0.54	0.00286	3.7
BARRON 1 #4 13E 348001 0.	49 1	27 124	8	99	96	9 6	65	104 2	05 14	9 160	82 7	6 66,	.8 54	.35	0.06	0,58	236.95	0.12	0,02	0,02	0.11	0.00	0.0 0	3.16	2 ,0 0	1.11	0.59	-0.19	0.00150	4,0
RFIELD Y WELL 14E 90AA1 814.	21	13 7	-37	41	31	31	42	31 9	99 99	9 999	0	0 99.	.2 10	.90	0.32	0.58	0.0	1,11	0.09	0.10	0.05	0.0	0.0	1.12	7.76	0.90	0.30	-0.41	0.00086	0.0
																6														
NARD TIEGS L #1 I 2₩ 5ADD1 0.	27	76 80	-35	45	40	40	174	125 9	99 99	999	0	0 18,	5 1	. 43		53+60	0.0	71.11	0.70	0.47	0.35	0.0	0.0	1.13	20.82	0.92	0.33	-0,39	0.00138	1.0
TIEGS WELL 12		35 88							99 99					. 15			239.37		0.87	0,97	0.85	0.0	0.0	1.15		1.06	0.47		0.00330	4,5
2W BACC1 0. BA CITY WELL		93 95							99 99			0 39.		.86	0.42	6,51	0.0	3.08	0,06	0.07	0.14	0,0	0.0	1.35	3.94	1.10	0.52		0.00127	ć.,:
EY 36CAA1 757.					66	65	2		99 99			0 222.			0,10	3.66	0.0	0.38	0.00	0.02	0.20	0.0	0.0	1.12	1.59	0.54	0.01		0.000127	
2W 346DA1 2271.	40	39 91	- 24	20	υ¢	00	4	00 9	· · · 77	. 379		· +44,	U U7	***	94 I V	2.00	0.0	0.00	0.01	U+U2	0.00	9.9V	0.0			V# 34	4601	-0.10	600009	- • -

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation

وموجوع والمحمد والمحمد والمحمد ومحمد محمد محمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد

CALOWELL MUNC. PARK WELL 4N 3W 28AAB1 508. 95 999 999 999 0 0 45.1 8.40 0.01 1.93 18.28 3.48 0.12 0.10 0.06 0.0 0.0 5.62 7.19 1.16 0.58 -0.15 0.00350 0.0 54 92 28 100 101 +14 70 54 CALDWELL CITY WELL 93 999 999 999 0 0 39.3 3.39 0.16 4.62 42.04 11.26 0,29 0.21 0.08 0.0 0.0 1.70 13.53 0.99 0.39 -0.33 0.00338 . 0.0 4N 3W 35ABD1 3028. 20 78 81 -34 46 36 36 103

Caribou County BLACK FOOT RIVER W S 55 40E 1460015 4. 26 83 86 -29 52 329 3291191 175 999 70 999 0 0 1.2 0.38 0.60 15.93 79.79 86.35 2.63 0.44 0.08 0.02 0,39 0,26 20,28 0.98 0.40 -0.33 1.25606 34.0 BLACKFOOT RESERVOIR W S 65 41E 1ADC15 568. 23 72 76 -39 40 3.2 0.20 0.41 6.52 213.26 47.82 5.12 0.37 0.05 0.00 0.00 1.08 67.27 46 46 529 119 999 999 999 0 0 0.86 0.27 -0.45 0.54346 0.0 CORRAL CREEK WELL #1 65 41E 198AA1 598. 42 76 80 -35 45 362 3622087 198 999 59 999 0 0 0.7 0,25 0,62 9.55 24.02 144.48 3.98 0.38 0.02 0.06 0.58 0.12 30.10 0.61 0,07 -0.69 0.91403 34.5 CORRAL OREEK WELL #2 65 41E 19BABI 397. 41 79 83 -32 48 369 3692295 213 999 6.58 27.87 83.97 68 999 0 0 0.7 0.27 0.65 3.67 0.34 0.03 0.09 0.61 0.13 29.48 0.67 0.12 -0.64 0.44635 35.3 CORRAL OREEK WELL #3 79. 41 79 83 -32 48 360 3602036 201 999 0 0 0.7 0.25 0.62 8,93 23.43 137.67 3.96 0.39 0.02 0.07 0.12 30.02 68 999 0.60 0.67 0.13 -0.64 0.68542 34.7 65 41E 198AC1 CORRAL OREEK WELL #4 0.75 8.58 22.99 123.06 0.35 0.02 0.06 0.54 0.12 29.55 0.20 -0.55 0.67343 35.2 65 41E 19BAD2 42. 36 79 83 -32 48 363 363 2097 203 999 62 999 0 0 0.7 0.27 0.64 3.76 PORTNEUF RIVER W 0.50 0.38 41.54 60.93 165.92 1.98 0.40 0.10 0.0 0.0 0.62 23.72 0.92 25.3 34 69 91 -24 58 268 268 679 147 101 100 999 78 0 2.2 0,36 -0.38 0.69332 75 38E 26CB015 189. SODA SPRINGS GEYSER 0.9 0.02 0.37 1.91 34.73 252.14 40.68 28 85 88 - 27 54 30 301590 152 999 88 999 0 0 0.50 0.00 0.02 0.04 0.02 279-16 0.98 0.40 -0.33 0.70321 0.0 95 41E 12ADD15 4. Cassia County SIX S RANCH WELL #1 115 25E FICCAI 7911. 60 110 110 -6 81 89 79 88 101 136 120 95 61 42 48.0 23.39 0.10 2.11 0.0 0,28 0.04 0.10 0.74 0.0 0.0 2,52 2,99 0,77 -0.52 0.00436 7.5 0_28 SIX S RANCH ₩ELL #2 115 26E 200001 5095. 32 97 99 -17 67 49 130 129 117 96 83 76 15.2 0.03 1.98 0.0 49 197 1.91 9.18 0.52 0.33 0.07 0.0 0.0 0.55 18_81 1_05 0.48 -0.26 0.00205 0.0 CRITCHEIELD WELL 115 26E 288CB1 5095. 35 98 100 -16 68 51 51 207 126 126 117 95 80 72 14.1 1.91 0.02 7.66 0.0 10.50 0.52 4.17 18.81 1.02 -0.28 0.00428 0.33 0.24 0.0 0.0 0.46 n.0 C & Y RANCH WELL #2 0 999 178 999 ٥ 0 0.0 6.71 0.46 14.19 0.0 3.63 0.15 0.17 17.41 5.86 1.43 35.3 0. 29 123 121 5 95 Ð 0 0.66 0.0 0.0 0.85 0.12 0.00621 H15 27E 58AB1 LYLE DURFEE WELL 135 25E 228C81 0.40 8.42 0.0 27 0 0 999 999 999 0 0 0.0 1.51 7.45 0.66 30 59 65 -49 n 0.36 0.40 0.0 0.0 4.58 28.35 0.53 -0.04 -0.78 0.00534 34.7 ٥. WARD SPRINGS 135 26E 1700015 322, 21 96 98 -18 66 34 173 136 129 95 93 7.9 0,72 0,03 26,80 0.0 32.24 1.39 0.56 0.46 0.0 0.0 7.13 47.83 1.21 0.62 ~0.10 0.00054 0.0 43 98 100 -16 68 97 297 173 122 111 86 72 57 7.8 5.48 0.13 2.89 0.0 5.11 0.18 0.15 0.08 0.0 0.0 1.26 9.77 0.88 0.34 -0.43 0.00195 8,8 145 21E 348DC1 189. 97 OAKLEY H S 92 180 139 131 79 72 67.3 56.18 0.0 3.55 0.0 0 89 92 92 65 0.16 0,02 0,10 1.25 0.0 0.0 6.52 2,17 0.38 -0.14 -0.92 0.0 0.0 47 118 116 145 22E 27DCB15 38. SEARS SPRING 28 67 72 -43 35 39 39 299 39 999 999 999 0 C 7.7 0.90 0.43 25.46 0.0 34.37 1.11 0.37 0.27 0.0 0.0 5.15 41.23 0.66 0.08 -0.64 0.00079 0.0 145 25E 688815 662.

63 126 117 75 43 D

63 127 124 7 99 121 121 41 121 175 137 130 69 58 99.7 296.37 0.33 5.29 274.19 0.06 0.00

63 263

9.5 4.88 3.96

0.0

0.0

0.0

0.20

0.07

0.01

0.44

0,44

0.03

0,0

0.0

0.0

6.22 18.34

7.80 0.68

0.42

6.35

-0.02

-0.13

-0.84 0.00084

-0.93 0.00010

0.0

11.7

GRIFFETH-WIGHT WELL

HAROLD WIGHT WELL

145 26E 1CDA1

145 26E 1B0D1 378.

ο.

77 1,13 112 -3 84 63

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

ļ	R= Magnesium Magnesium Calcium Calcium Potassium	м _{g **} Мg+Ca+к		4.9	5,3	0,0	ئ ون	0.5	1.3	2.6	1.0	0.4	ۍ . و	3 . 8	10.9	10, 9	i6.7		0*0	
┝	(selie) d som (e)																			
Ļ	o enussana leitnea Ses 200 Lestronteit	82		0+00317	0-00059	0.00834	0,00007	0.00074	0,00092	0,00069	0.00476	0,00102	0,01823	0.00531	0,00526	0-00364	0,02705		0 . 12949	1,00755
es of of	eollis suorqnomA	A 6 Amor-		0, 28	-0-92	-0-37	-0-70	0.25	-0-93	-0-35	12.0-	-0-62	-0.17	-0.23	-0 . 12	0.18	-0.50		-0,72	1910-
Free Energles Formation of	<u>қпорерівлЭ</u>	∆ G Chai- cedony		1-00	-0.14	. 39	0.10	0.98	-0-11	0.47	0.11	0.20	0,58	0.51	0.62	0.91	0.26		0.06	-0.02
Free Fo	Quartx	∆ 6 Quartz		1_59	0.39	0.94	ũ59	1,56	15.0	68°0	0.51	0.60	1.14	1.08	1, 19	1 . 45	0,65		0 . 58	(
	بر <u>Sodium</u> بر <u>Calcium</u>	Na Na		5,01	1.48	96*6	1.82	0,99	0.66	1.86	1.49	1.18	3.02	3.02	3.17	1.84	3.64		39.67	35.49
	Chioride Suitate	ដ 🖁		35,32	2.19	6.56	5.55	234.70	104.16	46.04	42.76	84.35	32,18	27.08	29, 16	48.24	23.39		0.11	ç. 19
- Ratios	alnommA abl∩ouli	₹Ŀ		0.0	0.0	0*0	0.0	0.0 2	0.0 1	0"0	0.0	0.0	0.0	0.0	0.0	0.0	0-0		0.0	0'0
Motar	Ammonite Chiloride	T H		0.0	0.0	0"0	0*0	0.0	0.0	0*0	0.0	0.0	0*0	0.0	0.0	0*0	0.0		0'0	5°C.
	Chloride Carbonate & Uarbonate	⊒ 8 ¥		3.68	0.12	0*80	1.63	113.85	53.75	18.27	11.12	89.36	7.98	6.22	5.89	5-48	4.66		0.03	0.07
	Calcium Bicarbonate	අදි		0.64	0.01	0.33	0,08	7.87 1	1.35	1.04	1_47	5.50	1.22	0,86	0.83	0.30	0.64		0.74	6.47
	Sodium Sodium	S is	~	0.19	0.01	0.30	0.02	0*03	0*05	0,06	0.05	0.07	0, 18	0.15	0.15	0.05	0.14		1,85	1.5.1
	Chioride Fluoride	ū⊾	(cont'd.	23,70	0.40	6.05 -	0.22	36.47	5.31	2.24	4.4]	4,40	28 . 86	24.95	16.69	5,93	6. 25	T	6.87	ζ6 1 ζ
it ios	Boron Chioride	ີ ເປັ _{ເສ}		0.0	64.74	0*0	0.0	1351.71	*****	0*0	0.0	0.0	0.0	0.0	0.0	830, 88	832, 87	<u>Count</u>	0.0	24,03
Atomic Rati	muiciae) Fluoride	S⊨	a County	ം	3.80	i4. 79	5.78	535.971	Z14.39**	40.05	84.63	72.74	191.08	183.36	120.06	106,11	46.29	Clerk	0.71	0.56
¥	muitenpem muitte3	M M M	Cassia	0-07	0.08	0.41	0.05	0-01	0.01	0.04	0.01	0.01	0.10	0.10	0.13	0.16	û . 26		0,30	0.42
	muibo2 mui⊃160	କ୍ଷ <mark>ା</mark> ତ୍ର		5.39	95.89	3,30	58.11	11.62	40.47	16, 22	18.42	14.89	5.60	6.62	6, 74	18.43	7.21		0.54	0.76
	mulbo2 mulesefo9	£⊧⊳		10.0	103.9	38.4	60.0	12+6	157.9	16.4	43.3	53.9	40.3	40.4	, 9X	18.5	31.4		3.1	*
		Spring/Mell ar be Identification ar ar ar 1 2 1 3 14 15 16 17 18 10 11 15 11 15 11 Number & Name		4AROLO MARD MELL #1 145 27E 180001 3399, 24 131 127 11 104 201 180 256 165 999 213 999 0 0	MARAN IS MITCHELL WELL #2 195 21E 2500001 38, 46 76 80 –35 45 94 52 39 94 999 56 999 0 0	w.ke0 2 200581 378, 38 95 97 -19 65 47 47 105 89 119 108 999 7÷ 0	: 2×0.0C1 0. 6:0 116 115 -1 80 120 128 72 128 151 127 126 66 69	26E 12A0C1 0. 26 130 126 10 102 220 213 222 220 999 201 999 0 0	2200001 189. 62 107 107 -9 77 103 103 16 103 112 109 75 29 0	1740 DARRINGTUN MELL #1 155 26E 22AAAA1 15. 85 156 149 34 132 185 183 175 185 219 153 216 65 65	FAAZIER H 5 WEU. 152 26E 2348601 220. 95 131 127 11 104 146 146 95 146 153 127 107 43 12	HARKIAT CHANK WELL 155 26E 23UDDC1 227, 90 155 151 15 108 139 120 79 139 165 132 123 43 30	IVAN DARRINGTON WELL #5 155 261: 2300001 0. 33 104 104 -11 74 94 92 101 94 164 132 123 86 81	REID STEWART WELL 155 26E 244AD1 3399, 32 98 100 -16 68 94 94 101 100 136 120 98 54 77	IVAN DARRINGTON MELL #4 155 261: 241XCI 3399. 31 106 106 −10 76 96 96 110 109 189 131 £9 85	E 25AJAI 83. 30 130 126 10 102 185 146 174 149 999 186 999 3 0	F 5⊎8AAI 151. 40 88 90 –25 57 94 94 122 97 83 88 995 53 0		LIČY 4 S #1 34,335 Z48C15 946. 50 84 87 -28 53 60 66 540 144 89 91 999 43 0	1
	-	Sprin(Identīf Number		HAROLO WARD WELL #1 145 27E 180	MORALS MLTCHEL WELL #2 155 216 250001	HAROLD WARD WELL ∉2 155 24E 220081	6LM 155 25E	BLK 155 26E	ВLM 155 26Е	1 YAN DA 155 26E	.F.R.A.Z.I.ER 155 26E	HARREAT 155 266	I VAN DA WELL, #5 155 26E	RE110 ST 155 26E	I VAN DAF WELL #4 155 261	8LM 155 266	8LM 165 26F		LIČY 4 - 34 336	

.

-230-

						-																
	WARM SPRINGS 11N 32E 25AAG157267.	29 57 63 -50 25	23 23 3	57 124 999 999	9999900	5.6 D.33	2 0.56	2,84	0.0	25,60	3.13	0.39	0.04	0.0	0 <u>-</u> 0	0.23	85.24	0.52	-0.06	-0.79	0.02253	0.0
								Custe	er Cou	nty												
	BOWERY H S 7N 17E 6ABA15 76.	43 112 111 -5 83	89 89 16	34 124 193 143	153 84 80 1	7.0 6.65	0.34	0.54	0.0	0.87	0.15	0.24	0.15	0.0	6.0	0.30	6.41	1.07	0.53	-0.23	0.00945	22.0
	PIERSON H S BN 14E 2708015 49.	60 118 116 0 89	73 64 3	30 73 170 1 34	126 71 60 12	4,2 70,70	0.09	0.22	0.0	0,04	0.01	0.09	0.20	0.0	0.0	0.68	2.11	0.55	0.06	-0.74	0.0	6.7
	WEST PASS H S 8N 17E 32BCAIS 95.	51 94 96 -19 64	185 185 2	16 117 119 110	9999650t	3.1 8.30	0.43	1.66	0.0	1.19	0,12	0.14	0.19	0.0	0.0	0.75	5,26	0.71	0.20	-0.59	0.07181	24.7
	STANLEY H 5 ION IJE JCABIS 416.	41 106 106 -10 76	47 47	6 47 175 137	130 84 77 20	4.1 47.55	0.07	0.19	0.0	0,07	0.02	0.11	0.15	0.0	Q.0	0.44	2.64 🔪	0.88	0234	-0.42	0,00003	0.0
	SLATE OREEK H S 10N 16E 30BAD15 700.	50 128 125 9 101	91 9 1 1.	22 124 230 156	220 84 83 3	1.4 17.86	0.02	0.43	0.0	0,44	0.06	0.11	0.11	0.0	0_0	0.17	3.94	1.14	0.63	-0.16	0.00160	1.6
	ELKHORN H S 11N 13E 368AA1S 0.	57 121 119 3 93	137 137	33 137 187 141	133 75 66 5	1.0 125,52	0.49	0.20	0.0	0.03	0,01	0.08	0.18	0.0	0.0	0.51	1.59	0.15	-0,35	-1.14	0.0	16.2
	BASIN OREEK W S 11N 14E 2100815 0.	38 130 126 10 102	73 73	18 73 999 178	999 0 0 8	7,9 51,47	0.0	0.16	0.0	0.07	0.02	0.14	0.13	0.0	0.0	0.31	2.68	1.23	0,68	-0.07	0.00001	0.0
	MORMON BEND H S [1N 14E 29AAB1S 4.	38 130 127 11 103	75 4 6	53 75 999 179	9999 0 6 8	1.1 49.13	0.07	0.17	0.0	0.07	0.02	0,15	0.13	0.0	0.0	0.31	2.75	1,24	0.69	-0.06	0.00001	5.4
	SUNBEAM H S 11N 15E 19CABIS1681.	76 131 128 12 104	129 129	72 129 180 138	6 136 63 52 6	0,2 96.79	0.0	0.43	0.0	0.05	0.01	0.02	0,17	0.0	0.0	0.60	1.65	0.65	0.20	-0.61	0.00064	0.0
	ROBINSON BAR H S 11N 15E 2700C1S 151.	49 125 122 6 97	148 145 1	09 148 219 153	i 216 83 83 3	6,4 67,12	0.33	0.27	0,0	0.08	0.01	0.11	0.15	0.0	0_0	0.29	2,11	0.68	0,16	-0.62	0.0	14.6
	SULLIVAN H S 11N 17E 2780D1S 265.	41 89 91 24 58	99 99 1	59 103 115 106	5 999 73 0 1	9,3 6.05	0,37	16.97	0,0	12,90	0.17	0,13	0.17	0.0	0.0	5.94	4.73	0,80	0.26	~0. 50	0,07063	24.2
נ נ	BARNEY W 5 11N 25E 23CAB15 643.	29 59 65 -49 27	13 13 2	52 1 23 999 99 9	9999 0 0 1	0.2 0.42	0,89	4.29	0.0	35.08	2.36	0.31	0.04	0.0	0.0	0,31	77.61	0.54	-0.04	-0.77	0.00307	J.O
	BILL JOHNSTON WELL 14N 19E 34DAA1 189.	40 68 73 -41 36	60 60 2	54 127 999 36	5999 G D 1	0.1 1.43	0,63	1.95	0.0	23.70	0.70	0.37	0.03	0.0	0.0	0.08	18.93	0.50	-0.04	~0.80	0.01423	0.0
	SUNFLOWER FLAT H S 16N 12E 800815 16.	43 109 109 -7 80	71 71	43 78 184 139	132 83 77 9	6,7 35.25	0.0	0.58	0.0	0,18	0.03	0.09	0.28	0.0	0.0	0.35	2.68	1.04	0.50	-0.27	0.00434	0.0
	THOMAS OREEK RANCH H S 16N 12E 17DAD15 257,	43 125 123 6 97	90 90	56 90 248 162	2 225 88 87 7	7,5 68.07	0.0	0.45	0.0	0.08	0.01	0.06	0.21	0.0	0.0	0.43	2,03	1.01	0.47	-0.30	0,00003	0.0
	LOWER LOON CREEK H S 17N 14E 19BDB15 30.	49 119 117 1 91	73 73	31 73 199 146	5 158 81 76 12	1.7 55.91	0.0	0.54	0.0	0.11	0.02	0.04	0.15	0.0	0.0	0.64	2.10	0.93	0.41	-0.37	0.00027	0.0
								Flmor	o Com	nf 11												
								<u>ETHOI</u>	e <u>Cou</u>	1109												
	M NOL TONES	41 115 114 -1 87	30 30	8 30 198 146	158 83 79 15	5.9 12.96	0.0	0.42	11,58	1.46	0.08	0.17	0.03	0.0	0.0	0,29	5.68	0.47	-0.07	-0.63		0.0
	PARADISE H S 3N 10E 33ACH1S 946.	53 120 118 2 91	40 40 5	8 40 183 140	132 75 66 74	4.2 9.10	0.0	0.52	32.50	1.32	0.11	0.21	0.05	0.0	0,0	0.58	7.26	0.62	0,11	-0.67	0.0	0.0
	PARADISE H S WELL 3N 10E 338081 0.	38 117 115 0 88	73 73	50 73 216 153	214 86 86 8	5.0 58.11	0.11	0.45	0.0	0.23	0.02	`0 . 05	0.06	0.0	G.0	G.41	2,81	0.50	-0.00	-0.79	0.00000	7.6
	NINEMEYER H S 5N 7E 24BDD1S1321.	76 137 132 16 110	126 91 0	59 126 189 142	150 63 53 6	3.3 106.19	0.15	0.16	0.0	0.05	0.01	0.33	0.09	0.0	6.0	G . 25	1.80	0.72	0.27	-0.54	0.0	7.5
	DUTCH FRANK'S H S 5N 9E 7BBA1S1135.	65 119 117 1 91	72 72	53 72 161 131	-77 63*** 8	0.8 45.17	0.15	0.13	0.0	0.10	0.02	0,20	0.07	0.0	6.0	0.22	2.99	0.66	0.18	-0.62	0.0	10.5
	ATLANTA H S 6N 112 350ADIS - 0.	38 123 121 5 95	76 îc	53 76 243 162	224 88 57 6	9.1 37.77	0,22	0.23	0.0	0,10	0.03	0.11	0.16	0.0	6.0	G.42	3.06	0.71	0.16	-0.60	0.0	14.7
	JOHN MALOTA WELL 25 50 230801 0.	22 99 100 -15 69	77 77 2	74 165 224 156	218 94 94	8.9 3.49	0.67	5.56	0.0	10.07	0.29	0.19	0.10	0.0	5.0	3.18	13.93	1.24	0,65	-0.07	0.01135	35.9

	Т			_									Γ		A	tomic R	atios					Mola	r Ratic			Frei	e Energi preation	es cf of		1
		l Surface ure (°C)	Aqui	fer Esti	Tempe matec	t from	res a s Geo e foo	chemi	cal Th	ige of iermom	Cold sters	fater	Sodium Potassium	Sodium Calcium	Magneslum Calcium	Catclum Fluoride	Chiloride Boron	Chloride Fluoride	Ca) c l um Sod l um	Calcium Bicarbonate	Chioride Carbonate d Biochanate	Ammon la Chioride	Armonis Fluoride	Chloride Suffate	v Calclum Sodium	, Quartz	Chalcedony	Amerphous Stites	Partial Pressure o 002 Gan Intervision mel	
Spring/Weil 5 Identification 5 Number & Name 6	(1/mln.)	Measured Temperatu	Ť _Ι 1	[2 T.	3 T.	4 T5	5 ^T 6	т ₇	τ ₈	^{[9] T} 10	т ₁₁	9 1 1	Ne K	Na Ca	Mg Ca	Ça F	EI B	ÇI F	Ca Na	Ca HCO3	СІ 003 н н003	NH4 CI	NH4 F	<u>CI</u> 504	_√Ca Na	∆ G Quartz	∆ G Chal- cedony		- P00-	* <u></u>
															Elm	ore Co	unty	(cont'o	ł.)											
LONG TOM RANCH WELL #1 3S 7E TACAT	0.	20 10)9 10'	9 -:	7 8 0	58	58	379	166 9	99 188	999	0 0	5.3	1.21	0,35	10,72	0.0	17.61	0.83	0.37	0.22	0.0	0,0	2.53	32,53	1.40	0.60	009	0,00327	
LESLIE BEAM WELL 35 BE 36CAD1 264	49.	68 13	28 12	5 9	9 101	71	71	10	71 1	79 138	133 6	654	185.0	101.12	0.0	0.14	0.0	0.04	0.01	0.03	0.06	0.0	0,0	0.87	1.62	0,76	0,29		0.00033	
LATTY H S 35 TOE 3100B1S	0.	55 13	57 13	2 16	5 110	137	137	79	137 2	29 157	220 8	10 79	54.0	235.35	0.0	0.21	0.0	0.03	0.00	0.01	0.04	0.0	0.0	0.73	1.34	1.11	0,61	-0.19	0,0005(-
ROBERT BRUCE WELL 45 5E 2568C1	۵.	24	92 94	4 -21	1 62	47	47	376	47 1	54 131	106 9	0 85	5.3	1.26	0.35	6.16	0.0	30,81	0.79	0.27	0.05	0.0	0.0	0.94	44.05	1.11	0,52	-0.20	0,0004:	:
BEVERLY OLSON WELL 45 7E 19BDB1	0.	26 1	4 11:	5 -3	3 85	63	63	288	161 9	99 173	265	094	8.2	2.05	0.58	4.98	0.0	10.90	0.49	0.24	0.11	0+0	0.0	1.33	20,40	1,35	0.77	0+04	0,00145	
NORTHWEST PIPELINE WELL 45 86 3688A1 3	30.	38 12	8 12	5 9	9 101	124	74	59	89 2	58 169	252 B	988	73.5	в7.17	0.10	1.79	0.0	0.51	0.01	0.01	0.04	0.0	0.0	5.01	1,28	1.34	0.79	0_ 04	0.0086-	<u>-</u> .
BILL DAVIS WELL 45 96 BACA1	0.	62 12	8 12	59	ə 100	82	82	. 13	62 1	38 142	150 7	1 63	174.3	158.84	0.0	0.11	0.0	0.03	0,01	0.02	0,04	0.0	0.0	0,62	1.33	0.49	0.01	-0.79	0.0005:	1
GARY LAWSON WELL 55 3E 14CB01 23	38.	59 12	25 12	3 f	6 97	62	62	8	62 li	37 141	134 7	2 61	193.5	66.1 0	0.0	0.42	55,39	0,05	0,02	0.06	0,28	0.0	0+0	4.87	1.95	0.14	~0,35	-1.15	0.0	
MIKE WISSEL WELL 55 7E 16ABD1	0.	21 12	20 116	э 2	2 91	60	60	312	156 9	99 205	999	0 0	7.2	1.13	0.45	5.85	0.0	21.98	0,89	0.38	0.10	0.0	0.0	0.42	24.85	1.51	0.91	0.79	0.0029:	-
CHARLES BOYD WELL 55 BE 3480C1	8,	34 10	8 10	8 1	7 79	144	124	86	99 H	97 146	157 B	784	49.5	61.31	0.18	14,37	0.0	1,96	0.02	0.02	0.13	0.0	0.0	24,58	1.08	1.17	0.60	-0.14	0.0161-	ú.,
MAGIC WEST CO. WELL 5S IOE 32BDB1 20	04.	3 8 9	7 9	9 -17	7 67	68	68	-1	56 14	11 122	99 7	8 68	245.7	90.66	0,13	1,20	0.0	0.09	0.01	0.01	0.18	0.0	0.0	31.41	1.40	0.95	0.40	-0,35	0.00425	1
CHARLES ANDERSON WELL 55 11E 7ACC1	0.	32 9	3 95	i20	63	64	64	20	64 13	8 121	978	2 74	149.3	55.09	0.0	0.16	0.0	0.06	0.02	0,03	0.08	0.0	0.0	1.38	2.30	0.95	0.38	-0.35	0.00042	:
															I	rankl	<u>in Co</u>	inty												
TREASURTON W S #1 125 405 364C015 3	58.	35 10	5 10:	5 -10	75	227	2 27	504	136 19	7 145	156 8	986	7.5	3.70	0.42	153.97	56.63	57.10	0.27	0,57	1.52	0.00	0.66	2.17	3.32	1.13	0.57	-0,'5	0.18195	3
TREASURTON W 5 #2 125 40E 36A0615 - 3	58.	33 10	3 104	1 -12	2 73	256	236	33 5 .	143 19	8 145	157 9	0 87	6.4	3.48	0.41	178.56	56.72	64.62	0,29	0,56	1.52	0.00	0.70	2.27	3.57	1.14	0.57	-0.:7	0.1775	1. 1.
CLEVELAND H S #1 125 415 310AC15 -7	16.	66 11	0 110) ⊸¢	61	222	2 22	294	123 14	0 121	95 5	9 35	7.9	3.84	0.40	150.07	57.88	51.90	0.26	0.44	1.25	0.01	0.94	2,70	3.62	0.70	0,23	-0. 7 8	0.4452	
LLERELAND HIS AZ 155 418 3100415 - 3	Sē.	50 II	112	-4	5.5	22÷	225	297	131 16	3 131	119 7	2 67	7.5	4,56	0.48	156.07	57.86	42.91	0.21	0.45	1.54	0,00	6.47	2-6 8	3.27	0. 89	0,39	-ç:	0.2592.	

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

-232-

CLEVELAND H 5 #3 125 41E 31CDB15 189.	61 113 112	+3 84 226	226 300	131 155 12	8 118 67 62	7.7	4.51	0.46 149.51 55.68	44.41	0.22	0,47	1.56	0.01	0.88 2.71	3.33	0.82	0,33	-0.47	0.27131	26.4
MAPLE GROVE H S 13S 41E 7ACA1S 76.	78 127 124	8 99 217	217 252	217 168 13	3 124 59 42	10.2	10.09	0.58 290.40 78.95	36.63	0.10	0.26	2.04	0.00	1.42 6.30	2.15	0,73	0,29	-0.52	0,23960	28.0
MAPLE GROVE H S 135 41E 7ACA25 378.	72 128 125	9 100 215	215 249	131 176 13	7 130 65 51	1014	9.39	0.51 292.83 79.61	40.08	0.11	0.29	2.06	0.00	1.32 6,24	2.21	0.83	0.38	-0.43	0.14033	26.2
MAPLE GROVE H S 135 41E 7ACA353539.	60 128 125	9 101 214	214 248	132 199 14	6 158 76 69	10.5	9,22	0.44 313.00 77.36	44.09	0.11	0.29	2,00	0.00	1.00 6.30	2.25	1.03	0.54	-0.26	0,12159	23.5
BEN MEEK WELL 145 39E 36ADA1 0.	40 130 127	11 103 165	165 130	101 99 9 17	5 285 0 91	28.4	26.73	0.45 17.98 169.14	1,19	0.04	0.07	1.06	0.01	0.13 67.06	1.53	1.35	0,80	0.04	0,08032	23,6
ELDIN BINGHAM 155.39E 708C1 38+	63 116 115	-1 88 252	159 253	136 161 13	0 175 67114	10 <mark>,</mark> 2	25,06	0.191071.93 540.07	38.9 0	0.04	0.52	14,20	0.0	0.0 440.06	0.45	-0.88	0.40	-0.41	0.79178	7.7
BATTLE CREEK H S 155 39E BBOC1S 189.	82 142 136	21 115 254	154 259	254 195 14	4 155 63 53	9.7	31,67	0,18 468,17 456.20	13.75	0,03	0,38	12.75	0.00	1.41 405.51	0.48	0.88	0.45	-0.37	0.24452	6.4
BATTLE OREEK H S 155 J9E 880C2S8176.	43 141 135	20 114 253	150 259	150 999 18	2999 0 0	9.8	32.25	0.15 450.93 452.32	13.12	0.03	0.36	12,26	0.00	1.36 471.39	0.48	1.46	0,92	0,15	0.24464	5.3
BATTLE OREEK H S 155 39E BBDC3S 0.	81 142 136	21 115 254	155 259	254 197 14	5 156 64 54	9,7	32.85	0.19 449.68 426.01	12.80	0.03	0.33	11.26	0.00	1.34 366.44	0.48	0.89	0.46	-0.35	0,42626	6.7
BATTLE OREEK H S 155 39E BBDC4S 19+	B4 135 131	15 108 253	5 154 250	253 176 13	7 143 57 51	10.4	33.93	0.18 583.45 400.48	15.93	0.03	0.54	19.34	0.00	1.74 571.72	0.40	0.77	0.35	-0.47	0.16304	6.5
SQUAW H S WELL 155 39E 178CO1 435.	84 149 143	26 124 258	153 263	258 211 15	iO 199 65 65	9.5	27,29	0.14 922.11 524.15	30,76	0,04	0.54	15.83	0.00	2.10 572.40	0.44	0,95	0.53	-0,29	0,41959	5.5
SQUAW H S 155 398 17BUC15 140.	69 150 143	28 125 253	150 255	144 245 16	1 224 77 74	10,1	26.92	0.14 857.17 498.84	29.88	0.04	0.51	14,27	0.00	1.89 689.75	0.45	1.19	0.73	-0,08	0,40100	5.6
SQUAW H S 155 39E 178DC25 450.	73 150 143	28 125 238	150 225	137 235 15	8 222 74 72	12.3	27.01	0.18 714.18 423.60	23.80	0,04	0.42	12.50	0.00	2.25 753.07	0.46	1.13	0.68	-0.13	0.33000	7.7
MYRON FONNESBECK WELL 165 38E 24ABC1 ****	23 121 119	2 92 84	84 335	133 999 22	3999 0 0	6.4	1.52	0.57 97.55 66. 01	73.95	0 .6 6	U.28	0.37	0.00	0.22 57.31	14.91	1.49	0.90	0,18	0,06322	33.8

-2331

Fremont County

DONALD TRUPP WELL 7N 41E 2508D1 0.	32 12	2 120	3	94	184	184 223	150 99	9 169 26	2 0 92	12.5	6.67	0.24	2,16	0.0	1.76	0,15	0.19	0,23	0.0	0.0	2.60	6.26	1.36	0,79	0.05	0.00324	15.7
WAYNE LARSEN WELL 7N 41E 26ACC1 0.	22 13	3 129	13	106	184	179 215	157 99	9 225 99	900	13.2	6.53	0.23	2.11	85,30	1.27	0.12	0.12	0,20	0.0	0.0	3.30	5.38	1.63	1.04	0,32	0.00184	15.0
HENRY HARRIS WELL 7N 41E 34ADD1 0.	33-11.	3 1.12	-3	84	78	78 184	126 22	3 154 21	8 69 89	17.0	4.81	0.39	2.07	44.68	2.08	0,21	0.19	0,18	0,0	0. 0	2.79	8.32	1.24	0,68	-0.06	0.00593	25.4
NEWDALE CITY WELL 7N 41E 340CD1 9.	32 11	6 117	0	90	81	81 204	141 25	9 164 22	28 91 90	14.4	4,11	0,34	3.31	86.35	3.13	0,24	0.20	0.21	0.0	0.0	0.0	8.76	1.3;	0.74	0.00	0.00262	23,0
WALLACE LITTLE WELL 7N 41E 35CUD1 0.	36 12	1 119	3	93	84	64 195	136 24	6 160 22	:5 89 88	15.4	4,86	0.37	2.38	0.0	2,46	0.21	0.18	0,17	0.0	0.0	1.97	7.79	1.29	0.73	-0.02	0,00359	24.3
CLAUDE HAWS WELL 7N 41E 3600A1 0.	32 11	6 115	-1	88	63	63 196	123 24	6 160 22	5 91 90	15.3	3.20	0.50	2.14	0.0	3.79	0.31	0,19	0.11	0.0	0.0	2.03	12.79	1.30	0,73	-0.01	0.00683	0.0
DEAN SWINDELMAN WELL 7N 42E 8CAA1 0.	32 11	4 113	-3	85	49	48 297	140 23	5 157 22	2 90 90	7,8	1.01	0.61	3.75	0.0	9.01	0.99	0.28	0.12	0.0	0.0	4.31	32.18	1,27	0.70	-0.04	0,00582	0.0
REMINGTON PRODUCE WELD 7N 42E 19CCA1 0.	26 8	386	- 29	52	26	26 233	131 9	8 95 99	9 62 0	11.6	0.75	0.80	5.85	0.0	7.54	1.34	0,37	0.28	0.0	0.0	2,95	45,29	0.95	0.37	-0,36	0.00185	0.0
ASHTUN H S 9N 425 23DAC15 B.	41 14	2 137	21	115	91	86 105	111 99	9 160 99	900	38.3	57.06	0,15	0,71	0.0	0.24	0,02	0,02	0.05	0.0	0.0	1,67	3.35	1.46	0.91	0,15	0.00314	7.9
816 SPRINGS 145 44E 34BBC15*****	12 9	8 100	-16	68	66	66 2 94	136 99	9 307 99	9 0 0	7.9	4,36	0.18	0.43	8.6	0.55	0.23	0.19	0.09	Û.C	0.0	2.12	19.41	1.40	0.78	0.08	G.01584	0.0

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Bolar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CD₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

																	tomic f	Ratios			<u> </u>		Mola	n Ratio	rs		Fre	e Energi ormation	ies of 1 of		
		Surface ure (90)	Aqu	ifer Est	Ten iana 1	ted	from	es an Geocl footi	hemi	¢al ⊺∤	ige i ierma	of Colo	i Water	toot hum District Frida	Sodium Calcium	Magneslum Calclum	Calcium Fluoride	Chiloride Boron	Ch lor l de F luar I de	Callum Sodium	Calcium Bicarbonafe	Chloride Carbonate & Birerbonate	Anthron Is Chior Ide	Annania Fluorida	Chloride Sulfate	≺Calcium SodTum	Quartz	Chalcedony	Amorphous Silles	Partial Pressure of CO2 Gas (atmospheres)	R= Magnesium Magnesium + Calcium + Potassium
Spring/Well Identification Number & Name	Discharg (1/mln.)	Measured Temperati	T ₁	т ₂	тз	Т ₄	т ₅	т _б	т ₇	т _в -	г ₉ т	10 ^T 11	\$ 9 \$1		Na Ca	Mg Ca	<u>Ca</u> F	CI B	LI F	<u>Ca</u> Na	- <u>Ca</u> #2033	<u>Сі</u> С03 і нс03	NH4 C1	NH4 F	<u>C1</u> 50 ₄	<u>.≁Ca</u> Na	<u> </u>		∆G Amor- phous	PC02	Mg ** Mg+Ca+K
-																	Gen	Coun	ty												
ROYSTONE H S 7N 1E BODA1S	76.	55 1	47 1	41	26 1	22 1	50	98 1	12	109 2	73 1	70 258	64 83	35.3	32.06	0.11	2,08	0.0	0,26	0.03	0.07	0.56	0.0	0.0	1.53	2.12	1,31	0,80	0.01	0.00954	7.3
EAST ROYSTONE H 7N 1E 9CDC15	s 0.	45 1.	33 13	29	13 1	06	84	84 1	21	109 2	61 1	66 228	87 85	31.8	11.51	0.26	2.01	0.0	0,89	0 . 09	0,14	0.30	0.0	0.0	1.43	4.49	1.30	0,77	-0.01	0,00592	18.3
																	Good	ing Co	ounty												
J. SHANNON WELL 45 136 28ABB1	· 0.	47 1	32 1	28	12 1	05	98	98 I	129	97 2	43 1	61 <u>22</u> 4	85 83	≥.8	17,79	0.20	0.37	0.0	0.39	0.06	0.05	0.05	0.0	0.0	1.17	3.59	1,26	0.74	-0,04	0.04091	13.4
WHITE ARROW H S 45 13E 30ADB1S		65 1	35 1	31	15 1	08 1	12	112	43	79 2	02 1	47 160	72 64	96.7	132,21	0.0	0.29	0.0	0.05	0.01	0.01	0.07	0.0	0.0	1,19	1.38	1,01	0.54	-0,26	0.00866	0.0
DAVE ARCHER WEL 55 12E 3AAA1		57 1	12 1	11	-5	83	70	70	9	70 1	52 1	27 110	67 57	191.3	98,06	0,10	0.24	0.0	0.04	0.01	0.03	0.11	0.0	0.0	1.20	1.61	0.97	0.43	-0.33	0.00024	7.6
																	Idai	10 <u>Cou</u>	nty												
BURGDORFH \$ 22N 4E 1BDC1\$	613.	45 1	20 1	18	2	91	57	57	39	57 19	91-1	43 152	76 72	104.2	37.14	0.0	0,80	0.0	0.55	0.03	0.18	0.08	0.0	0.0	0.45	3.55	1.11	0.58	-0.19	0.00017	0.0
RIGGINS H S 24N 2E 1408015	189.	42 i	19 1	17	1	91	95	9 5	54	95 19	95 1	45 156	80 75	80.D	44,99	0,03	2.04	0.0	1.40	0.02	0.86	0.38	0.0	0.0	0.07	1.79	1.08	0.54	-0.22	0 . 0	2.0
BARTH H S 25N 12E 1800 TS	742.	61 1	18 1	16	0	89	51	51	14	51 1	571	29 <u>2</u> 03	63127	175.1	54,48	0.0	0.34	0.0	0.13	0.02	0.05	0.08	0.0	0.0	1.84	2,91	0.53	0.05	-0.75	0.00002	0.0
RED RIVER H S 26N 10E 30001S	132,	55 1	22 13	20	3	94	80	80	50	80 1	75 1.	38 130	70 60	86.I	52.30	0,0	0.10	0.0	0.06	0.02	0.11	0.10	0.0	0,0	0,27	2.33	0.88	0.38	-0.41	0.00008	0.0
WEIR OREEK H S 36N 11E 13BOC1S	151.	48 1	00 10	01 -	14	70	34	34	42	34 1:	24 1	16 91	63 48	9E.6	15.32	0.0	0.51	0.0	0.71	0.07	0.24	0,08	0,0	0.0	0.38	7,19	0.75	0,23	-0.55	0.00006	0.0
JERRY JOHNSON H 36N 13E 18ADD15		48 1	00 II	01 -	14	70	33	33	18	-33 1i	24 1	16 91	63 48	157.3	23.89	0.12	0,64	0.0	0.80	0.04	0.17	0,07	0.0	0.0	0.21	5.10	0.70	0.18		0.00004	0.0
																	Jeffei	son <u>C</u>	ounty												
HEISE H S 4N 40E 25D0A1S	227.	49	79 (83 ⊷	32	48 2	06	206 2	13	119 99	99	83 999	0 0	3.4	5.81	0.30	414.94	0.0	68.81	0.17	0.62	3.69	0.0	0.0	8.78	1.62	0.54	0+02	-0.76	0.24894	19.8
ROYAL CATFISH			•														Jero.	me Çou	inty												
PDUSTRY 95 17E 29DBB1	****	43 13	27 11	19	2 9	92	93	93 -	48	93 Z	96 14	48 161	62 76	ē`.`	77.66	0.0	0.78	0.0	0.09	0.01	0.03	0.18	0. 0	0.0	2,55	1.74	0.95	0.41	-0.35	0,00010	0.0

12-22

 $\hat{k} \geq$

						:	÷				5		Lemhi	County													1
	CRONKS CANYON H S 16N 21E 18ADCIS 76	76. 46	96 99	ĥ	57 165	150 144	115 124	124 112 75	65 42	24.7 2	25.36 0	0.21	1.99 0	0"0	0.74 0.04	04 0.05	05 0.13	13 0-0	0.6	1.07	2.38	0.70	0.17	-0-61	0,01918	12.2	
	SALMON H S ZON ZZE 3AUD15 54	549. 45	63 86	8	52 203	203 234	112 117	666 201 211	0 79	11.5 1	14.40 0	0,79 14	14.89 0	0.0	6 . 06 0 . 07	0,06	06 0.15	15 0.0	0.0	3,98	2,90	0.65	0.12	-0-65	0°38936	32.7	
	SHARKEY H S 20N 24E 34CCC15 3	30. 52	52 131 128		12 104 173	98 135	117 234	156 221	80 78	27.0 6	64.48 (0.14	2.28 0	0.0	0.29 0.02		0,02 0,18	18 O.O	0*0	0.86	1.15	1.18	0,66	-0-12	0*02860	5.8	
	BIG CREEK H S 23N 18E 22CAD15 284.	93	161 152		38 137 173	173 136	173 224	153	218 60 59	K.7 7	72.37	0*06	1.04	0.0	0.17 0.01	01 0.02	, 02 0•10	0-0 01	0.0	1.48	1.20	0.87	0.48	¥.0	0.04252	2.6	
												a a	Madison	County	5												
	LAVERE RICKS WELL 5N 40E SCBA1	0. 21	93 95	R	63 36	X 22	£12 6£1	<i>27</i> 3 167 257	8	6*6	0.92 (0,58	6.25 0	0.0 12	12,40 1,08	08 0.30	61°0 08	0.0	0.6	4.92	37.20	1.18	0, 58	<u>0</u>	0.00207	0"0	
	MARK RICKS WELL 5N 40E 8BCC1	6. X	101 102	14	71 44	44 278	138 258 162	3 162 227	5	8.7	1*06	0.55	3.78 121	121,86 9.	9 * 20 0* 62	95 0.30	50 0.12	12 0.0	0.0	2.71	32.98	1.21	0.62	0°10	0.00443	0.0	۴
	PAULINE SHITH WELL 5N 40E 90001	т 0. 21	66 16	-22	61 30	30 276	142 254	4 161 227	96 95	8.8	0.66	0.67 14	14,29 0	0.0 29	29.23 1.52	52 0.30	50 0.14	14 0.0	0*0	5.94	4 3 89	1.15	0.55	-0.16	0,00177	0*0	
	GREEN CANYON H S 5N 43E 6BCA15	0. 44	76 76	6£-	40 7	785	150 79	666 08 6	9 15	1.8	0.05 (0.38 (0.57 0	0.0 41.	41.48 20.59	59 1.28	28 0.02	0*0 20	0.0	0.01	348.40	0.49	-0-05	-0,81	0.03367	0-0	
	WALZ ENTER. Inc. Well 64 41E 10ACCI	ŋ. 26	114 113	'n	85 81	81 225	140 999	9 185 999	000	12.3	3.66 (0.37	3.91 82	82,26 3.	3-97 0-27	27 0.20	20 0.20	0*0	0-0	2.81	9.84	1.36	0.78	0°0	0.00476	24.2	
_	WANDA WOOG WELL #1 6N 416 108881	0. 24	115 114	-2	86 78	78 221	146 999	666 561 6	000	12.7	3.38 (0.36	3.68 73	73.12 4.	4.47 0.30	30 0 . 21	21 0 . 17	17 0.0	0.0	0*0	10.31	1.40	0.81	0-06	0.00236	24.1	
-235.	WANDA WOOD WELL #2 6N 41E 100681	0. 27	27 125 122	Q	97 80	80 207	133 999	666 198 99 9	0	14.0	3.94 0	0.40	2.98 58	58,59	3.27 0.25	25 0.22	22 0.20	20 0°0	0.0	2.60	9.13	1,47	0.89	0.16	0-00570	2 4 •2	
_												6	Oneida	County	,												
	КЕNT н 5 125 34E \$6BCB1S 715.	15. 24	83 86	£7-	52 35	35 352	666 666 221	666 666 (0	5.9	0.47	0.56 62.53		0.0 88.	68,49 2.14	14 0.38	8 0.26	5 0 . 0	0*0	5.27	57.29	1.00	0.41	-0-31	0.04489	0*0	
	MALAD W 5 145 36E 27CUA15 167.	67. 2 5	61 67	[9	23 228	228 260	13.3 999	666 666 6	0 0	£ - 6	8,72 (0,542813,82		0.0 284.43	.43 0.11	11 0.38	8 3.71	1 0*0	0-0	227,48	1.48	0.67	0.09	-0-64	0, 26290	27.3	
	PLEASANTYIEW W S · 155 35E 3AABIS*****	Q.	65 70	-44	33 176	176 188	114 999 999	666 666 6	0	16.4	4.44	0.49 359.86		0.0 74.49	49 0.23	23 0*51	1 2.40	0*0	0.0	11.57	4.30	0.72	0.13	-0-59	0.04960	50.4	
	WOODRUFF H S 165 36E 1088C15	0. 27	78	Bì -34 41	46 192	192 178	135 999 999	666 666 6	0	17.8	12.20 (0.571429.24		0.0 102.71	71 0.08	08 0 . 44	4 5,97	7 0*0	0-0	74. 70	1.44	0,88	0.30	0-43	0.02094	29.8	
	·											ð	Owynee	County													
	GIVENSHS IN 3W ZIBBDIS	0. 49	121 119	т	1 001 56	100 19	100 189	189 283 150	81 75	153.1 21	219.66 0	0.0	0.88.0	0*0	0.03 0.00	10.0	1 0.21	0.0	0.0	2,01	16*0	0.71	0.19	-0.59	6.0008	0.0	
	WESLEY HIGGINS WELL IN 4W 120861 1552.	52. 36	56 16	-22 61	1 39	39 -35	22 B)	666 666	68 0	623.6 8	87.17 0	0.0	1.90	0.0	0.13 0.01	11 0.02	2 0-22	2 0*0	0.0	ŝ.92	1.55	16.0	0,36	65.0-	0. D1687	0.0	
	EARL FOOTE WELL 15 2W 700B1 64	640. 46	82 85	-30 50	0 83	83 14	63 999	666 666	0	170.1 110.11		0*0	0°53	0.0	0-08 0-01	1 0.02	12. 0.16	6 0 . 0	0.0	1.14	1.32	0.47	90 0	-0,83 (0.00048	0.0	
	ALFRED HEYWOOD WELL 35 1E 350AC1 0.		20 106 106	-10 76	8	56 251	141 999 413 99	413 999	0	6'6	1.42 0	0.38 1	1,97 39	39.76 9.	CT.0 11.6	0,27	1 0°05	5 0, 0	0"0	5 . 83	21-51	1.36	0.76	0*0*0	G . 00362	0.0	
	WILLIAM COX WELL #1 45 1E 25COUL 19	19, 30	147 141	26 122 186		144 176	121 999 483 99	483 999	0 0	18.2 2	21.62 0	0.19 22	22.33 0.	0,0 19.75	75 0.05	5 0.04	4 O.04	40.0	0.0	12.31	1-85	1.68	1. 10	0.37	c. 05103	10.7	
	WILLIAM COX WELL #2 45 IE 26AGCI 189.		Z7 134 130		7 200	14 107 200 178 202	200 999 464 99	464 999	0	14.7 3.	35.53 0	0.35 11.	11.61 5.	5.08 10.27	27 0.03	3 0.03	13 0°03	3 0°0	0°0	£,78	1.66	0.6	c.0	0.0	0*0	14.2	

-235-

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

<u></u>			_			<u> </u>		i 		<u> </u>								_							Free	Energi	es of		<u> </u>
											ŀ			A+	omic Ra	atios					Molar	Ratios	<u>.</u>			ormation		ۍ.	
[[]	ure (°C)	Aquif E	er T stim	emper vated	from	es and Geoci foot∢	1emic	s¦ Ther	of Co momete	ld ¥a rs	ter	Sodium Potassium	Sodium Calclum	Magneslum Calcium	Calcium Fluoride	Chloride Boron	Chioride Fluoride	Celcium Sodium	<mark>Calcium</mark> Bicarbonate	Chloride Carbonate & Bicarbonate	Ammonia Chioride	Armonia Fluor Tan	Chloride Sulfate	ACalclum Sodfum	Quartz	Cha I cedony	Amorphous Silica	Partial Pressure 00 ₂ Gas (atmospheres)	R≠ Magnesium + Calcium + Potassium
	Temperatu	τ ₁ Ι ₂	, T ₃	T ₄	т5	Ť ₆	1 ₇	T ₈ T9	τ ₁₀ τ ₁	1 \$9	×11	<u>Na</u> K	<u>Na</u> Ca	Mg Ca	Ca F	CI B	F	Ca Na	<u>Са</u> нСо ₃	<u>сі</u> ^{С0} 3 + нсоз	NH4 CI	NH4 F	<u>Ci</u> 504	_ <mark>_∕Ca</mark> Na	<u>∆</u> G Quartz	∆ G ChaT- cedony	∆G Amor- phous	PC0 ₂	Mg ** Mg+Ca+K
														Owyh	ee <u>Co</u> i	inty (cont'd	-)											
T. ADCOOK WELL 45 1E 2900D1 5602.	70 12	7 124	7	99	77	,, ,,	4	77 167	250 1	25 64	50 21	2.6	145.28	0.0	0.54	24.54	0.05	0.01	0.03	0,17	0.0	0. 0	0,83	1.26	0, 29	-0.17	-0,98	0,000 00	0,0
GEORGE KING WELL 45 1E 34BAD1 0.	75 1:	27 124	7	9 9	75	75	0	75 161	253	75 59	023	8.1	155,32	0.30	0.54	0.0	0.04	0.01	0.02	0.14	0.0	0.0	0.81	1.23	1.78	1.15	0_46	0.00003	18.4
G. CHRISTENSEN WELL 4S 2E 2908C1 38.	28 1	57 132	16	110	175	175		115 999	461 9	9 9 0	0 2	3.4	27.40	0.54	55,38	15.26	33,18	0.04	0.03	0.05	0.0	0.0	18,66	1.59	1,60	1.02	0, 29	0+04147	25.5
R. KETTERLING WELL 45 ZE 32BCCI 95.	43 14	12 137	21	116	160	130	26	60 999	374 9	99 0	03	i0.0	45.09	0.20	1.05	0.0	0,32	0.02	0.02	0.08	0.0	0,0	8.85	1.64	1,28	0.74	-0.03	0+00069	10,2
C. STEINER WELL 55 IE 3AABI O.	32 1	17 141	26	122	192	173	197	40 999	462 9	99 0	0 1	5.2	16.79	0.08	19.29	6.86	3.6 0	0.06	0.05	0.04	0.0	0+0	6.77	2.30	1.64	1.07	0,33	0.01369	4.9
E. LAWRENCE WELL ≇1 55 1E 10B001 4542.	64 1.	27 124	1. 7	99	61	61	0	61 173	269 1	29 69	58 24	3.0	79.24	0.0	0.46	24.91	0.07	0.01	0.05	0, 20	0+0	0.0	0.64	1.70	0.34	-0,14	-0.94	U.Q	0.0
E. JOHNSTON WELL #2 55 1E 210BC1 138Z.	65 1.	23 120) 4	94	71	71	C	71 163	256 1	23 66	54 24	3.0	134.11	0.0	0.46	23.43	0.04	0.01	0.03	0.21	0.0	0_0	0.84	1.31	0.35	-0,12	-0.92	0.00000	0.0
E. LAWRENCE WELL #2 55 1E 24ACD1 7646.	65 1.	50 127	7 11	103	96	96	27	96 184	279 1	35 71	60 13	0.8	158.49	0.0	0. 50	28,63	0,03	0.01	0,02	0, 20	0.0	0.0	0.92	1.20	0.36	-0,11	-0.92	0.00001	0.0
E. LAWRENCE WELL #3 55 1E 24ADB1 4012.	6 6 1	26 123	; 7	98	77	77	4	66 170	264 1	27 67	55 21	2.6	145.28	0.14	0.50	0.0	0.04	0.01	0,02	0.16	0.0	0.)	0.78	1.26	0.86	0.39	-0-41	0.00248	9.3
DSCAR FIELDS WELL 55 ZE 18BC1 95.	50 1	23 120	. 4	94	60	60	-1	60 191	285 1	52 80	75 24	3.8	88,19	0.0	0.57	·0.0	0,05	0.01	0.06	0.26	0.0	0.0	6.10	1.74	0.14	-0,38	-1.16	0.0	0_0
COX AND LAWRENCE		30 127 42 13		103		167			561 2 374 9			9.3 Se.1	44.02 50.29	0.33 0.35	2.09	38.27 6.16	0.73	0.02 0.02	0.02	0.06	0.0 0.0	0.0 0.0	19.91 6.69	1.45	1.39	0.83 0.49		0.02590 0.00008	13.5 17.4
55 2E 58C01 284. H. DRISKELL WELL #1 55 2E 13ADA1 19.		42 13				171	192	140 99	9 586 9	995 0	0	15.8	34. B7	0,33	10.72	0.0	4.13	0.03	0.03	0.07	C. 0	0.0	25.39	1_59	1.72	1.13	0.41	0.01653	15.6
N. MOXEETH WELL 55 3E 20ADA1 0.	60 1	42 13	7 21	116	73	73	5	73 Z3	321	22: 60	79 2	06,5	134.71	0,15	0.42	5.67	0.03	0.01	0.06	0.29	0.0	0.0	6.35	1.42	0,32	-0,17	-0.97	0. 0	10.2
BURGHARDT CO. WELL 55 3E 2088B1 19.						141	162	110 99	9 501 9	999 0	0	20.6	9.55	0,15	32.16	11.58	39.82	0.10	0.09	0.07	0,0	0.0	12.13	3,24	1.67	1,09	0.36	0.04545	11.1
LERDY BEAMAN WELL 58 32 22AADT 19.	25	56 14	9 34	4 13 2	170	170	145	113 99	9 610 9	9 99 0	Ð,	23.8	22.94	0,29	29.10	56.1B	12+87	0.04	0,04	0.09	0.0	6.0	25.73	2.00	1.84	1.25	0.53	0.03415	16.6

.

-236-

0°0	6 . 8	6.)	0*0	0"0	12.4	0-0	31,9	0*0	0*0	8 . 4	0*0	0*0	2,1	5.4	2.2	7.4	1.8	6 *2	2.1	2.1	0*0	0*0	4.6	11,4
0°0	 0°0	0"0000	0.0	0*0	0,00107	0,02435	0.01964	0.00819	00003	0*00005	0•0	0.00024	0.00024	21000-0	0*0	0.00187	0.00032	61000-0	0.00248	0,00036	0.0009	11000*0	0,00016	60000*0
-1.15	-0.86	-1,06	-0,95		0, 23	-0-16		-0-15	-0.62	-0.49	-0.47	-0.37	0,15	0.16	-0.46	12.0	0.13	-0-08	0.40	-0.44	60°0-	-0.10	0.21	0.04
X 9	90°0-	-0.27	-0,14	-0-18	96°0	0.55	16.0	0.58	0.18	6Z*0	16-0	0.42	19.0	16-0	0.33	0.92	0.87	0.67	(1,1	0,33	0.65	0,64	0,95	0.76
60.0	95.0	0.22	6.33	0.27	¥.1	1,15	1.55	1.16	0.67	0.80	0.83	0.91	1.46	14.1	0.63	1,52	1.44	1.22	E	0.87	1.21	1-20	1.52	1.35
12,1	£.	1.68	8 1	1.70	12.76	6 . 25	2.2	51.15	1-05	1.14	1.32	4.17	2.25	J. 16	2.33	11.1	5.24	1.54	2,27	2,26	1.62	1.94	3.52	13.11
0,66	0,63	3.84	4.34	0,60	0.20	0.30	5*42	1.62	1.14	1.8.1	0.71	1.31	0.71	0.90	0.79	0.20	1.92	1-69	¥C-1	12.44	1.26	0.85	16-0	0.45
0.0	0-0	0"0	0*0	0.0	0-0	0.0	0*0	0-0	0.0	0-0	0"0	0*0	0*0	0"0	0*0	0*0	0*0	0-0	0"0	0*0	0"0	0-0	0*0	0.0
0"0	0-0	0-0	0*0	0.0	0"0	0-0	0*0	0.0	0-0	0-0	0.0	0.0	0*0	0.0	0"0	0*0	0.0	0-0	0.0	0-0	0.0	0.0	0*0	0,0
0.30	0.28	62.0	0.27	0.26	Q.13	0*50	0.07	0.28	0.2	0.19	0.14	0.18	0.10	0.12	0.34	0.18	0,16	0.14	62*0	0. 13	0.13	0.14	0.21	11.0
0.15	0.07	0.03	0.05	0,06	0.57	0.31	0.07	0 .4 5	0-02	0.02	0*0	60-0	0.03	0.06	0.38	0.48	0.07	0.02	0.06	0.04	0.0	£0 • 03	60 ° 0	0.35
0.01	10 ° 0	10.0	0.00	0.01	0.59	62*0	60 * 0	0.96	10-0	10*0	0.01	°-0	0.02	0.04	0,03	0.25	0.06	0.01	0.02	0, 02	0.02	0,02	0.05	0.40
0.07	0,05	0,03	0,02	0.07	23.70	67,95	16"22	35,08	0,03	0 . 03	0,06	0.20	0, 19	0,24	0,10	4.98	0.27	0.04	0,14	60 ° 0	0.06	0.05	0.18	2,61
8.03	B,32	6.25	7.38	8.72	42.51	50.95	10.46	220-61	6.82	7.23	7.63	19-83	8.00	8.40	10,74	33,06	27.70	6,63	05.11	5,46	6.96	8.84	11.45	33,85
0.54	0.57	0.46	0.38	0.57	5.67	44.66	21.44	22.51 2	0,60	0.57	0.49	0.47	0.65	0.54	0.42	1.92	0.60	0.28	0,82	0,38	0,26	0,24	0.42	0.85
0,0	0,11	0.12	0*0	0*0	0 . 15	8	0,68	0.38	0"0	0.14	0.0	0*0	0*02	0.09	0.03	0*0	0.04	0.19	0.04	0.04	0*0	0-0	0*07	0.14
91,32	127,455	100.87	211.38	79.24	1.70	64.6	11.42	1-04	174 . 34	18, 921	119.86	2.36	16.91	K.N	38,35	4.04	17.81	80.46	44.70	40,80	11.82	61,64	21.36	2.48
110.0	124.7	153.1 1	126.9	154.6	11,8	41.9	12.4	2.4	72.9 1	46.8 3	29.2	20.5	20.4	24.0	9.6	12.4	0"6	47.5	2.3	33.4	¥.	2.47	2.5	10.7
6) 50	72 64	67 75	73 66	22 88	° 0	0 68	0	68 26	76 75	83 82	0 87	75 69	0	0 0	0	00	0	68 68	. o 0	<u>79</u> 69	0	0 93	0	0
283 150	233 157	245 130	73) 151	285 152	458 999	666 666	467 99 9	55 6 8	301 192	122 225	354 262	294 156	427 999	444 999	376 999	544 999	403 999	324 222	524 999	246 105	579 999	358 278	453 999	474 999
189	197	76 152 2	198	190	666	75	666	135	201	53	166 999	199	666	162 999 4	666	666	566	235	666	153	141 999 3	666	666	666
16 94	56 RA	5	16	19 75	Z31 155	96 82	661 GZZ	14 9 95	60 128	90 145	91. 173	127 90	163 176	147 16	102 143	22	703 X01	69 141	150 140	116 151	z K	55 75	149 161	245 73
5	12	76	105	75	71 2	62	197 2	21	128	744	166 1	90	176 1	87 1	143 1	78 2	201 2	<u>5</u> †1	169 1	131 1	141	\$	155 1	13 2
6 91	110 95	B B 76	109 105	110 25	106 71	61 62	102 197	66 21	128	110 146	116 166	106 90	9 <i>L</i> ‡ <i>1</i> 20	122 162	13Z 143	91 92	107 207	95 141	122 169	80 151	103 141	8 8	122 161	fZ 16
21 116	16 11	٥	15	16	13	-22 €	10 10	-18	16	16	21	13 10	8	Я	X	7	14	ŝ	ĸ	5	11 10	5	3	2
83 142 137	67 157 132	115	151 31	17 132	5 129	91 93	3126	96 98	i6 132	1 132	12 137	5 129	52 145	17 141	6 149	20 118	130	23 121	141	601 60	34 130 127	24 121	141 21	22 120 118
83 14	67 13	60 117	65 136	72 137	20 133	22	52 153	2	62 136	53 137	48 142	61 135	39 152	34 147	54 156	20 120	55 154	39 123	27 147	44 109	¥	33 124	53 147	22 12
SE 0.	SE 0.	-	6	5 5	ים. עניר	ц°,	°	ING	°.	. 57.25	°	° 1	6283,	ð	5602.	л. М	ి	0. WELL [9.	G	19.	19.	1	ر رام. ا	•0
CODKIS GREENHOUSE MELL # 55 3E 26BCB1	COOK IS GREENHOUSE WELL / 55 SE 26HOBZ	55 36 278001	A, WHITTEU WELL 55 36 288001	0. BYBEE WELL #2 55 3E-350001	IDAHO POWER CO WELL 55 4E 3400B1 0.	CHESTER TINDALL MELL	OLAY ATKINS WELL 55 55 340001	LOWER BURCH SPRING 65 IE \$288A15 0.	L. POST WELL #1 65 3E 20861	L, POST NELL #2 65 3E 20001 2725.	N, BUNT WELL 6S 3E 48001	J. AGENBROAD NEI 65 36 5CACI	MIELSON & CAROTHERS WELL 65 3E 9ACC1 6283.	TREAMSLE DALRY WELL, #1 65 35 110AD1	LITTLE VALLEY. 1PR: WELL 65 4E 14ABC1 5602.	KENT KOHRING WELL #1 65 4E 25BCC1 341.	DICK WARD WELL 65 4E 3500A1	COLYER CATTLE CO. 65 5E 100001	1.8.51MPLOT WELL #1 65 56 180081	J.R.SIMPLOT WELL #2 65 55 20AAB1	GEORGE HUTCHINSON NELL 65 55 2480A1	BRUNEAU CITY WELL 65 5E 2400B1	DON DAVIS WELL 65 5E 290001	CARL & MARRY LOOS WELL 65 5E 35CCA1

-237-

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

		and the second se

						A	tomic R	atics		, in the second s			Mo∤ar	Ratios			Free Fo	Energie rmation	is of of	÷.	
	0	Surface ure (°C)	Aquifer Temperatures and Percentage of Cold Water Estimated from Geochemical Thermometers (See footmotes)	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Calcium Fluorfde	Chloride Boron	Chloride Fluoride	Celcfum Sodfum	Catclum Bicarbonate	Chloride Carbonate 5 Bicarbonate	Ammonia Chioride	Ammonia Fiuo-Ide	Chloride Sulfate	A Calcium Sodium	Quartz	Chalcedony	Amorphous Silica	Partial Pressure o CO2 Gas {atmospheres}	R≍ Magnesium + Calcium + Potessium
Spring/Well Identification Number & Name	Discharge (1/min.)	Measured Temperat	T1 T2 T3 T4 T5 T6 T7 T6 T9 T10 T11 \$9 \$11	¥I K	Na Ca	Mg Ca	Ça F	<u>ट।</u> छ	<u>CI</u> F	Ca Na	Ca HCO3	CI CO3 + HCO3	NH4 CI	NH4 F	<u>CI</u> 504	-/Ca Na	G Quartz	∆G Chal- cedony		PCO2	<u>Mg</u> ** Mg+Ca+X

Owyhee County (cont'd.)

1DAHO F DEPT. 6S 61		0.	. , 37 147	14 (26 12	2 176	97	163	143 99	19 423	9 99	0 0	20.4	31.38	0.10	.1.73	58.47	0.60	0.03	0.03	0.07	0.0	0.0	14,29	2. 02	1,54	0.99	0.24	0,00368	5.3
WELL	D BACHMAN	19.	38. 130	126	10 10	2 133	133	83	135 99	9 353	261	0 91	51.0	54.04	0.0	0.21	8,99	0.05	0.02	0.05	0.15	0.0	0.0	0,71	2,14	1.16	0,61	-0.14	0,00007	0.0
WELL	U CEMENTAR	Υ	42 127	1.24	89	, 991	91	<u>3</u> 1	91-23	9 326	223 8	6 67	84,1	71,25	0,0	0,21	8.99	0.04	0.01	0.04	0.15	0.0	0.0	0.97	1,85	0.95	0.41	-0.36	0.00003	0.0
ACE BL	AOK WELL E 328001	95.	35-129	125	10 10	2 132	132	83	132 99	9 367	291	0 9 3	51.6	52.86	0.05	0.22	9.60	0.05	0.02	0.04	0,13	0.0	0.0	1,06	2,15	1,07	0,51	-0.23		3.4
WELL #	WILSON 1 E 1ACB1	19.	41 120	118	2.9	1 138	, 102	79	102 -20	8 302	194 B	87 86	55 . 3	64.75	0.14	7.55	37.78	0.75	0.02	0.02	0,17	0.0	0.0	49.38	1.17	1.18	0.64	-0.12	0,00779	8.2
WELL #2	WELSON 2 E 10B01	38.	33 119	117	19	i 139	139	82	104 25	1 336	226 9	95 92	51.9	53,81	0.24	13.23	26,17	1.20	0,02	0.02	0,23	0 . 0	0.0	59.43	1.31	1.30	0.74	-0.00	0.00657	13.9
CARL JO 6S 71	OHNSON WEL E 20001	L 19.	35 121	119	39	3 144	101	89	109 24	8 334	226 9	92 91	47.0	63,12	0.14	3.95	24.41	0.36	0.02	0.02	0,18	0.0	0.0	54.16	1,32	1.30	0.74	-0.01	0.00613	7.8
SAND DU FARMS 1 65 76		0.	23 129	126	10 10	2 199	199	216	131 99	9 509	99 9	0 0	13.2	16.09	1.08	13.02	18,56	17.61	0.06	0.07	0.05	0_0	0.0	0,18	2.44	1.59	1.00	0.28	0.05057	40.1
WELL #1	URGHARDT 2 E 4AQD1 Z	725.	34 133	129 -	13 10	679	75	492	176 99	9 391	999	0 0	3.5	1,06	0.09	2.27	21. 77	14.22	0.94	0.36	0,05	0.0	0.0	0,54	26.45	1 . 47	0.90	0.16	0.00996	7.3
	THOMAS WELL E LACCI ZE		40 127 1	124	7 99	182	178	213	182 24	5 332 3	225 89	9 88	13.5	13.39	0.05	0.48	26,46	0.34	0.07	0.13	0.08	0,0	0.0	1.37	5.69	1.21	0,66	-0.10	0.00021	3.1
PETE ME WELL #1 75 46		263,	42 134 1	130	14 10	7 194	194	247	194 27.	3 350 :	257 90	089	16.6	13.83	0.03	0.52	22,27	0.31	0.07	0.10	0.16	0.0	0.0	1.15	6.01	1.29	0.75	-0.01	0.00042	1,7
PETE ME WELL #2 75 4E		574.	38 136 1	132	16 10	9 198	198	261	198 99	9 377 !	999 (0 0	9.6	11.36	0.02	0.49	24.04	0.36	0,09	0.10	0.14	0.0	0.0	0.97	6,56	1.35	0.80	0.05	0.00028	1.4
FRANK M WELL #1 75 4E		:75.	36 136 1	32	16 10	92	92	282	92 99	9 389 1	999 (00	e.5	4.90	0.03	C.61	28.62	0.92	0.20	0.22	0.14	0,0	0.0	0.84	10.21	1.43	0.87	0,12	0.00064	2.3
	BROTHERS WA	ELL - Q₊	43 134 1	130	14 10	136	185	224	186 27	348	254 89	9 89	12,4	12.70	0.02	0.52	25.85	0.38	0.05	0.11	0,15	0.0	0.0	1.34	5.96	1.22	0,69	-0.08	0.00020	1,5
CLARENC 75 45	1551.155 1551.155	<u>.</u>	35 134 -	3.	14 10	193	185	24.5	193 999	\$ 364 ;	285 (9 9 Z P	·•	11.70	0.05	0,4ò	24_62	0.38j	6.09	0.12	0.14	0.0	0.0	1,08	6.33	1.19	0.64	-0.11	0.00007	2.8

i 238-

UAVE LATHINE' MELL 75 4E 1300L1 4751. 40 135 15' 15 105 186 186 225 186 999 363 285 0 91 12.0 10.62 0.02 0.44 30.81 0.37 0.09 0.17 0.17 0.0 0,0 1.28 6.39 1.28 0.74 -0.02 0.00015 1.3

					gro (Mir Gar)		ala tita		S. Market	1993 (M																
DAVE LATH	HINEN WELL 130CU1 4750.	40 135 131	15 10)8 186	186 228	186 999 34	53 285	0.91	12.0	10.62	0.02	0.44	30.81	0.37	0.09	0,17	9.17	0.0	0+0	1.28	6.39	1.28	0,74	-0.02	0.00015	1.3
FRANK MIL WELL #2								·																		
75 4E 1 ROBERT BI	4ABC1 6283.	39 134 130	14 10	07 196	196 258	196 999 3 6	6 289	092	9.8	10.90	0.02	0,72	22.64	0.57	0.09	0.11	0.13	0.0	đ.0	1.22	6,65	1.32	0.77	0,01	0,00028	1.5
75 4E	15ACD1 *****	33 137 152	16 1	0 88	6 8 2 87	172 999 41	2 9 99	0 0	0.2	3.64	0.06	0.38	27.67	0.78	0.27	0.28	0,14	0.0	0.0	0.50	11.47	1,50	0.94	0.20	0.00139	4.5
BLAINE R/ WELL #3 75 4E	AWLINS 230882 *****	39 134 130	14 10)7 188	168 236	188 999 36	6 289	0 92	11.3	8.43	0.03	0.59	0.0	0.57	0.12	0.17	0.16	0.0	0.0	0.83	6,86	1.35	0.80	0.04	0+00049	2.0
BELL BRAJ RANCHES I 75 4E 2		37 137 132	161	10 [°] 93	93 328	93 999 3 6	999 9	0 0	6.5	6.41	0.02	U.39	28,16	0.21	0.16	0.10	0,17	0.0	0.0	1.03	11.98	1.30	0.75	-0.00	0.00012	1.6
GUTHERIE RANCH WE 75 4E		31 131 128	12 1	04 9 4'	94 268	94 999 40)7 <u>9</u> 99	0 0	9,2	6,03	0.05	0.78	33.54	0.75	0.17	0,19	0.20	0.0	0.0	1.48	9,20	; 1.47	0.90		0.00070	3.7
DAVE LAT	HINEN WELL 27BOC1 5261	27 122 120		94 <u>.</u> 87	87 253	166 999 40)1 9 99	0 0	10,2	5.01	0,13	1.14	39.13	1,15	0,20	0,22	0.22	0.0	0.0	1,35	9.99	1.43	0.85		0.00114	9.7
ACE BLAO WELL #2 75 56		32 121 119	3 3	93 175	175 180	175 999 35	53 261	093	17.6	24,96	0.04	0.62	17.13	0.25	0.04	0.08	0.18	0.0	0.0	0.54	3.82	1,19	0.62	-0.11	0.00007	2.1
DAVIS BR WELL #1 75 5E	DTHERS	39 131 126	12 10	24 187	185 232	187 999 35	5 264	091	11.7	10.46	0.04	0.54	33.55	0,42	0,10	0.13	0.17	0.0	0.0	1,56	6.56	1.30	0,75		0.00034	2.6
DAVIS BRI WELL /2		40 131 127				184 271 34				16.25	0.03	0.45	25.99	0.25	0.06	0.11	0.17	0.0	0.0	1.33	5.07	1.24	0.69			
7S 5E HARRY_LO	OS WELL				46 223	90 267 34			12,5	7,26	0.07	0.44	46.47	0.52	0.14	0,21	0.16				•				0.00016	1.7
ROY DAVE	90001 3406. S	40 130 127	пп	06 51	40 222	90 207 P	.0 2.2 3		12.5	1.20	0.07	0.44	40.47	0.72	0.14	0,21	0.16	0.0	0.0	1.35	7.96	1.25	0.71	~0.05	0.00022	5,1
WELL #2 75 5E	13AAC1 1325.	25 133 129	13 10	6 92	92 265	92 999 48	17 999	0 0	9.4	4.94	0,21	0,54	25,60	0.85	0,20	0.27	0.37	0.0	0.0	0.54	9.55	1,56	0.97	0.25	0.00038	14.3
CARL STE 75 SE	INER WELL 13CH81 0.	36 127 124	7	99 188	188 229	188 999 35	i1 259	0 92	12.0	13.01	0.0	0.44	21.25	0.29	0.08	0,12	0.17	0.0	0.0	1.28	5.94	1.26	0.70	-0,05	0.00017	0.0
ROBERT T 75 5E	INDALL WELL 16ACD1 0.	40 131 127	11 10	04 161	181 209	181 271 54	8 255 9	91 90	13.9	13.79	0.02	0.33	33.55	0.20	0.07	0.10	0.16	0.0	0.0	1.33	5.61	1.24	0,69	-0.07	0.00021	1.6
BELL BRA INC. WEL 75 5E		37 134 130	14 10	07 186	186 225	186 999 37	4 9 99	0 0	12.3	12,45	0.02	0.49	30.74	0.30	0.08	0.11	0,18	0.0	0.0	1.24	5.79	1.38	0,82	0.07	0,00046	i_4
GENE TIN 75 5E	DALL WELL 28ACD1 4239	34 133 129	13 10	06 199	187 262	199 999 39	1 999	0 0	9.6	10.92	0.06	0.46	26,55	0,36	0,09	0.13	0.17	0.0	0.0	1.07	6.36	1.39	0,83	0.09	0.00024	3.7
GEORGE T 75 6E	URNER WELL 7AAC1 0.	25 137 132	16 1	0 186	184 197	186 999 50	8 999	0 0	15.3	37.98	0.06	0.54	21.92	0.13	0.03	0,05	0.18	0,0	0.0	1,15	3.15	1.44	0.85	0,13	0.00003	2,6
COLYER C CO. WELL 75 GE	3	51 137 132	16_1	0 131	131 71	131 241 32	8 223 8	94 83	60.7	108.96	0.31	0,22	14,58	0.03	0.01	0.04	0,17	0.0	0.0	1,00	1.45	0,69	0.18	-0.61	0.0	14.0
R.L. OWE WELL ∦2 75 6E		43 125 123	6 5	97 91	62 188	91 223 31	6 218 8	87 86	16.3	11.54	0.09	0.54	46.47	0.39	0.09	0.11	0,15	0.0	0.0	1.35	6.38	1,16	0.62	-0.14	0,00037	6.2
HOT SPRI RANCH WE 75 6E	LL	43 126 123	7 9	98 94	56 166	94 226 31	8 219 8	87 87	20.0	15,96	0.08	0.40	39.74	0.23	0,06	0,10	0.16	0.0	0.0	1.35	5.17	1.17	0,63	-0.14	0,00034	5.7
R.L.OWEN WELL #4	s			33 07	93 205	130 194 28	8 154 8	2 70	14 7	9.88	0.00	0.40	0.0	0.47	0.10		0.14	0.0	6.0		6.76					
75 6E ROSE WIL 75 6E	LIAMS WELL	47 121 119		93 93 10 93	93 200	93 999 35			14.2	7.70	0.22	0.48	0.0	0.43	0,10 0.13	0.14	0,14	0.0	0.0 0.0	1.43	6,76 7,51	1,13	0.60		0.00080	14.0
R.L. OWE WELL ∦7	NS			98 81	61 275	164 255 33			8.9	3,92	0.29	1.49	26.46	2,45		0.18	0.11									10.4
75 6E	26ADA1 3899.	36 126 123	7	0 01	u: 2/3				V. 7	~ . 2 6	0.27) 9	20.40	2447	0.27	J+ 10	0.11	0.0	0.0	1,55	12.76	1.30	0.75	-0.90	0.00166	19+1

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Thermal Springs and Weinerals, Partial Pressures of CO2 Gas and R Values from Selected Thermal Springs and Weils in Idaho (continued)

5.1.228

	R= R= Ragnesium Calcium Calcium Potassium	** ***********************************	
ł	o enuceany (sithe9 es GOO (senedate)	PCO2	
Free Energles of Forestion of	Amorphous Silica	<u>z chat</u> Amor- cedany phous	
Ľ.	z†⊓eu9	∆ 6 Quart z	
	مر <u>صادا مس</u> مر <u>صادا مس</u>	S A	
	Chloride Chloride	<u>ច</u> ន្ត្រី	
Halar Ratios	apt-commy	¥ ¥₹	
8 0 	Childrifde Childrifde	CI NH	
	Carbonate & Carbonate &	5 € G	1
	Calcium Bicerbonate	ବନ୍ଧି	-
	Sodium Sodium	8 2	(•p
	Chilor¦de F∣uorlde	하	County (cont'd.)
Sej Leg	Boron Boron	ōΙm	जन्मते (
Atomic Refice	Celcium Celcium	8µ.	hee C
	muisenaam muisie3	ង្ខាន	õ
	Lood um Calcium	₽ß	
	nu lbo2 Potessium	£¦⊻ 	
	<u>ព្</u> រាជ ទូតត	Meil 8년 8년 8년 1910년 16년 8년 1911 6 Name 2011 5년 17 14 15 16 17 16 19 110 111 59 511	
	·	Spring/Weil Identification Number & Name	

	10.7	5.2	15.3	1.6	0.0	0*0	
	0.0006	G. 00006	0,00046	0.00068	0.00126	0 . 00866	
	-0-38	-0•28	-0.03	00 " 0"	۰ ، 5	-0,17	
	0.39	0.48	0.73	0.75	0.28	0.62	
	0°93	1.02	1.27	1.30	0.74	1.13	
	8.29	5.20	9.63	5.52	1.88	2.97	
	1.37	1.32	1.59	1.64	0,95	1,53	
	0.0	0.0	0.0	0.0	0*0	0-0	
	0-0	0*0	0-0	0.0	0.0	0*0	
	0.11	0.14	0.12	0.13	0.15	0*0	
	0.14	0.09	0,16	0.09	0.03	10-0	
	0.14	0,06	0.17	0,07	10.0	0.01	
	1.05	0.35	1.37	0.51	0, 05	0-08	
1	33.1 6	0.55 Zr1.88	24.6 0	90 SE	0 1	0.0	
	0,85	B. 55	1.05	0.61	G. 3 2	3	
	0° 12	0.08	0. 23	0.15	0.0	0*0	
	6,97	15.47	5.77	14.22	87.17	67.17	
	13.2	17.0	10.9	13.5	212.6	25.5	
	87 B7	98 58	252 90 90	346 252 91 90	61-26	155 81 76	
	23 221 87	£22 824	34 6 252	46 252	46 40	296 155	
	87 ZJ 72	99 241 3	86 267 5	182 267 3	4 67 152 246 40 61-26	200	
	216 8	184	242 E	21.3 18	4	141 119	
	87	52	8	129	19	091	
	69	66 65	103 86	102 182	3 93 61	93 163	
	8 97	2	Fi Fi	10 X		r K	
	12 124 8 99 87	4 124 7 99 99	13	第二三章 19 102 182	40 IZ #	E 124 3 66 E	
	JAMES PRESIZOTT WELL 75 66 273/081 2044.	JEAN PRESCOTT H S 75 .6E 34008151705 4	PRESOTT N S 75 6E 3500815 0. #1 (31 127 31 103 86	INDIAN BATHTUB H S BS 6€ 34900131699+	INDIAN H S 125 76 550 156548+ 4	MURPHY H S 165 95 2400815 265.	

Power County

27.9	35.4	
0,00869	0,00463	
-0.75	-0-80	
10*0-	-0*02	
0.56	0.51	
9.10	<i>u.</i> .u	
0.46 1.47 0.0 0.0 31.36	8 2.65 0.0 0.0 23.44	
0*0	0*0	
0*0	0.0	
1.47	2,65	
0.46	9 G.O 54.52 0.85 0.88	
0+40	0.85	
2.0 51.47	54.52	
5.0	0-0	·
41 166.45	. 59 167.4 9	
52 0	17 0	
.7 2.	ۍ -	
wolkwigerkunds 66 3/15 160046153829+, Σ.Σ.≭.Ξ. 66 —46 3/1 7/1 1/1 1/3 1/6 999 999 999 0 0 18∔7 2,52 0,41 166.45	OOKLAND WARN SPRINGE 35 30E 1500015151842. № ⊕. ⊕. 72 -43 35 72 72 72 454 999 31 999 3 0 7.5 1.17 0.59 167.49	
÷9	RC 11	

TWIT Fails County

			l.					in V Maria Vila				2
55.	0.0	14.22 0.65	6Z*0	0-14	0-0	0.0	2.53 30	30.45 1.	1. 19 0.64	4 -0.11 0-00306	0"0	_
HOLLISTER VILLAGE MELL ISS 17E 78MB1 946. 35 67 72 ⊶43 55 B4 94 341 148 999 999 999 0 0 6.2 2.26 0.48 1.34 12	12,89	7.33 0.44	0.21	0-04	0*0	0.0	0.99 15	15.22 0.	00-0	0 -0,74 0,01891	1.62 10	
MAGICH S 165 17E 50ACAISI457. 46 68 73 -41 36 45 45 396 124 999 999 999 0 0 4.9 0.76 0.49 6.79 0	0.0	47.41 1.32	0.28	0.04	0.0	0°0	0.69 48	48.38 0.	0.40 -0.13	5	0-0 61	
<u>Valley</u>	Coun											٠
25. 85 125 126 15 106 89 53 61 89 168 151 121 51 15 15 10 65.15 0.09 0.49	0.0	0.07 0.02	0.04	0.19	0*0	0.0	2.71 2.	2.23 0.	0.36 -0.06	-0*87 0*0001	1 5*6	
SILVER OFER PLINES 12N 5E 5608A1S 0. 39 104 104 -11 24 175 157 181 179 156 128 104 78 67 17.3 45.33 0.33 0.43 0.	0.0	0,15 0,02	0.04	0.12	0*0	0-0	Q. B1 3.	3.12 0.	0.63 0.28	3 -0.47 0.0006	6 12.5	
CABARTON H S 13H 4E SICABIS 265. 71 123 121 5 95 99 99 47 91 161 130 65 58 -3 89.5 102.55 0.0 2.39 0.	0.0	0-07 0-01	0.04	0.86	0*0	0.0	2.88 1.	1.50 0.76	76 0.30) -0.51 0.00283	5 0.0	
2ASCADE CITY MELL 14M 3E 56A601 0, 43 96 98 -18 66 46 46 -1 46 123 114 87 68 53 246,6 65,20 0,0 2,12 0,	0.0	0.20 0.02	0.04	0.30	0*0	0.0	2.39 2.	2,50 0.54	-0°00	-0 - 77 0-0003	5 0°0	
VULCAN H S 14N 6E 1180A1S1892. 87 147 141 26 122 135 135 80 135 194 145 135 57 46 53.3 91.04 0.09 0.38 0	0-0	0.04 0.01	0,02	0.24	0*0	0.0	1.07 1.	1.64 0.64	5°0	5 -0.59 0.00065	5 4.7	
34 110 113 -6 81 62 62 14 62 191 143 153 85 81 170*1 80*46 0*13 3*30	0*0	0.24 0.01	0.12	0.44	0-0	0*0	2.71 2.	2,18 0.49	90 ° 0- 5	3 -0.82 0.0	0.0	
MOLLY'S H S 15V 6E 14ABBIS 76. 59 129 129 126 10 102 83 53 54 95 192 143 153 71 64 79.4 61.02 0.0 0.32 0.	0.0	0-06 0-02	90"0	0-22	0*0	0-0	1.59 2.	2.32 1.93	0.54	1 -0.26 0.00163	0-0 5	
SUNTH FORK PLINNGE 15M EE 14LUNGS 0. 55 112 111 -5 15 62 52 55 52 149 126 109 66 55 78.5 26.15 0.12 0.40	0-0	0,16 0,04	0.10	0.19	0*0	0*0	1.74 3.	3.63 0.37	37 -0.13	00001 -0-92	0*0	
D PISTOL OREEK H S PIGN 10E 14008225 13. 46 115 114 −1 37 63 63 41 54 177 136 131 76 69 100.8 28.94 0.0 0.64 0	0.0	0.24 0.03	0,06	0+21	0*0	0-0	0.49 3.	. 09 5.09	1.06 0.55	6-0-22 0-07220	0.0	
SLWELOWER FLAT HS ION 12E 15666615 136. 65 126 123 7 98 77 17 53 77 113 136 128 65 52 81.8 44.75 0.05 0.04	0.0	0.01 0.02	60°0	0.19	0.0	0*0	0.59 2.	2.58 0.1	0.66 0.18	3 -0.62 0.0005	5 4. 1	
RIVENSIUE H 5 164 12E 1602815 0. 43 121 119 3 93 80 80 59 80 203 148 160 81 76 74.6 43.04 0.0 0.48 0	0.0	0.15 0.02	80°0	0,19	0"0	0*0	0.43 2.	2.60 1.	1.04 0.50	0.000 0.00009	0"0 6	
MULOVER H S . 174 bc 28MiS 92- 46 115 114 -1 87 73 40 73 177 138 131 76 66 102.0 65.38 0.0 0.59 59	11.65	0-09 0-02	0.04	0-17	0*0	0"0	2,68 2,	2 . 42 0.1	0.84 0.31	1 -0.46 0.0	0.0	
KWISKWIS∺H S 17v lub⊨ I1BB4NIS 51. 69 123 120 4 94 95 95 45 95 162 130 57 59 -7 93.5 83.36 0.0 0.60 0	0.0	0.06 0.01	0.04	0-30	0"0	0.0	0.70 1.	1.58 0.59	5 9 0.12	2 -0*69 D-00022	2 0-0	
440 Fr.iNDIAN 17 Mile IsoAUSIS b. 72 I42 I37 21 I16 I36 I36 262 I48 I60 67 56 35.2 99.62 0.0 0.44 0 17 Mile IsoAUSIS b. 72 I42 I37 21 I16 I36 I36 28 136 202 I48 I60 67 56 35.2 99.62 0.0 0.44 0	0.0	0.06 0.01	0-03	0.17	0*0	0.0	0.59 1.	1.39 0.77	25.0 11	2 -0.49 0.00029	0"0	
INDIAN CREEK H S 17M IIE ZIB IS ISI. 648 I42 I37 21 II6 I37 I37 62 I37 183 I40 −20 54−75 52.0 95.69 0.0 0.42 0	0.0	0.05 0.01	0*02	91.0	0*0	0*0	0.61 1.	1.46 0.	0.5Z 0.11	1. ~0*11 B_00053	3 0.0	
	0.0	0,06 0,01	0.03	0.15	0"0	0-0	0.58 1.	1.86 0.	0.75 0.24	1 -0.55 0.00014	4 0.0	
+028174x H S 17v 14£ 5.08/15 s. 0 106 106 −10 75 69 69 34 69 999 999 999 0 0 113.6 44.61 0.0 0.56 0	0.0	0.12 0.02	50°0	0,16	0.0	0*0	0.88 2	2.43 1.1	1-67 1-03	05000°0 52°0°0020	0"0	
TEAPOT 4 S 18v of 94UCIS 95. 60 117 115 0 88 72 72 47 72 159 129 168 64 99 59 54 77 75 0.0 0.34 26	ж. 3 9	0.11 0.02	0.05	0.11	0*0	0*0	1.40 2.	2,76 0,61	51 0-12	2 -0.67 0.0	0*0	
HCT UXLXK W S HUN 8E 1784/XIS 0. 35 110 110 ~6 81 79 79 73 79 188 MZ 151 84 80 59.5 36.61 0.0 0.84 0 IBN 8E 1784/XIS 0.	0.0	0.22 0.03	0,06	0.24	0*0	0*0	0.60 3.	3,16 1.	1.06 0.52	2 -0*23 0*0001	1 0.0	
Washington	shington County	mty									•	

24/

「二人」「「「「「」」」」

2 45.4 0.63 -0.18 0.00851 0.27 0.00259 0.98 98-1 1.56 2.71 1.60 0.54 24 59 0.0 0.0

-241-

Basic Data Table 2. Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho (continued)

	<u></u>			T							Γ	Atomic Ratios							Molar Ratios							es of of	Γ	······································			
		ge ,	d Surtace ture (^O C)		sifer Est	Temp ima†e	ad fro	ures a om Geo ee foo	cheni	cal Tt	ige of Nermoni	Cold eters	Wate	Sod un Purtae Ture	Sodium	Magnes I um Calcium	Calcium Fluoride	Chloride Boron	Chloride Fluoride	Calcum Sodium	Calcium Bicarbonate	Chioride Carbonate & Bicarbonate	Ammonia Chioride	Ammonita Fluoritae	Chloride Sulfate	Calclum Sodlum	Quartz	Chat cedony	Amorphous Sliles	ที่ดูเป็นสู่ที่ในสอบเทียง (X12) ใส่จะ (ปฏิบัติแกร์อุทิณาณร)	
	Spring/Well Identification Number & Name	Discher (l/min.	Measured Tempèratu	T ₁	ĩ2	т3 :	T ₄ T	5 ^T 6	[T ₇	T _B	1 <u>9</u> 1 ₁₀	T ₁₁	\$ <u>9</u> \$1	1 he	Na Ca	. <u>Mg</u> Cə	Ca F	<u>८।</u> ह	(F	Ca Na	Ca HCO3	<u>сі</u> со ₃ + нсо ₃	NH4 CI	NH4 F	C1 504	<u>_∕Ca</u> Na	, <u>∆ G</u> Quartz	∆ G Chai- cedony			and the second sec
	Washington County (cont d.)																														
-242-	CRANE OREEK H S 11N 3W 7BDB1S	19.	92	172 6	52 4	9 150	163	163	137	163 24	8 165	225 f	8 64	26.5	16.83	0.03	33,50	6.09	4.30	0.06	0.22	1,68	0.0	0.0	2.17	2.21	1.00	0.60	-0.22	0.10 739	<u> </u>
	CRANE CREEK H S 11N 3W 7BDB2S	19.	57	176 16	55	5 154	166	166	142	135 99	9 198	999	0 0	25.1	16.83	0.03	33.50	6,09	4,30	0.06	0.22	1.68	0.0	0.0	2.17	2.21	1.55	1.05	0.26	0.1029 7	
	DOUGLAS MCGINNI WELL 11N 5W 20B0D1	s 0.	21	105 JC)5 - 1	o 75	5 51	61.	383	156 23	6 161	222 9	97	5.2	1,18	0.28	7.29	414.33	29,39	Q.85	0.35	0.08	0.0	0.0	0.74	30.45	1.34	0.74	. 0.02	0.10833	- مصلحها ا
	11N 6W 30881	0.	24	: 259 Z	51 13	6 254	45	45	-14	45 99	9 472	9 99	0 0	340. 1	47.55	0.0	7.90	4.27	1.10	0,02	0.10	0.71	0.0	0.0	0,42	2.01	2.60	2.01	1.29	L_R1064	- <i>19</i>
	GLENN HILL WELL 11N 6W 3DCB1	0.	25	265 Z3	56 14	2 261	68	68	11	68 99	9 465	9 99	0 0	184.2	56.6 6	0.04	49.13	6,98	3,16	0.02	0.41	1.83	0.0	0.0	0+99	1,77	2.68	2.09	1.37	L.TCD46	
	WEISER H S 11N 6W 10ACB15	19.	22	60 E	84 -3	i1 49	42	42	71	67 99	9 999	999	0 0	60.7	7,26	0.25	7.59	6.32	4.74	0.14	0.42	0.65	0.0	0.0	0.87	7.96	0.99	0.40	-0.32	C 10 22	
	GEOSOLAR GROWER WELL #1 11N 6W 100CA1	s 0.	78	156 14	49 3	54 132	2 14 1	141	85	141 22	8 159	220	11 70	49.6	93.87	0.0	10.35	8.12	0.43	0.01	0,12	1.37	0.0	0.0	1.01	1.32	0.46	0.03	-0.79	67.1	
	GEOSOLAR GROWER WELL #2 11N 6W 10CCA2	s 0.	77	152 H	45 3	50 127	145	145	93	145 21	8 155	216	10 70	44. 9	90.40	0.06	7.15	7.20	0.33	0.01	0.12	1.19	0.0	0.0	0.94	1.35	0.52	0.08	-0.73	C	- and 11
	GEOSOLAR GROWER WELL #3 11N 6W 100CA3	s 0.	7,0	156 14	49 3	54 132	z 142	142	88	142 24	6 164	225	74	47.5	64.16	0.0	9.10	7.75	0.42	0.01	0.13	1.30	0.0	0.0	1.01	1.40	0.54	0.08	-0.73	0 . .I	
	MIDVALE CITY WE 13N 3W BCCC1	UL 0.	28	127 1	24	6 9 9	242	144	373	216 95	19 193	99 9	0 0	5.4	14.63	0,15	2,37	0.0	5.89	0.07	0.06	0.02	0.0	0.0	0.60	4.54	1.46	0.88	0.15	0.10.19.	
	FAIRCHILD LUMBE 13N 4W 13BACI	R 00. 0,	28	120 1	18	2 91	1 51	51	5	51 99	19 176	280	095	208.9	42.84	0,09	2.45	0.0	2.37	0.02	0.03	0.03	0.0	0.0	0,62	2,50	1.36	0.78	0.05	0.1066 :	
	LAKEY H 5 14N 2W 6BBA19	1631.	70	119 1	17	1 91	1 78	74	47	78 14	3 125	150 !	57 91	89.5	20.51	0.01	39,49	0.0	4.24	0.05	1.08	5,39	0.0	0.0	1,90	2,37	0,72	0,26	-0.55	6.70662	. *
	CAMBRIDGE CITY 14N 3W 3DOCI	WELL O.	26	118 1	16	0 89	180	97	175	180 99	9 179	291	096	18.3	48.95	0,13	2,04	0.0	1.23	0.02	0.03	0,04	0.0	0.0	0.69	2,54	1.34	0.76	0.03	6.70030	- 1
	FAIRCHILD H S 14N 3W 19CBD15	220.	50	106 1	06 -1	10 76	5 63	63	61	63 12	22 115	93 (57 54	71.6	17.43	0.16	10,05	0+0 <u>-</u>	4.74	0.06	0.15	0,31	0.0	´o.o	0.37	4.06	0.79	0,27	-0.51	6-10633	

-742-

BASIC DATA TABLE 3

-243-

Analyses by 20%6 Idaho, Inc. using Rescron Activation at Idaho National Engineering Laboratory FRACE METAL MARYSES OF SELECTED THERMAN METER IN IDAHO (Chemical constituents in milikyrame per liter) BASIC DATA TABLE 3

1 (d'1) (d'1) (#) |{|. (A) (A) 10) (10) (10) entelue (et) in[†non†]u (12) (ws) wnjuswe (es) (es) (#5) whipue: (99) (99) (8)() Rh (1844) (4H) (4H) (#0) ##(#4) (PN) n (wópoe (QW) unpq A (ជម្រ) សមមន៍ដែរ multetu (u.i) (8.J) راد) (اد) Ada County (H)) wn)pu (Hā) jek.cnuk mulatei (3H) (8≊) #()]⊓w (e.) 101 (113) #11(65,41 (Ag) Houte (Cn) Jodbol (5:3) (5:3) nu (-0) (-0) 11440 (00) (P-3) (#c | nik (РС) шо Епі ре romine (Br) mei 166 (68) (ny) Plog (≤y) ¢iues. (IA) (IA) (⁶73 304119 Spring/Meil Identification Number & Num

(4Z) Putž

0,008 0,710 0,009 0-012 0.00 0.002 0.0005 0.008 9.0 2,1000 1,6000 1,7000 1,600 3,2000 0,0 0.0 3 ŝ 6 . 0.005 0.0 ŝ 3 0,0 3 å 0.0 3.0 0.0003 0.0004 0.0 ŝ 5 å 2 0.0 0°0 0.0 3 0.0 °*0 6,0 å 0,0 ••• å 0.0 0.0610 0.0510 3 90 3 3 3 2 0.0007 0.0002 0.00 0.0001 1.7000 2.0000 5.1000 1.9000 9.0 3 3 0"0 0600"0 2 0.0 0.0 0.0 0.0 d.6207 0.0 0-01000-0 0.002 0.0 0-0002 0-0 9-002 0-0 0.0 2009.0 0-001 0-0 0"0 900"0 0.007 0.0 0.0 0.0 0.0 061.0 5..5000 2,100 0.0 0*001 0*0 0.004 0.0 0"0 100"0 9-0 0-0 3 0.0 3 2 °.° 3 5 2 0"0 9-0 2 **0**"0 970 0.0 0.0067 8.0 0"0840 0"0 0"0 0000"0 0.0700 0.0 0.0 000.000 0.0180 0.0 1.6000 0.0 0.0 2,1000 1,5000 2 **0**.0 0"0 2000"0 0.0 0,0062 0,0 0.0 0.0 0.0 3 0*0 0.0 0.0 0.0 0.0002 0.0 3 0.0 0.0 0-0 2000-0 0.0 0*0 \$000*0 0.0 0.0 0.0 0002.1 Adams County 0*0 0'0 0.D 1.7000 0.0 0"0022 0"0 0.0 3 97 0.003 0.0 20 0.0 0.0 0.0 0.0 0**.**0 0.0 0-10 001-0 0.210 0.0 0°0 0.150 0.0 **0**••0 0.0 001.0 3000-3 0.210 0.120 3.6000 0.0 1.500 1,9000 0.6 9-0 0,0 0"2 **0**"3 5.0 3 0°0 3 3 0.0 2 0.0040 0.018 0.0 1.100 0.0 0.0071 0.012 0.0007 0.0 0-0200-0110-0 9100-0 0*0000 0*000 0*0001 0*0 0.0010 0.010 0.0001 0.0 0.0002 0.0 0.0020 0.016 0.0001 0.0 2.4000 1,6000 0.0 1.7000 0.0 0*0 9100*0 3 0,0 0.0 0.0 0'00EX0 0'00 0'0 0'0 0-0 0.0 5 0"0 000"11650"0 0.016 0.0 0.0 0 3 0-0 0-0 0-0 0-014 0-0 3 0.0 25 o*0 0.0 0.0 3 0.0 45.0000 1.400 0.1000 °. 0.0 0-2700 0.005 0-0 0-0450 0-021 0-0 0"2606 0"0 0"0 0-0.000000000000 0,0350 0,027 0,0 0-0740 0-0 010 019010 1,1000 0,0010 0.0 0-0 3 0"0 °.° EDWARD S GREENHOUSE WELL AN ZE 29 ACD 1 0.0 SHADON VILLEY WELL DEHNIS FLIKE VELL AN 15 240001 Julius Jeker Vell Sni të 35AGAT BEN STADLER KELL 5N 1E 260001 F. KOOM MELL 34 25 20301 ecard act. 34 26 11 ABCI ANN, RUSH WELL AN 26 48001

0,017 2.007 0,010 **U. 00**8 0"00 0-017 00.0 0.005 0**.**0 3 0.0 3 .. 3 0.0 3 0'0 3 3 å â 8 0**°**0 °.0 6 6.0 2 å 3 °. 3 3 3 3 0"0 °-0 å 3 3 3 3 0-1 0.40 0-13-00 0-0 0.0 0960.0 0.5200 0.0 0.0 0"2600 0"0 1,1400 0.9600 20 3 0.0 8 3 2 3 2 0.0 2 0-0 0.0 3 0.0 3 0.0 0.0 0-0 0*0 0.0 400.0 010 200010 010 CODOLA 0.0003 0.0 010 100010 0-015 0-0 0.0000.000 2 0-0 650-0 0-011 0-0 0,065 0,0 0-014 D-0 0.012 0.0 3 0.0016 0.066 0.5 0.004 0.0 2 3 0.0 0.0 3 0-0 2 0.0 940 0,0 0.0 3 0"0 0.0 3 2 3 0.0 0.0014 0.0 0,0065 0.0 2 0-0140 0-0 0.0042 0.0 0.0 0.0 °. 0.0 0,0320 0.0 0.0001 0.0 0,0 ŝ 2 3 0.0 å 0.0 0.0 3 2 ••• 0.0 0.0 2 9.0 0.0006 0.0004 0.0 • 0.0 3 0.0 0.0 0.0001 0.0 0.0 0.0 Bannock County 0.0 0.0 0-0001 0-0 0 0-0 0.0 9 å 0.0002 0.0 0.0 0.0028 0.0 0.0002 0.0 3 0.0 0.0 0*0 80 3 2 0-110 0-0 0.110 0.0 0 0 3 0110 0110 0.450 0.170 0-160 00110 0,270 Q*D 0.0 9,0 0.0 0-0 0-0 0.9 50 0'0 5 2 3 0**°**0 0.0 0"Q 3 0.0045 0.018 0.0055 0.0 0-0016 0-013 0-0002 0-0 0,0054 0,011 0,0600 0,0 0.0024 0.010 0.0034 0.0 0-0020.0-010 0-0018 0-0 0,0015 0,009 0,0001 0,0 0,0050 0.016 0.0060 0.0 0-0 0210-0 960-0 0200-0 0.0 0.0 a.0 **0***0 3 0"0 0.0 0-0 0.0 0"0 0.0220 0.034 0.0 0.0080 0.0 0.0 3 5 0 0.087 0.0 3 2 D-0 0.0680 0.0 0.1200 0.0 0.0 0.0 0.0 0.0 0.660 0.0 0.0 0'0 0.0 0.0710 0.220 0.0 0.0 5 9.9 0.0 9.0 0-0 å D.O 0,2100 D.O 0-0560 0.1100 0.0 0-0 0.0 6.0 10000 50 SOBERT BROWN WELL #1 55 34E 260AB1 0.0 0-0 0.0 BOULDER DREEK RESORT ZZN TE SHDADIS 0.0 9 0.0 DEAN MORPIE WELL 95 38E 2100A15 KRIGBAUM H S, 19N 2E 2200A15 STINKY IL S ZIN IE 23ABAIS STARKEY H S 18N 114 3406615 2000/17.244 H S 125 376 1200015 ZIMIS RESORT ZON 1E ZEDOALS IN ZE 3380015

0.152 010-0 10.0 • 0.0 0.003 0.0 20 3 0*0 3 0-0001 0-0 0-0 ••• 0-0 010 0.0 0.0050 1.2000 4.2000 0.0010 0.0 0.0 0,0004 0.0001 0.0011 0.0 0.0240 0.0006 0.0 0.0002 0.0 0.062 0.0 0-013 0-0 0.120 0.0 0.0 0.0 D.0052 0.0 3 0.0 3 3 0.6450 0.0 0.0 3 0.0 0,090 0,0 2 3 ••• Bear Lake Councy 0.0 0"0 0"0 0"0 0.0 0.0 0.0 Binyham County 0-0002 2-800 0-0 0-0003 6+0 0+0 010 0.0 0.0 0.070 0.0 0.150 0*0 010 2 9.0 0.0 0.0008 0.0030 0.012 0.0026 0.0 0.0030 0.011 0.0080 0.0 0.4009 0.0034 0.034 0.6005 0.5 0**.**0 0.0 •• 0, 3600 0, 070 0, 0 ŝ 0.0630 0.0 20 3 3 0.0 3 0.0280 0, 2100 9-0 0.0 ALKALI FLĀTS + \$ 45 38: 260015 BEAR LAKE H 5 155 44E 1300A15 WDELL SPRINGS

017 D.

0.0

0.0

0.0026

°.0

0.0

0"2200

0-0002 0-0

0-0

83

3

0.0

0.0

2

0.0

0.0

0.0250

0,0001 0,0001 0,0002 0.0

0.100 0.0

6.0

ŝ

0,0005 0,0040 0.014 0,0040 0,0

6.0

0.1300 0.0

3

å

0, 1200

ŝ

0.00 0.010 0.007 0.085 0.0 0"100 0"0 0"100 0"0 0.0 : •• 0.0 20 0.0 070 0"0 0660"0 0"0 0,1300 0.0580 3 0-0 0 d 0.0 0-0 0,0 0.610 0.5 0.0640 0.0 0.0 4000-0 0-0002 0-0 0,013 6.4 275 9:015 0.0 0,0 0 0 0,0 0*0 0,0 0.0016 0.0 0**'** D 3 0.0 5 0.0 0.0 Ľ, 0.0 ů. D **0**.0 0*0 °.° Bisine County 0,100 0,0 0,0026 0,0 0.0 0*0 0.0 0"100 0"0 0"000 0"0 0-0 0 0.0 0.0 0.0 0°0 o d 3 0°0 0,0 0.0 0.0010 0.000 0.0000 0.0 0.0007 0.0013 0.013 0.0046 0.0 0.0019 0.003 0.0674 0.0 0.0 0,900 L.C 0.0 0'0 **6**.0 0'0 о**•**о 5 3 3 5 2,5000 6,090 0.0 3 3 0-0770 2-0 ä 0,0910 0,0 D.080 ≎*0 0.0 3 š 01.126.000 S MULEY 4 5 24 18E 1608E15

0.007

010 010

0.0

0,0

0.0 3280.0

5

0.0

5.0

0.102 0.10

ц. 0

0

2

3

010 00000

0.90 0.00

ġ

а**т**а

0.7 1.0

0.001 5.000

3

 \sim 10

5.5

7

ä

0.1040

-244-

010-0 0,006 0.020 0,060 0.012 0.014 0.026 0.100 0.045 0.009 010 0.008 0.020 500 0 0,009 0,160 0,009 0.013 0.01 0.048 0.01 0.011 0.012 110*0 0.006 5 3 0*0 9 3 2 0.0 0.0 0*0 3 0.0 **0**.0 9°0 0.0 0.0 °.0 2 5 0.0 0.0 0.014 0.0 90 3 3 0.040 0.0 0"0 0.016 0.0 0.014 0.0 0*0 090*0 2 6 0'0 3 6.0 0.0 9.0 3 0-0 2 0°0 070 0*0 0,0 22 0"0 3 0.0030 0.0 •• 0,0042 0.0 6.0 0,0 0"0 0**.**0 0.0 0.0 3 0.0 9**-**0 0.0 o.0 0,0 5 6 3 0-0 **0**.0 0*0 6 0-0 3 3 94 3 2 2 0*0 0'0 5 3 0**.**0 0"0 0.0 0.0 0°0 0.0 0.0 0.0 0.0 0.0 °.0 9 3 ŝ 90 . 0,0 • 0-0 2 0°0 0.0 3 50 0,0001 97 0.0 0.0 0.0 0.0 0-0 2 °, °. 3 9.9 3 3 0.0 5 6**.**0 3 0"0 3 0.0010 0.0020 0.2800 0.0 0.0 0450.0 6.0 0.1200 0.0 010 3 0,0 0.0300 3.7000 0,1500 1.5000 2.7000 0.4200 0,0720 2,400 5,8000 0006"9 0.0900 0.0550 006570 0,1600 0.0560 0010 0270.0 3 970 3 9.0 0 2 0.0 3 0.000.0 0.0 0,0 0.0 °.° 3 0.0 0"0003 0"2100 0"0005 0"0 5 2 3 2 °.0 °. a, °. 3 3 3 3 0.014 0.0 3 2 3 2 3 0200*0 0'0 0-0 0.0 0.0 0"0 0.0 0.0 3 9.0 0-065 8,250 0,0 0,0002 0,0 °.° 0.0 0.0 0"0 0"0 0.0 **0**~0 2 30 0.0 3 2 3 0.370 0.0 0.0002 0.0 0*0 2000*0 0"0001 0"0 0.0 0.0 0.0001 0.5 0"0 6.0001 0.0 0"0 0"0 0*0005 5*0 0.0002 0.0 0.0002 0.0 2 0-0057 0-0 0-002 0-0 0"0005 D*0 0.0002 0.0 0.0040 0.0 0.0 0200.0 100.6 220.0 010 2000-0 0,0002 0,0 0"0004 0"0 0.0002 8.0 0.0010 0.0 0.000 0.0 3 270 2 0.007 0.0 0.005 0.0 0.0 0-003 0-0 0*0 810*0 0.070 0.0 0.043 0.0 0-012 0-0 0*0110*0 0"0 094"0 0110"0. 0.510 6.0 2 0.012 Q.D 0*014 0*0 0.0 0.007 0.0 0"0020 8"022 0"0 0-010 0-0 0"02 0"0 0.016 9.0,0 0.166 0.0 0.007 0.0 0.02 0.0 0.0 0.1 0"0 20 0.0 0*0 0*0 3 010 2 0.0 2100.0 0.0 0.0 0.0 0*****0 0.0 0.0 0.0 • 979 2 0.0 8 3 0"0 5 3 0.0 3 010 9-9 0.0 0-0 2 0.0 -2 0.0 0.0 2 0,0 0.0 5 3 0.0 5 3 0.0 0"0 3 0-016 0-0 0.0060 0.018 0.0 0-0020 0-022 0-0 0.00 940,0 0100.0 3 0"0 0550 0"0 0.0040 0.0 0.0 0900.0 0.0240 0.0 0.0 3 0,9 °-0 5 010 2 9"0 3 0.0030 0.0 0.0110 0.0 0.0014 0.0 0.1400 0.0 0.0 3 0,0 0620.8 3.3000 6.0 0"0 8100"0 0.0670 0.0 070 3 0.0 °.° 0.0 0*0 3 9-0 3 3 2 0"0 0-0 0-0 0-0 0-0 °**°** 2 0.0 3 0.0 °*0 å 0°0 3 0.0 3 2 2 070 0.0 2 2 3 0.0 9 0.0 970 ŝ 0.0047 2 0.0 0.0 20 0.0 **6** 0.0 **0.**0 0.0 0.0 5 0-0 9.9 0.0 0"0 0*0 0.0 0.0 2 0"0 0.0 2 0.0 °*0 9 9.9 0.0 0.0005 0.0-0"0 0000 0"0000 0.0 Bonneville County 0.0 0.0 0.0006 0.0 0.0001 0.0 0.0 0,0 0.0002 0.0 0.0 0.0 Caribou County 0.0012 0.0005 0.0 3 0.0 0.0003 0.0 0.0 0,0 0.0 0"0001 0"0 0.0 4000.0 0.0 0.0 0.0044 0.0 0"0 0.0 0.0004 0.0 0.0 0.0 0-0004 0-0 0.0001 0.0004 0.0 0.0002 0.0 0*0 Canyon County Cassia County 0*0004 0*0 Clark County 3 0°0 0°0038 0°0 0°0 0°0 Came County Boise County 0,0006 0*0 0"0 0**.**0 3 ••• °. 0"0 0.0009 0.0 0"0 0.0 0.0 0,100 0,0 0,0002 0,0 0*0 0"0 0.0 8,0 0,0001 0.0 0"0 0.0 0.0 0,0005 7,100 0.0 0.0008 0.0 •• 0,160 0,0 0,0024 0.0 3 1* 0.0 0.0002 B.0 3 0.0 0-050 0.0 0-0 0.430 0.0 0.0 0.0 0-0 0-0 0.050 0.0 0.0 0-100 0-0 0-0 0.100_0.0_0.0 0-0 0-0 0-0 010 010 0.0 0.0 0.0 0.0 0,120 0.0 0.0 0.140 6.0 0.0 0"0 0"0 0"0 0.0 0.0 0-0 0-0 0,100 0.0 0.0 6.1500 0.0 0"0 0"0 0.0 0.0 0,050 0,1060 0, 160 0.690 0,130 0.10 0 0.510 ñ 0 010.0 060-0 0.090 ŝ 0.0 0,0 0,0 9-0 0.0 **0''**0 0.0 2 0.0 0.0 0.0 0.0 0"0 0"0 9,0 0°0 3 å 2 0"0 0"0 ŝ 9**-**9 0.0 0.0 5 0**.**0 3 å 5 010 0-0 0.0 0.0 0-0 0-0 0-0 50 0,0 0.0 2 0,0 5 0,0 0.0 50 с. Э 6.0 6 2 94 3 0.0 0*0020 0*018 0*0020 0*0 0.0007 0.0040 0.026 0.0060 0.0 9-0 0+0016 0-012 0-0001 0-0 0.0024 0.017 0.0001 0.0 0*0020 0*012 0*0008 0*0 0.0002 0.0010 0.010 0.0008 0.0 0.0020 0.083 0.1250 0.0 0-0100 0-118 0-0050 0-0 0-0090 5-110 5-0540 0-0 0,0016 0,008 0,0005 0,0 0.0 0.0003 0.0020 0.810 0.0049 0.0 0"0100 0"015 0"0000 0"0 0.011 0.0002 0.0 0.0020 0.019 0.0010 0.0 0.0550 0.061 0.0 0.0017 0.0105 0.014 0.0001 0.0 0.0007 0.0020 0.024 0.0120 0.0 0-0100 0-047 0-0040 0-0 0,0019 0,024 0,0060 0,0 0,0250 8,011 9,0030 9,0 0*0090 0*081 0*0820 0*0 0.0030 0.016 0.0020 0.0 0.0016 0.011 0.0650 0.0 0.0015 0.010 0.0020 0.0 0.0010 8.016 8.0020 8.0 0"0010 0"012 0"0060 0"0 0.0030 0.011 0.0003 0.0 0*0 810*0 0*0 0100*0 0-0 3 0'0 5 0°0 0°0 9-0 0*****0 9 5 . 3 0.0 2 0.0 **.**. 0.0 0.0 0.0 . **3** 0.025-0 0.062 0.0 0,2300 0.0 0.0 0.0 9*0 **0***0 0.0 5 0.0 50 0.0 0.0 9-0 0.0270 0.150 0.0 0.02 0.0 0.0 50 0"0 500"0 0.1100 0.290 0.0 0.095 0.0 0,002 0.0 0,1900 0,160 0,0 °. 9 0.0050 0.002 0.0 p. BOS Q.O 9-0 0.004 0.0 2 6 0.0 0,0760 0.0 0*0020 0*0 2 3 0.0 0.0360 0.0 0.2200 0.0 0.0750 0.0 5 3 0.0 0-0 5 0.0 0.0 5 0.0 0*0 8 °. 5.0 3 0.0 0°D 0**-**0 3 0.0 4.300 0,0001 0**.**0 0-0 2 6, 060 0, 0 32,000 0-0 3 3 3 0.031 0.0 3 0.175 Q.O 0"000 P" () 5 0.5500 1.200 0.0 0-0 3 **°** 3 å 0.036 0.0 å 0.0 0.010 0.0 0,0%0 0,0 0.0 0.0 å 3 3 9-0 3 0~4500 0.0 0,1500 0.0 ŝ ŝ 6 0.0 3 3 3 å 3 0,3600 0,2000 ar.04240 8-156 -0060^0 0,4600 0.0290 010630 0.1600 04997 0.3600 1.3000 2000 0.0001 0"0440 0.4900 å 0.0 0*0 0.0 5 3 3 ŝ 0,0002 0.0016 0.0002 FALL DREEK MINEDAL SPG. 0.0070 0,0060 0.0006 3 2 0*0 6.0 0.0 8 ERCIL BOMMA JR. WELL 24 24 3480A1 0.0 0.0 0.0 5 5 5 CALDRELL MANC, PARK VELL 44 SY 20AAB1 0.0 ŝ 3 3 ALE O TANDING NELL 0.0 OT SPRINGS CANTERDUND BH 3K 600815 0.0 0.0 3 Portneuf River N 5 75 346 2608015 SODA SPRIMES (ETER 95 41E 1240015 HARRIAT CRAME WELL 155 266 200001 PROCOMM CREEK & S ZS 475, 2600015 CALDNELL CITY NELL ILLEGED SHEAT H S 15 226 104815 DON TIEGS WELL FT MELEA CITY NELL IN 24 36CM omiley k s 14s zze ztachis ONCLEY H S 145 ZZE ZTUCOBIS DEER H S 21 X ZEWCIS LURATINGT H S 34 13E 70CA15 KINGHAMIM S 94. de 320AB15 BONNEYILLE N S NUPINE N 5 25 46E 19CAD15 KEITH STROM WELL 15 125 310801 DAN HODGES H 5 BH 35 11 A00 15 BAUNGARTINER H S 34 125 700015 MORSWICK H 5 34 14E 20CAA15 AMPRONIS H S 15 13E 34BOBIS MACROP H S HN 13E 32ABB15 TIDY H S LEFT -245-

.

.

.....

,

-246-

ີ່ ^ ^ ^ ^ ^ 0 ອາຍີ ອາຍີ ລະວິ ລະອີ ອະຍີ ອະຍີ ອະຍິ ອະຍິ

SAM HIGH AND SONS NELL 115 198 330001 0.0	INDIAN SPRINGS	NURPHY H 5 165 96 24089815	125 7E 33C 15	S 10004 BATHTUS H S	75 OF SHADI	DAVIS BROTHERS WELL 75 SE 7ABBI	10A-0 PAPKS DEPT. 65 68 120001	LESLIE POST NELL #2 65 JE 20001	SCOREYS GREENHOUSE	55 25 18801	E, LANDRINCE WELL	R. KETTERLING KEU 45 ZE 328001 ·	AS 15 349401	EARL FOOTE WELL		165 365 1088CIS	PLEASATTYLEX X S 155 35E 3AABIS	MLDD # 5	KDAT & S 125 JAE JOBCO15		BIG CREER H S 234 The 22CADIS	SHARKEY H S ZDM ZAE SACCOLS	SVLHOW H S 20H ZZZ SVEDIS	CHORES CHITCH H S 164 ZTE 18AOCIS	未)祝 H 5 4N 40% 2500A15	JERRY JOHISH H 5 364 136 180015	COLONTE LIDKS H S 36H 17E 1540BIS	MEAR DREEK M 5 3644 116 13480015	RIGGE H 5 24H 2E 140ED 15	200 200 200 200 200 200 200 200 200 200	
	р. 0	0-0	0.0001	5 0.0002	P.O	0.0 11 11	9.0	#2 0.0	0.0	0.0	80	0.0	CD00+0	0,0005		0,0	0.0	0.0	0.0		0-0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0+0001	0.0	
0	0. l600	0,1480	0.1100	0,1500	0.0670	00870	0.4200	0.0660	0.1600	0-0	0.4800	0,1400	9, 1100	0,2600	-	2	0,0	0.0	0.2700		0.0	0-0	0,0	0.1070	D_0	0-0600	0,1050	0-0	0.0	0,0950	
0.0	0,0	6	0,034	0.290	0 -0	ŝ	0.0	9 ,0	0.0	8 .0	0-0	0.0	Ę	0.010 0.0		0 -0	°.	8.0	9.0 0		0.0	0.0	e-0 0	9.0 0	0-0	6 0	0.0 0	0.0 0.0	0. 0 0	6 6	
0,0004 1	0 +0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0			0.0	0.0	0-0	0,0		0.0	0.0	9.0 (0.0	0,0	0.0	0.0		0.0	0.0	
14-0000 1-BOC 0.0	B-2100 0.0 0.0	0,0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0160 0.0 0.0	0.0770 0.0 0.0	0.0 0.0 0.0	0-0 0-0 0-0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.003 0.0	,	0-1700 0-0 0-0	0.0470 0.0 0.0	0.5500 0.0 0.0	0,1100 0,043 0,0		a_0 6,0 0,0	0.0 0.0 0.0	0.0250 0.0 0.0	0.0300 0.0	0.0 0.0 0	0.0 0.0 0.0	0-00-0 000-0	0-0 0-0 0-0	0.0 0.0 0.0	0.0 <u>P.0</u> 0.0	
0- 0320		0,0004	0.0	0,0004	0.0	0.0	0.0	0.0006	0.0		0,5	0.0	6.0	0.0		0.0	0,0	0.0			6,0	8000.0	0,0	0-0	Q,0020		0.0	8	0. 0	6.	i nan i
20 0.1500 1.500 0.0550	0.0004 0.0020 0.013 0.0060	04 0.0030 0.012 0.0002 0.0	0.0020 0.010 0.0021 0.0	04 0.0030 0.017 D.BOO3 0.0	0.0020 0.014 0.0002 0.0	0+0030 0+015 0+0004 0+0	0,0004 0,002 0.0001 0.0	040 900010 20010 020010 90	0.0 0200.0 210.0 0200.0	0.0010 0.0000 0.022 0.0003 0.0	0.0020 0.013 0.0006 0.0	0,020 0,012 0,0002 0.0	0,0020 0,013 0,0010 0,0	0.0040 0.023 0.0004 0.0		0.0010 0.026 0.0360 0.0	0,0030 0,016 0,0130 0,0	0.0030 0.055 0.1400 0.0	0.0005 5.0020 0.016 0.0003 0.0		0.0020 0.014 0.0830 B.O	8 0,0012 0,011 0,0670 0.0	0,0020 0.012 0.0440	0.0020 0.011 0.0200	m 0,0060 0,044 0,1700	0_000Z 0_0010 0_008 0_0	0.0016 0.010 0.0028	0.0020 0.011 0.0007	0,0024 0,015 0,0020 0.0	0-0005 0-012 0,0003 0-0	
50 0.0	X60 0.0	02 0.0	021 0.0	0.0 50	0.0 200	04 0.0	W1 0.0	0,0	20 0.0	0,0 20	06 0.0	02 0.0	10 0 . 0	04 0.0		60 0.D	0.0 00	0.0	0.0 00		30 8-0	70 0.0	40 0.0	0.0	00 4.700	0-0	0.0	07 0.0	20 0.0	0 Q	1
6.0 G	0.0	0.0	0.0	0.0	0.0	0.0	0.0	D.0 0	0.0	0.0	0.0	0-0	0.0	0.0		0.0	0.0	0-0	5.0		0.0	0,0	0,0 0	0.0	0.0	0.0	0,0 0	0,0	0.0	0.0 0	
9.C .	9.0 0	9,0 D	0 3-0	0.0	0.0 0	0-0	0.0	0.0	0,0 0	0,0 D	0.0.0	0 0.0	6.0 D	0.0		0.0	0 0.0	0.0 0	0.0		0,0 0	0 0 0	0.0 0	9-0 9-	0 ,6	å e	9-6 9	80 80	5 9'6	0.0	
12-000 8-0	0-120 0-0	5.180 0.0	0.120 0.0	0.110 0.0	0.520 8.0	0.060 0.0	0-030 0-0	0.130 0.0	0.090 0.0	0,190 0,0	0,100 0,0	0.150 0.0	0.110 0.0	0.0 0.O		0.130 D.O	0.140 0.0	0.300 0.0	0.140 0.0		0., ZZO 0.,0	0.090 a.a	0.360 0.0	9-180 D-D	0,540 65,000 0.0	0.060 0.0	0.090 0.0	0.100 0.0	0.100 0.0	-D 0,0	
0.0	0.0001	o 0.0	0 0.0026	0,0	0.0	0.0	0.0	0.0	о Г.		0.0	0-9	0-0-	0-0		0.0		6.0	0-0		0,0		0 .0	0,0023	00 0.0	0,0		0.0		5	
0.0	000-01	0,0	80.0	0.0	0-0	0.0	0.0	0.000z 0.0	9 ,0	3-2000 0-0003	0.0	0.0	0.0	0,0	Owyh	0.0004 0.0	0-0006 0-0003 0-0	Ð,0	0.0003 0.0	Onei	8,0	0-0002 0+0	0.0	D .	Jeffe 0.0	0.0	0.0002 0.0	e. 0	0.0001 0.0	6 .0	Ide
TWIN Falls County	Power County 0.0005 0.0005 8.0	0.0	0,0	0.0003 0.0	0,0002 0.0	0-0	0-0		0.0	0.0	6- 0	0.0	0.0	0.0	Owyhee County			0.0		Oneida County	0-0	0.0	0.0	Lembi County	0.0 0.0 0.0	0.0001	0.0	0.0	0.0		
0,0	0.0	0.0	0.0	5		0.0	0.0	B.0	0-0	0-0	0.0	9-0	0.0	0,0	сy	0.0	5	0.0	0.0	t <u>u</u>	D.0	0.0	.	8	14	0.0	0 ,0	£ .0	0.0	5	्र इ.स.
0.1200 0.0	0.0	0.D	5	0,0 0	a.o I	0.0	8.0	6.0	9 . 0	0,0110 0,0	0.0	0.0	0.0	0.0		0.0	0,0	0.0	0.0		0,0	0,0	0.0	0.0	5	0-0 0-0	0.0	0.0290 0.0	. 0,0	5	
0.0	0.0	0-0	0,0 0	0-0001 0-0	B-0 0	0_0 Q	0.0 0	0-0 U	0.0		0.0	e.o o	0_D 0	0.0 D.		0.0 0.0	0.0 0.0	0.0 D.0	0.0 0.0		B.C 0.	0.0 0.0	0.0	0-0	0,0 D	0,0 0	0-0 0	10 0.0	9.0 0.¢	0-0 0	<u>.</u>
0 0 0	0.0 0.0	0,0020 0.0	0.0026 0.0	0.0	0.0020 0.0	0.0 0.0	0.0520 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0030 0.0	0-0050 0.0	0.0 0.0	0-0 0-021		0.0	0.0	ð 0.0	0,0		0,0140 0.0	,0 0,0	0.0130 0.0		0-2000 0.0	0.00Z7 D.0	0.0014 0.0	20 80	0.0	0,0010 0.0	
	D.0	e.6	g	0.0	0.0	0.0	0.0	0.0	0.0	e.	0.0	0.0	e.0	121 0.0		6-6	0. 0	5	0.0		, 0 , 0	0.0000	0-0 0-0	10 10	, 0.0	6. 0	5	0,0	9.0	0.0	
0-0	0.0084	0-0	0,0	0100.0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0	0,0	0,0		0.0	6.0	0.0	0.0		0.0	0.0	0 +0	0.0	0,0	0.0	1 ,0	0.0	0.0	0 .0	1. S 12.
1.100 0.0	0-021 0-0	9.003 0.0	0.004 0.0	0.011 0.0	2.006 0.0	0.012 0.0	0.004 0.0	0,008 0,0 1	0.0 800.0	0-0 0-00	0.003 0.0 0.0002 0.0	0.004 0.0	9.004 0.0	0-0 0-0 0		0.200.0	0-0 000 s	1.100 0.0 0	4.005 0,0 0		0.170 0.0	Q., 140 D.O C	0,170 0.0 6	9-057 0-0 0	0.660 0.0 ¢	0.0 0.0	9.005 0.0 0	0.0 0.0 1	0.011 0.0 \$,0002 0.0	9.000 D.0 (
0.0140 0.0	0.0050 0.0	0,0002 0,0	0.0005 0.2000	0.0044 0.0	0.0002 0.0	0.0003 0.0	0.0 0.0	0.0001 0.0	0.0	0.005 0.0002 0.0	-0002 0.0	a.s 0.0	\$.000Z 0.0	0.0001 0.0		E.0095 0.0	3,0001 0.0	9.7700 0.0003 9.0 . 0.0	0.0003 0.0		0,0005 0,0	0.0028 0.0	0_0 2002.0	0-000 0-0	0'0 1000'0	e.o 0,0	0.0002 0.0	0.0 0.0	0"0 Z000"	6.000 3 0.0	
0-053	0-0005 E+0	9-0002 G-0	0.0.0	0.000	5	0-0	6	0-001 0-0	0.0	0-0	0.0	0.0	0.0	0.0		0-0008 0-0	0.0009 0.0	0.0	0.0006 0.0		9,0	0,0	0 ,0	0-00 0100-0	6	0-0	0 -0	ę	9-0	e .	
0_0230	5 0.0	2 6.0	8.0	0-0004 0-0003	0,0	0 ,0	9. 0	1 0.0	D _0	0,0	0-0	0.0	0.0	0_0		8 0.0	9.0.0	. D	6 O.O		0.0	0,0055	0-0	0 0.0	6.0	0.0001	0.0	0,0010	0.0	8.0	
0-0330 0-0230 15-0000	1.4000	0,0	e.0	P	0,0	0,0	0,0	0.0	5	0.0	0,0	0.0	0,0	0-0	•	3,4000	1.3000	2,8000	0,2200		0.2100	0.0055 0.5000	0.5000	0.3300	4,9000	0.0000.0.0	0,0640	0,0010 0,0680 0.0	0.3100 0.0	P	
0.0	0.0	0.0	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0,0	D.0	6	0-0	·	0.0	0,0	0-0	0-0		0.0	9.0	0.0	B-9	0.0	0.0	0.0	0.0	0.0	0.0	
0,0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0,0	1.6000	0.0	0.0	0.0	9.0		9.0	0-0	0.0	0.0		0,0	0.0	0.0	0. 0	0.0	a.o	0,0	a*0	0-0	5	2
8	e.0	0-0015 0-0	0.0	0.0030 0.0	0.0	0.0	0,0	0-0	0.0	0.0	0.0	0-0	0.0	0.0		0.0	0.0	0,0	0.0030		0-0 4	0.0	0.0	6 0	2	0.0022 0.0	6	0.0018 0.0	0.0	1 0.5	
0.0	0.6 0. 0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.130 0.0	0.0 0.0	0.0 0.0	0-0 0-0	0-0 0-1	0.0 0.0	0-030 0-0		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0		0.0	0,0 0,0	8-8 8-9	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.9 8.0	0.0 0.0	0.0 0.0	
0.660	0 0.017	0.0	.0	.0 Q.014	B00+0 0,	,0 0,013	a 0.002	.0 0,006	r10*0 0*	.0 0,008	.0 0.110	0.0001 0.010	0.008	.0 0.022		0 0.009	0,017	610.0	0.010		0,0040	.0 0,008	0,007	0.009	0,051	.0 0,003	.0000	100-10	110-0	0	. 2
5	17	-	8	Ŧ	ġ.	ä	02	8	T	98	ī	10	ê	22		99	117	19	10		8	8	2	8	ž	8	8	2	ii.		

Basic Data Table 3. [Frace Mats] Analyses of Selected Thermal Water in Idaho (continued)

Sliver (Ag) Afumilaum (Afi Arsante (As) Gold (Au) Berjue (9a) Bronine (Br) Cadmium (Cd) Cerlue ICel Cobe11 (Co) Charomaium (Cr) Ces lum (Cs) Copper (Cu) Gyaprosit (Dy) Europtum (Eu)

(Fe) Galilum (Ga) Halnium (Hf) Mercury (Hg) İndive (1n) iridium (ir) Lasthans (La) Lutatium (Lu) Nenganes (Mn) Holybden (Mo)

Neodymi um (Nd) Osmi um (Os) Rubi di um (Rb)

Ruthesiu (Re) Antimony {Sb} Scandium (Se) Setenium (Se) Samirium (Sm) Stront lur (Sr) Tantatum (Te) Terblum (Tb) Yanad Fue (V) Holfram (W) Yfterblum (Yb) Zloc (Zn)

					-8															
FAJRCHILD HS	LAKEY H S TAN 24 600ATS	FAIRCHILD LUMBER 00. 13H 4H 13BAC1	HIDYALE CITY MELL 13N 3N BOOCT		TENPOT H S 16H 6E 9ADCIS	HOLDOVER H S 17k BE 284415	HOLLY'S H S 15N 6E 14ABOIS	NATING X S NATING X S	VULCAN N S 144 6E 119DA15	CABARTON H S 1344 4E 31CAB15	BOILING SPRINGS H 5 12N SE 2208015	60 ILLING SPRINGS H S 12N SE 22080 IS	ROCKY CANYON H S 11N XE 2903815		HAGIC H 5 165 176 JOACA15	NOVER JONES WELL 135 16E 12ABBI	125 186 18641	NAT-SOO-PAH & S	125 17E 60309	
0,0	0.0	0, WEL	0.0		0.0	0.0	0_0001	B.0	0,0	9.0	0-0 0	4-0 0-1	0 ,0		0.0003	D.0	0.0	р. О	0,0	ľ
0. 1600	0,1400	0,2505	0.1700		0,0540	0_1000	0_0710	0,0670	0.1140	0_1040	a.o	0_1610	0.0640		D_1000	0.0916	0.3400	0,080,0	0.1300	ł
0.014	6 6.230	6 0-007	0.004		610-0 0	6.0	0.0	0.0	5	0.022	6.0	0.0	0.0		0.023	6	9-020	6.0	5,5	
4 0.0	a 0.0	7 0.0	40,0		9 0. 0	0,0	.0	0,0	0,0	2 0.0	0.0	5	0,0		0.0	0,0001	0.0	0.0	0.0	
0.0	0*0	0_0250	0_0260		0,0	0,0	0.0	0.0	0-0	0. 0	a.o	0,0	0.0		0,2700	1 0,1690	0.046	0_2400	0,0	
6. 0	0.0	0 0.009	0 0.013		0.0	0.0	0.0	0.0	0-0	0.0	0,0	0.0	0.0		0 0,010 0.0	6 6.0	0.0460 0.022 0-D	C 0.0Z	b.310	
0-0	0.0	0,0	0.013 0.730		0.0	0.0	0,0	6,0	a.o -	0.0	0,0	ç, .	•••	•		0.0		5	. 5	
0.0	0,0004	0,0004	0.0		0,0	0,0	0.0	0-0	.0.0	0-0	0,0	0.0	0.0		0.0	0.0	C000-0	6	0.0	
9.0014	0.0028	0.0020	0,0010 0,006 0.0004		0.0022 0.011	10013	0,0013 (0.0112 (0-0022	210012	0,0024 (0_0014 (0.0014 0.010		0.0010 0.044	0-0030	0.0020 0.033	0,0030	e.	
0_010_0	0.012 0.	0,009 0	0,006 0		0.011 0	0.010 0.	0,011 0	0_0 IB 0.	0.012 0	0_015 0.	0.812 0	0+015 0+00Z3	0.010.0		0,044 0	0.015 0.0030	0.033 0.	0.070	0.034 0.0050	
0.0006 0.0	0.0024 0.0	0-0 1000-0	0001 0.0		0-0003 D-0	0.0003 0.0	0+0009 0+0	0-001 0-0	0-0035 6-0	0+0003 0+0	0.0025 0	,00 Z3 0,0	0 5000*0	·	0.0020 0.0		0.0005 8.0	0.0040 5	.0050 0	
.0 0.0	.0 0.0	,0 0,0	,0 0,0		 • • •	.0 0.0	0.0	0,0	,0 0,0	.0 0-0	0-0 0-0	ь п.о	0.0 0.0		.0 0.0	D.0 0.0	6 0-8	0-0	5.0 Q.O	
0,0	0.0	0.0	0,0		ę	0.0	0,0	e.0	0 •0	0.0	0.0	0.0	0.0		0,0	e.o	P.0	¢,0	5	
0.070	0.130	0,0	0_100		0,110	0_100	8,120	0.150	D., 120	0.170	0,110	0.100	0.090		0.160	0,140	0.,200	0,340	0,360	
0.0	0.0	0.0	0 -0		0.0	0,0	0-0-0	0.0	0.0	0,0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0 60	
0.0	0-0	0.0	0.0		0.0	0,0002	0,0006	0_0024	0.000.0	0.0	0-0	6.0	0,0003		0,0	0.0	0,0	0,0	0,0001	Tvin
0.0	0.0	0-0	0-0	Washington	0,0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	Valley	0.0	0_0002	0.0	0.0	0.0	Falls
0.0	0.0	0.000	0.0		0.0	0.0	0,0	8-0	, 0. 0	0.0	0.0	0.0	0,0	County	8.0005	0.0003	1000*0	0.0004	0,0004	Counts
0.0	0.0	8.0		- County	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0,0	0.0	nty	0.0	50,0	0.0	0.0	0.0	County (cont'd.)
0.0	0.0	0.000Z	0,0		0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	D,0		0.0030 0.0	5	P.	0.0	9.0	:'d.)
0.0	0.0	0.0	0-0		0.0	0-0	0.0	0,0	0.0	0,0	6,0	0.0	0.0		0.0	0-0	0.0	0.0	50	
00029	ĥ	0,0190	0,0050		6 ,0	6-0024	0.020	0,00016	ç	ę	5.0025	610019	5		8.0	£	6.0065	6,10 65	g	
0- 0	0,0	5	0.0		0.0	0-0	00	0.0	0.046	0,0	0.0	0.0	0.0		0-0	6.0	5	6	0.0	ļ
0.0	0.0	0.0	6.		0.0	0.0	0_0	1	0-0	0.0	a. 0	0.0	0.0		0.0	đ.0	5	9.0	0.0	
0.0 0	0-0	0.0	0.0		9. 0	a.o	0,0	0.0 0	0.0	0,0	0 ,0	0.0	0 .0		0,0	0.0	1 0 . 0	0.0	° .	. 1
004 0.0	1012 0.D	1.006 0.0	1027 0.0		1,005 0.0	004 0.0	1.005 0.0	003 0.005	0-0 220-0	0,0 6001	9-011 8-0	0.011 0.0	9"003 0"00"		0-006 6-0	0.020 0.0	0.0 810-0	9-8 CO-C	1-030 0-020-1	
00009		0 0.0007	0.0					005 5.0			0 0,0005		004 E_0003			0 0.0005		22000-0	620 640	
0-0 600	6.0014 0.0	30 7 6. 0	•.•		0.0020 0.0	0,0002 0.0	0.0006 D.O	5.00 01 0.0	0,0006 B.0	0.0007 0.0	005 0.0	0-0005 0-0	0-0 200		9.0004 0.0	0 0 00	0,0002 D,0	042 8-0	9.0	
°.00	0,0	0-0	D+0		6,00	0.0	0-0	0.0	0.0	0.0	6	6	0.0		6	5	2	ŝ	0,0	
0,0002 0.0	0.0	0,0	0,0		0,0002 0.0	0,0	0,0	0.0	0. 0	5	۰.	0,0	0.0		0.0	6 -1	0.0004 0.0004	8	. 8.0	
0,0230	9-1500	0.0	0.0		0,0620	0.0440	0.1200	0,0	0,1200	0.0370	9,0	0.0420	0.0670			6, 1700	0.0000	0.7500	0.,2400	
230 6.0	500 0.0	0,0	8		630 P.O	P	200 0.0	0.0	200 8.0	570 0.0		MZD 0.0	1670 B.D		0.4700 0.0	700 0,0	B00 0.0	1500 Q.O	9.0 OGW	.
0,0	0.0	.0 0.0	0.0		6 8	0.0	.0 9.0	0.0		0.0	.0 0,0	0.0	.0		0.0	ю р.	0.0 0	6 0.0	0.0	
	0 0.0	6	0.0		0	0.0	0,0	0 0.0	0.0	0.0	0.0	0 0.0	0.0		0.0	a a.o	0 20	0 0.0	e e.o	
0.0059 0.0	0 0.0	0 0.0	0.0			0.0	о 6-0	0 0.0	0.0	0.0	0.0		0.0		0 1.0	ه و .	0.0	0_0	5	
0.0	P	0.0	0 P		0.0	ş	P	с Р.	0 0	0 F.O	C 8.0	0.020 0.0	0.0			5	5	. 0	ŝ	
0.003	0.016	0, 630	0.010		£ 008	Q. 017	0.007	0.012	0,024	0,007	9.025	0,000	0,006		0.4300 0.013	0-016	0.009	0,010	0.015	

-842-

n na marten

x

BASIC DATA TABLE 4

.

.

1 BASIC DATA TABLE 4

LOCATION, GEOLOGIC ENVIRONMENT, PRESENT USE AND POTENTIAL USE OF THERMAL SPRINGS AND WELLS IN IDAHO

Spring/Well Identification Number & Name	Dis- charge (1/min)	Aquífer Age and Rock Type	Geologic Structore	Rømarks	Deposition Car- Sili-bon- Sas ceous ates		Well: Surf Septh Temp (m) (°C)	Aqui- fer Temp. (^C C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitud Trace & Anal. Longitu	1
					Ada	a County						
ILLIE COLLIAS ELL IN 1E INDCI		PLIOCENE AND PLEISTOCENE SEDIMENTS		DR≹LLER'S LOG AVAILABLE		IRRIGATION	145 26	48	BIODEGRADATION	LAUNDRY USES	YES 43.454 116.2782	SAVAGE, 1958
.L. HENNIS ELL IN 1E 10AD1	75	PLIOCENE AND PLEISTOCENE SEDIMENTS	<u>.</u>	DRILLER'S LOG AVAILABLE		DOMESTIC	99 2 5	-	HEATING AND COOLING WITH HEAT PUMP		43,4493 116,2735	5AVAGE, 1958
GRI-CON OF DAHO WELL 1 IN 1E 23CDA1		PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRRIGATION	133 24		CATEISH FARMING		43-4034 116-3036	SAVAGE, 1958
IFCHOLSON IELL #1 IN 1E 2504A1		PLICCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	-	DRHLER'S LOG AVAILABLE		STOCK WATERING	140 23		HEATING AND DOOLING WITH GROUNDWATER HEAT PLAP		43,3929 116,2840	LOG, 1968
ILCHOLSON IELL #2 IN 1E 2508A1		PLIOCENE AND PLEISTOCENE SEDIMENTS		REPORTED TEMPERATURE; LOCATION IS VERIFIED BY FIELD CHECK; DRILLER'S LO AVAILABLE	,	IRRIGATION	161 25	45	CATFISH FARMING	Mushroom growing	YES 43.3934 116.2791	10G, 1973
GRI-CON OF DAHO MELL 2 IN 1E 2560C1	12870	PLIQUENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRRIGATION	143 24		CATFISH FARMING		43.394) 116.2862	5AV <i>A</i> SE, 1958
GRI-CON OF DAHO NELL 3 IN 1E 26ADD1		PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRRIGATION	135 25		DE-ICING ROADWAYS		43.3866 116 . 2839	SAV AGE, 1958
ETTY DESHAZO WELL IN 1E 33AADI	. 11355	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA		DRILLER'S LOG AVAILABLE		IRRIGATION	186 24		CATFISH FARMING		43.3835 116.3352	LOG, 1972
GRI-CON OF DAHO WELL 4 IN 1E 358AA1	11355	PLICCENE BASALTIC LAVA		DRILLER'S LOG AVAILABLE		IRR IGATION	121 23		HEATING AND COOLING WITH HEAT PUMP		43,3860 116,3034	LOG, 1969
FLOYD EDWARDS HELL IN IE 358681		PLIOCENE AND PLEISTOCENE SEDIMENTS				IRRIGATION	129 22	:	HEATING AND COOLING WITH HEAT PURF		43.38 61 116.3129	SAVAGE, 1958

NGA -200, 04 10470 Mie 5 15 18 568801

10220 PLICENE AND PLEISTOCENE SEDIMENTS

IRRIGATE

135 24 67 DE-ICING ROADWAY

APPLE DENYORATION

YES 43.3831 SAVAGE, 1958 116.2737

.

C.J. STEWART WELL IN ZE GAAAI		PLIDCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC	117 32	CATFISH FARMING		43.4586 116.2538		1958
TOB LAND AND BEEF WELL IN ZE GABAT		PLICENE NO PLEISTOCENE SEUIMENTS		DOMESTIC	123 24 5	O CATFISH FARMING GREEN	NHOUSE	YES 43.45 87 116.2596	SAVAGE,	1958
JOHN QUOKNELL WELL ZN 1E 2100A1		PLIOCENE NU PLÉISTOCENE SEUIMENTS	÷	DOMESTIC	85 23	DE-ICING HIGHWAYS		43-4919 116-3347	SAYAGE,	1958
YOM BEVANS WELL 2N 1E 220001		PLIOCENE AND PLEISTOCENE SEUIMENTS		RRIGATION	24	DE-ICING SIDEWALKS	; -	YES 43.4921 116.3183	SAV AGE ,	1958
VELES CLARK WELL 2N TE 23HACE		PLIOCENE AND PLEISTOCENE SEUIMENTS		IRR IGAT LON	117 24	DE-ICING ROADWAYS		43.5000 115.3076	SAV AGE,	1958
DAVID NEAL HELL 2N TE 230ABT		PLIOGENE AND PLEISTOCENE SEDIMENTS	· · ·	IRRIGATION	85 25	CATFISH FARMING		43-4 953 116 -3 055	SAV AGE ,	1958
AL CLIFFORD WELL 2N 18 23DDA1		PLINCENE AND PLEISTINCENE SEDIMENTS	PUMP OFF; TEMPERATURE NOT VARIFIED; ORILLER'S LOG AVAILABLE	UDMESTIC	94 26	HEATING AND COOLING WITH HEAT PUMP	· .	43-4920 116-2953	SAVAGE,	1958
KUNA EAST WATER CORP. 2N 1E 2408A1	8005	PLIQCENE AND PLEISTOCENE SEDIMENTS		DOMESTIC	93 24	DE-1CING SIDEWALKS		43.494))16.2887	SAV AGE ,	1958
GEORGE WHITMORE WELL 2N IE 240AD1		PLIOCENE AND PLEISTOCENE SED IMENTS	REPORTED TEMPERATURE, NOT IN USE	UNUSED	27	FERMENTATION		YES 43+4934 116-2740	SAVAGE,	1958
CHARLES BAIR WELL 2N 1E 26ABAI	2649	PLICENE AND PLEISTOCENE SEUIMENTS	, DRILLER'S LOG AVAILAGLE	DOMESTIC	115 27	SHRIMP AND TROPICAL FISH FARMING		43.4882 116.3008	SA¥AGE,	1958

n de la companya de la comp

a da parte

** USE TAKEN FROM FIGURE 4. POTENTIAL USE BASED ONLY ON BEST ESTIMATED ADULTER TEMPERATURE. ALL OTHER FACTORS IGNORED.

(continued)
in Idaho
i Wells i
pue
Springs
Thermal
of
Use
Potential
and
Use
Present
Geologic Environment,
Location,
Basic Data Table 4.

	·		Ada County (cont'd.)	~	·	
DESERT VIEW ESTATES ZN 1E 27ADA1	4163 PLIOCENE AND PLEISTOCENE SEDIMENTS	x	Public Supply	97 24	HEAT PLAP AND COOLING NITH HEAT PLAP	43-4846 SAVAGE, 1958 116-2960
ED JUHNSON MELL 24 1E 358031	5677 PLIOCENE MAD PLEISTOCENE SEDIMENTS	טאוירנאיז ועס אאזיאשוב	IRRIGATION	2 2 01	CATELSH FARMING	43-4680 SWARE, 1958 116-3099
ronald Yanke Meil 24 Ze 19aadi	7494 PLIOCENE MED PLEISTOCENE SEDIMENTS	DRILLER'S LOS WAILABLE	IRRIGATION	12 S92	FEWENTATION	43,4998 SAVAGE, 1958 116,2545
STATE PRISON VELL (2 2N 2E 270001	6624 PLIOCENE AND PLEISTOCCNE SCOIMENTS	DRILLER'S LOG AVALLABLE	HRIGATION	154 24	BIOCERADATION	43.4729 SMAGE, 1958
STATE PRISON MELL #1 24 26 270801	PLLIOZEME, MUD PLEISTOCEME SEDIMENTS	DRILLER'S LOG WAILABLE	IRRIGATION	277	FERMENTATION	43.4784 LOS, 1969 116.1990
LDS STAKE FAVON WELL #1 ZN ZE 29AND1	PLIOZZNE AND PLEISTOCCHE SEDIAGNTS		IRRIGATION	167 B	CATEISH FARMING	43,4855 SAVAGE, 1958 116,2333
F MAN WELL #2 F MAN WELL #2 ZN ZE 29 AND2	PLIOCENE AND PLEISTOCENE SEDIMENTS	÷.	DOMESTIC	167 2	DE-ICING RONDWIN'S	43,4855 SWAGE, 1958
100 LAND AND BEEF MELL 1 2N 2E 310001	PLIQZER AND PLEISTOCENE		1981 GAT LON	121 æ	HEATING NO COULING WITH -	43.4997 SAVASE, 1958
100 LAND AND BEEF WELL 2 Zh 26 510641	7570 PLIJOGNE MAD PLEISTOGENE	DRILLEN'S LOS AVAILABLE	IRRIGATION	134 50	STOCK MATERING	43-4619 SAVAGE, 1958 116-2594
	service of the second	γαγφαία μημαγίας το ματογραφικό ματογρ		б Э.	Martine, And Truck (M. Martine) Martine (M. Martine)	Selation (1993) - Conservation Conservation

-252-

P DONE WE PLET STATIST

i L

HARIGAT A AND 143 ZH FISH FARMING UNHESTIC

North and the second

	• •	чин W20(2), т. т.			- - -		een y				
	YES 43.4778 SAVAGE, 1958 116.1062	155 43-6244 SAVAGE, 1938	41.6107 116,1708	43-6208 SAVACE, 1950	43-6180 LOG, 1962 116-1984	43.6176 116.2010	43.6119 SAVAGE, 1958 116.2039	755 43.6165	43.6181 116,1833	43.6164 116.1857	43.6158 SAVACE, 1958 116.1890
CATFI SH FRONTING	FERRENT AT FOR	SPACE HEATING						BLANCHING			
liaritoriano ao	27 HEATING AND COULING WITH HEAT PLANP	59 GRAIN-MAY DRYING	DE-ICING SIDEMALKS		SPACE HEATING		HEATINS NO COLLING &ITH HEAT PURP	SEEDLING ONLIFERS	LWADRY USES	APPLE DEMORATION	BLODEGRADATION
я 2	57 T 62	348 50	8	- 247 20	327 40	रु च	192 24	<i>16 95</i> 861	92, 165	, 14 265	1174 90
	DOMESTIC	DOMESTIC	GEOTHERMAL RESEARCH	PUBL IC SUPPLY	DOMESTIC MED SPRINKLING	UNUSED	COMPLETE I AL	GEOTHERWAL RESEARCH	GEOTHERMAL RESEARCH	GEOTHERMAL RESEARCH	FRA IGAT I ON
	DRILLER'S LOS MAIL NHLE; H.A.CY CREEK PEST REEA	DRILLER'S LOS ANAI_ABLE	NOT FIELD DEEXED; NOT FLOHING, COVERED	FLOWING WELL; DRILLER'S LLOWING WELL; DRILLER'S	DRILLER'S LOG MAILABLE	MELL CEMENTED OVER (NO TEMPERATURE CAECC)	TRILLER'S LCG AVAILABLE	COVERED	NOT FLORING	MELL HAS BEEN COVERED	DRILLER'S LOS MAILABLE
a transfer Bandar ta transfer	ZZ7 PLIOGENE NO PLEISTOCENE SEDIMENTS	302 PLIOCENE AND PLEISTOCENE SEDIMENTS		1703 PLIOCENE NO PLEISTOCENE SEDIMENTS	1135 PLICCENE AND PLEISTOCENE SEDIMENTS	•	26338 PL/OCENE NO PLEISTOCENE SEDIMENTS	X			2271 PLIOCENE NO PLEISTOCENE SEDIMENTS
	STATE TRANS, USET WELL ZN JE ZBCACI	75.540 KOCH 162.1 241 25 23401	850 661, J 34 26 20801	GANDEN CITY MELL 34 25 500A1	IDAHO STATE CAPITOL RELL 3M 22 10ABA1	A CHO BOISE HOTEL WELL 3N ZE 10ABB1	CLARK MAGSTADT WELL 3N 25: 1080001	BEARD #ELL 5k 2E 11.0BC1	BSU MELL #Z MELL #Z 118AB1	BSU MELL #5 3N ZE 11BACI	BOISE CITY PARK WELL JM ZE TIBBOI

-253-

i. A

A. J. W.

and the second second

Spring/Well dentification Number & Name	Dis- charge (l/min) Aquifer Age and Rock Type	Geotogic Structure	Remarks Gas c	Silie bon- ceous ates Present Use	Well Surf. ter Depth Temp. Temp.	Fotential Use Based on Surface Temperature**	Potential Use Based on C Best Estimate of T Subsurface Temperature*** A	Chem/ Latitude Trace & Anal. Longitude	a Beference
		• •		Ada County (cont'd.)	-				
ANNI SPATKS MELL MIL 2º 128001			NOT FIELD ONEDKED	DOMESTIC	143 21	FISH FARMING AND WATCHING		43_6130 116_1647	
BSU MELL #4 3N 26 120381			NJL FLOWING	GEOTHERVAL RESEARCH	167 35	FEMMENTATION		43.6107 116.1708	
MARCH SPRINGS MATER DIST. SN 2F 120501	7267 PLIOCENE AND PLEISTOCENE SEDIMENTS (?)	NORTHMEST TREND ING FAULT	MELL MATER HEATS ABOUT 200 HOMES, FLOMING MELL, SULFUR COOR	PUBLIC SUPPLY	r 121 76 79	FRUIT AND VEGETABLE DEMOGRATION	PASTEURIZED MILK PROCESS	YES 43.6046 116.1626	
NAGH SPRINGS WATER DIST. 5N 2E 120302	7267 PLIOCENE AND PLEISTOCENE	NORTHNEST TRENDING FAULT	WATEN FROM BOTH MELLS 15 MATEN FROM BOTH MELLS 15 MAXEN PARED TO DISTRICT; FLOWING WELL; SULFIR, DOGR	PuBuic Suppur	(121 77	REFRIGGRATION (LOWER TEMPERATURE RANGE)	:	43,6048 116,1627	
ABUL SENTENTIARY	68 PLIOCENE MO PLEISTOCENE SEDINENTS		רספ אראוראזרק אנירו-הביוין בסאבונים: מגוררפו ו אנירו-הביוין בסאבונים: מאו	UNUSED	148 28		" <u>.</u>	43.6017 116.1561	r SANASE, 1958
OLD PENTENTIARY MELL #2 3N 2E 13AGUT	2649 PLIOCENE MUD PLEISTOCENE SEUINENTS	northnest Trending fault	אאוראפוב מאינראפוב	(JAN)SED	265 59 67	POULTRY HATCHERY	APPLE DEMORATION	YES 43-5987 116.1606	7 SAYAJE, 1958
WARN SPRINCS MESA SUGU. 5N 2: 24531	3028 PLICCENE AND PLEISTOCENE SEDIMENTS.		DRILLER'S LOG WAILABLE	Puel IC Supply	د 150 کا	SO INORODAL CS		43,5849	9 SAVAGE, 1958
BULSE MATLR CORP. MELL 3N 2E 56AGC1			URTILLER'S LOG AVAILABLE; ALSO RANNAL AS TERTELING WELL	- PUBLIC SUPPLY	r 195 22	FISH FARMING AND HATCHING		43.5580 116.1597	1972
ל אלאין איז			NOT FIELD DECKED	UNUSED		SPACE HEATING		43.5810 116.1272	
MURALS UNCEN H S 5N 4E 216AH1S	·		NUT FLEUN CHENKED, REPORTEU IN THE DIANG PROTOLOPED IA, 1986, SUMPORED, 14, LUCH PLAN PERMOREN 14, LUCH	0300	1()			40.544 - 544 - 44	

ารีย์ประมาพรับ สามพ

309 ZE SE FERENIATION

-254-

NOT FIELD DHECKED; REPORTED IN THE IDANG ENCYCLOPEDIA, 1938; SUBMERGED IN LUCKY PEAK RESERVOIR

) - - -

MORES CREEK H S 3N 4E 21BABIS

Saturnary - C. Frankry MEA-Are RE 2000CS

IDAHO DEPT. OF THANS. 4N 1E 2500A1

CARL RUSH WELL 4N 2E 4880C1

LILLIAN BARNES WELL #1 4N 2E 80001

LILLIAN BARNES WELL #2 4N 2E 17CBA1

E. VAN HENDRICKS WELL 4N 2E 17CDA1

WILLIAM GALLOWAY 4N 2E 194481

ETHEL FICKS

ED GENTHER WELL 4N 2E 194AC2

JESS DONAHO WELL

4N 2E 2100A1

TERTELING H S 4N 2E 22BBAIS

JOE TERTELING WELL //1 4N 2E 226081

PLICCENE AND PLEISTOCENE SEDIMENTS (2)

WELL 4N 2E 19AAC1

1

255-

DOMESTIC 200 MA FERMENTATION MALL DEMONSTON 969 INDUSTRIAL 274 24 DE-ICING HIGHWAYS SEEDLING CONTREPS 276 PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA PEO: TEMPERATURE NOT VERIFIED: DRILLER'S LOG AVAILABLE CAP 1135 PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA DRILLER'S LOG AVAILABLE 56 PLEOCENE AND PLEISTOCENE SEDIMENTS DRILLER'S LOG AVAILABLE; WELL CAPPED, TEMPERATURE OGTAINED FROM LOG

113 PLIOCENE AND PLEISTOCENE SEDIMENTS DRILLER'S LOG AVAILABLE 113 PLIOCENE AND PLEISTOCENE SEDIMENTS DRILLER'S LOG AVAILABLE

DOMESTIC CAVED IN, NEVER RE-DRILLED UNUSED 37 PLIOCENE AND PLEISTOCENE SEDIMENTS (1)

DOMESTIC	76 30	43 SHRIMP FARMING
UNUSED	513 41	SEEDLING CONTFERS
SWIMMING POOL	377 3 <u>2</u>	BIODEGRADATION
UNUSED	210 20	
DOMESTIC	70 25	HEATING AND COOLING WITH HEAT PUMP
DOMESTIC	68 21	HEATING AND ODOLING WITH HEAT PUMP

78 26 FISH FARMING 274 36 AQUACULTURE

STOCK WATERING 41 HYDROPONICS DOMESTIC 50 24 SHRIMP FARMING

43 6521 116 2835 YES 43.7135 116.2267 43.6920 06.1969 116.2417

TES 43.0064 116.2821

45.6833 ⊨%6, 1965 116.2502

43.6794 LOG, 1973

1

....

43.6762 116.2568

43.6752 LOG, 1969 116.2775 .

43.6742 LOG, 1967 116.2574

43 6759 116 2297

43.6768

43.6734 116.2113

Spring/Well Identification Number & Name	Dis- charge (1/min) Aquifer Age and Rock Type	Geologic Structure		Deposition Cer- Sili- bon- ceous ates		Aqui (ell Surfa far)epth Tamp-Tamp (m) (°C) (°C)		Potential Use Based on Best Estimate of Subsurface Temperature ^{ken}	Chem/ Latitude Trace & Anal. Longitude Re	ference
		:		Ada Cou	ty (cont'd.)					
JOE TERTELING WELL #2 4N 2E 224001	PLIDCENE MO PLEIŠTOCENE SEUIMENTS (?)		FLONING COLD MATER NEXT TO THERMAL WATER'S NELL CASING	:	SPACE HEATING	167 4 4 -	AQUACULTURE		43.5710 116.2083	
JOE TERTÄLINÖ WELL #3 4N 2E 220001	PLIOCENE AND PLEISTOCENE SEDIMENTS OVERLYING BASALTIC LAVA		ORILLER'S LOG AVAILABLE		IRRIGATION	182 43	FERMENTATION		43-6695 LOG, 116.2107	1968
CRANE DREEK GOLF COURSE 4N 26 260001	2649 PLINCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA		DRILLER'S LOG AVAILABLE		IRRIGATION	225 21	fish hatohing		43.6584 LOG, 116.1983	1964
CARTWRIGHT MATER DIST.#1 ~ 4N 2E 2708A1			THIS SITE WAS ORIGINALLY DRILLED FOR OLL AND GAS EXPLORATION TO A DEPTH OF 915 METERS		PUBLIC SUPPLY	213 32	QUACULTURE		43-6546 116-1994	
CARTWRIGHT WATTR DIST#2 4N 2E 2706A2	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA		DRILLER'S LOG AVAILABLE		PUBLIC SUPPLY	228 32	B 100 EGRADATION		43₀6549 L00, 116₀1994	1976
CARTWRIGHT WATER DIST.#3 4N 2E 2700A3					DOMESTIC	152 32	HEATING AND COOLING WITH HEAT PUMP		43-6549 116-1998	
VIC NIEGLER WELL 4N 25 28ABB1	1022				IRRIGATION	396 48	grain-hay drying		43-6616 116 -22 12	
-UNT BROT-LERS FLORAL #1 4N 27 2812831			ALSO KNOWN AS MILSTEAD FLORAL; FLOWING WELL; SLIGHT SULFUR DOOR		GREENHOUSE	381 47	SEEDLING CONIFERS		43.6556 116.2322	
RYAN WELL 4N 2! 29AU∂1	1430			•	SPACE HEATING	335 46	grain-hay drying		43,6614 116,2454	
und an Storage for a und the Colombia sectory of Margare und the Storage State	1514		FLOWING WELK, SUIGHT SULFUR COOP!		GREENHOUSE AND SPACE HEATING	364 49 71	3 TROPICAL FISH FARMING	PRUNE DEHYDRATION	YES 43.6577 116.2369	

-256-

ستاریس ویدد می ۲۹ سال۲۹

PUPPOENE AND PUEPSTOCENE SECTIONENT

FLOWING WELL: SLIGHT SULFUR

SPACE HEATING 422 30 WINDOWDOWLOG

HTERPONECS

 $[2\pi^{-1}r_{1}]^{-1} f_{1}^{1} \cdots$

WELL #1 4N 2F 294CD2

SED INENTS

PLOWING WELL; SLYON

•

-

45.6362 5 116.2374

.

W	AYNE CHURCH ELL, #2 4N - 25, 29AQU3		PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	• - - - -	DOMESTIC	15	21	HEATING AND COOLING WITH HEAT PUMP		43.656 2 116 . 2376	SAVAGE, 1958
F	iunt J rothers Loral #2 4n 21, 290Aat	J.		FLOWING WELL; SLIGHT SULFUR COOR		GREENHOUSE	381	45	SOIL WARMING	. ·	43.6555 116.2329	
F	UNT GROTHERS LURAL #3 4N 25 290AA2		•	FLOWING WELL; SLIGHT " SULFUR COOR		SPACE HEATING	381	43	Mushroom growing		43.6556 116.2328	
i T	DAHO DEPT OF RANS WELL ' 4N 2E 3300001	1022	PLIDCENE NG PLEISTOCENE SEDIMENTS	URILLER'S LOG AVAILABLE, URIGINALLY DRILLED TO 351 METERS, WATER WITHORNAN FROM 22 METER OPTHOUE TO LACK OF WATER IN SHALE	a	AIR CONDITIONING	350	20	ALR CONDITIONING		43,6347 116,2296	LOG, 1964
N	LIGHAND SMITH IELL AN 2E 340AA1			TEMPERATURE AND LOCATION NOT VERIFIED		unused	304	21	HEATING AND COOLING WITH HEAT PUMP		43_6399 116_2029	
1	io n n boenn Ieli. 5n 1e 25acb1		PLIOCENE AND PLEISTOCENE SEDIMENTS			DOMESTIC	60	20	FESH FARMING	. · ·	43.7453 116.2828	SAYAGE, 1958
W	HADOW VALLEY IELL 5N 1E 25HCC1	1705	PLIOCENE AND PLEISTOCENE SEDIMENTS	ORILLER'S LOG AVAILABLE		IREIGAT (ON	92	2 8 42	- AQUACULTURE	SOIL MARHING	YES 43.7434 (16.2917	SAVAGE, 1958
W	ion Swanson Ell 5n 1e 250801	151	PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE .		DOMESFIC	95	21	HEATING AND COOLING WITH HEAT PUMP		43.7408 116.2903	SAYAGE, 1958
ų	CHN FERGUSON WELL SN 1E 23CCB1	264	PLIQCENE AND PLEISTOCENE SEUTMENTS	DRILLER'S LOG AVAILABLE		DOMESTIC	152	25	HEATING AND COOLING WITH HEAT PUMP		43.7376 116.2909	LOG, 1972
*	D. MCARTHUR HELL 5N 1E 26CDC1		PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILAULE	•	DOMESTIC	18	02 300	HEATING AND COOLING WITH HEAT PUMP	-	43.7369 116.3066	LOG, 1970
H H	ien stadler Iell 57: 1e 260001	3406	PLIOCENE AND PLEISTOCENE. SEDIMENTS	WILLER'S LOG AVAILABLE	•	DOMESTIC	209	30 56	SPACE HEATING	GRAIN-HAY DRYING	YES 43.7373 116.2987	LOG, 1964

-257-

1

			President and the substrate of the subst		an <u>a any amin'ny sora</u> tan'ny soratra 140 ₀ -1414	·						and the second
	Spring/Well Identification Number & Name	Cis- charge (1/min)	Aquifer Age and Rock Type	Geologic Structure	Remarks	Sili- con- Sas ceous stas	_	Well Surf.	qui- fer* emp. Potentiz!Use Based on PC) Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitud	1
		-				Ada Cou	nty (cont'd.)			• -	
					-							
	John Burgess _: Well 5n 1e 290aa'i	37	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		DOMESTIC	154 22	CATFISH FARMING	~	43,7415 116,3552	LOG, 1978
					-	-						
	JULIUS JEKER W <u>ELL #1</u> 5N TE 35ACA1	83	PLIOCENE AND PLEISTOCENE SEDIMENTS		FLOWING WELL; SULFUR ODD	ж	IRRIGATION	16 40 E	87 SPACE HEATING AND REDREATION	BARLEY MALTING PROCESS	YES 43,7308 116,2998	DENMAN, 1978 (SITE INSPECTION)
							*				· *	
. ,	JULIUS JEKER WELL #2 5N 1E 3680B1		PLIOCENE AND PLEISTOCENE SEDIMENTS				DOMESTIC	121 24	DE-ICING SIDEWALKS		43.7316 116.2881	DENMAN, 1978 USITE INSPECTIONS
i	JERRY DAVIS KELL FI IN 1W 7A2C1		PLIQCENE BASALTIC LAVA		DRILLER'S LOG AVAILABLE; CAVED AT 180 METERS		IRRIGATION	196 21 5	59 CATFISH FARMING	POULTRY HATCHERY	YES 43.4374 116.5025	SAVAGE, 1958
ŝ	DLAYTUR FORSGREN WELL IN IN 78001	469 -	PLIQUENE BASALTIC LAVA		DRILLER'S LOG AVAILABLE		1RR IGAT 10N	124 21 6	1 FERMENTATION	ANIMAL HUSBANDRY	YES 43.4373 116.5122	LOG, 1973
ı	JERRY DAVIS NELL #2 1N 1W 7C8A1	6359	PLIOCENE BASALTIC LAVA		DRILLER'S LOG AVAILABLE		IRRIGATION	140 Z1	HEATING AND COOLING WITH HEAT PUMP		YES 43.4385 116.4607	LOG, 1965
						•						
	1N 1W 8888)		PLICCENE BASALTIC LAVA		DRILLER'S LOG AVAILABLE		IRRIGATION	129 20	STOCK WATERING		43.4429 116.5729	LOG, 1962
1	IRVIN BOEHLKE NELL ∉1 IN IW BDBA1	10220	PLIOCENE BASALTIC LAVA	. .	DRILLER'S LOG AVAILABLE		IRRIGATION	137 22	STOCK WATERING		43.4 375 1 16 .4 787'	LOG, 1963
	HERB MONTFERTH WELL IN 16 158001		N.				IRRIGATION	106 21	HEATING AND COOLING WITH HEAT PUMP		43.4231	
									n naur na Ar Allinge		116,4461	
	e£Nor e€DetTiENtr- e€LL Nar tar 15eBC01						IRR IGAT ION	106 21	CATELSH FARMING		43_4230 116,4451	

17.0

....

·.	SHANE BJES WELL IN IN ISDAAI	10598	na na mana ang ang ang ang ang ang ang ang ang		IRRIGATION	164	21 f	6 CATFISH FARMING	APPLE DEHYDRATION	YES 43.4225 116.4330	
-	IRY IN BOEHLKE WELL #2 IN IM ITACAI		PLIOCENE GASALTIC LAVA	DRILLER'S LOG AVAILABLE	IRRIGATION	123	22	CATFISH FARMING		43.4262 115.4764	LNG, 1963
	IRVIN BOEHLKE WELL V3 IN IW 17CAB1		· · · · · · · · · · · · · · · · · · ·		IRRIGATION :		źz	HEATING AND COOLING WITH HEAT PUMP	•	43.4220 116.4857	
	LLCYD NOE WELL 1N 1N 19DDB1		PLICCENE AND PLEISTOCENE SEDIMENTS		DOMESTIC	118	21	HEATING AND COOLING WITH HEAT PUMP		- 43.4047 116.4970	
	TERRY TLUCEK WELL #1 i IN IW 220AC1				IRRIGATION	106	21	HEATING AND COOLING WITH HEAT PUMP		43.4047 • 116.4472	
1	TEHRY TLUCEK WELL #2 1N 1W 22DDD1	•	PLIOCENE BASALTIC LAVA MD SEUIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	106	27 5	7 CATFISH FARMING	GRAIN-HAY DRYING	YES 43,4019 ; 116,4339	LOG, ≀964
259-	HERAB MONTLERTH WELL IN IN 24AADI	5567	PLIOCENE AND PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	ORILLERIS LOG AVAILABLE	IRRIGATION ·	н	24	DE-ICING ROADWAYS		43_4131 , 116_3947	.(6, 1965
	TERRY TLUCEK WELL #3 1N 1W 278881	4542	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	DRILLER'S LOG AVAILABLE	IRRIGATION		23	STOOK WATERING		43_3998 ↓ 116_4526	.QG, 1976
	LLOYD NOE ¥ELL ≸2 IN 1₩ 30ADA1		PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	DRILLER'S LOG AVAILABLE	IRR IGAT I ON	109	22	CATFISH FARMING		43,3976 116_4931	LOG 1974
	LLOYD NOE WELL #3 IN 1W 310AD1		PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRR I GAT I ON	115	24	DE-ICING RDADWAYS		43.3759 116.5039	SAVAGE, 1955
	MIKE VANDENBERG WELL IN 4W 32AAB1			TEMPERATURE NOT VARIFIED	DOMESTIC	216	21	FISH FARMING		43,38 45 115 ,99 70	

PLICCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA DRILLER'S LOG AVAILABLE DOMESTIC

ħ ¢

KENNETH FORREY WELL #1 2N 1W 34CDC1

106 27

BEODEGRADATION

43.4603 LOG, 1973 116.4473

Spring/Well Identification Number & Name	Dis- charge (1/min) Aquiter Age and Rock Type Structure	Si	eposition Car- II- bon- rous ates Present Use	Aqui- Well Surf. fer DopthTemp.Temp. Potential Use Based c (m) (°C) (°C) Surface Temperature*		Chem/ Latituse Trace & Anal. Longitude	Reference
		<u>A</u>	<u>da County</u> (cont'd.))			
KENNETH FORREY WELL 172 2N 1W 34DAD1	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	DRILLER'S LOG AVAILABLE	IRRIGATION	107 20 CATFISH FARMING		43.4645 LOG 116.4328	, 1967 · .
SAM GABIOLA WELL ≰1 2N 1W 35GAA1	3596 PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALTIC LAVA	DRILLER'S LOG AVAILABLE	IRRIGATION	96 25 HEATING AND COOLING KIT HEAT PUMP	4	43.4622 ುಗ, 116.424ರ	, 1958
SAM GAB10LA WELL #2 2N TH 3500A1			IRRIGATION	146 22 FERMENTATION		43,4660 116,4140	
BISCHOF REALTY 3N IN 25ADD)	PLIOCENE NO PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE; ABANDONED	DOMESTIC	68 21 Z7 CATFISH FARMING	81 DDEGRAD AT 1 ON	YES 43.5685 LOC 116.3940	, 1970
CLIFFORD SMITH WELL 5N TW BADCI	PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC	152 28 AYUACILTURE		43.7 875 SAV 116.4747	NGE, 1958
DEE RACHILLA WELL 5N IN BADDI	52 PLIOCENE NO PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC .	106 21 HEATING AND COOLING WITH HEAT PUMP	ı -	43.7888 (05) 116.4726	, 1971
DAVID TRAYLOR WELL SN IW 9CAD1	PLIOCENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMEST IC	119 20 BICOESPADATION		43-7 826 LOG 116-3149	, 1972
BILL LEACH WELL 5N IN 90001	PLICENE AND PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC	137 29 HYDROPONICS		43.7835 LOG 116.4620	, 1967
LETHA FISHER MELL SN IW 16CABI	PLIOCENE NO PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC	191 21 70 GROUND-WATER HEAT PUMP FOR HEATING AND COOLING	ONION DERYDRATION	YES 43.7701 LOG 116.4625	, 1963
HANDLY (DUAR TERS) BELL TE IN TURKET	13677 PLICOENE BASALTIC LAVA	DRILLER'S LOG AVAILABLE	IRRIGATION	112 25 71 CATFESH FARMING	PASTEURIZED MILK PROCESS	YES 43,3689 (00) 116,4616	, 1965

-260-

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43.2391 u.G., 1977 116.3551 u.G., 1977	45.1614 MITORELL, 1979 116.3320 (SITE INSPECTION)	44.6691 R055, 1971 ,116.3032) YES 44.6814 MARING, 1965 115.2281	YES 44.0714 NEWCOMB, 1970 116.2034	45-0382 SACLA, 1976 116-2371 (SITE INSPECTION)	43,6359 R055, 1971	45.13566 GARCLA, 1978 116.2875 (SITE INSPECTION)	45.0393 R055, 1971	YES 45.0385 HAMILTON, 1969 116.2913	YES 45.1518 R055, 1971 116.2962	
active con		:		00001 PRODUCTS (SYRUP, 01.L) YES 44.6814 116.2281	BLACHING					BARLEY WALTING PROCESS		
	P FERMENTATION	CATFISH FARMING	REFRIGERATION (LOMER TEMPERATIONE LIMIT)	60 145 HOT MATER REATING	43 93 SEEDLING CONFERS	MINAL HUSANDRY	RERIGERATION (LONER TEMPERATURE LIMIT)	APPLE DEHYDRATION	o gwe bird mytorery	z B3 milwy Hisbwoxy	FERENTATION	
	DOMESTIC 179 27	UNUSED Adams <u>Country</u>	3	YES REDREATION 61	YES UNUSED 4.	C9 COLONIA	. 70 70	69	09 0 Castiver	TES RECREATION 62	RECREATION 31	
	DRITERYS LOS MALLABLE	35	not field overally reported By Ross, 1971	NUMERAUS SPRING VENTS, GAS VES PRESENT IN SEVERAL VENTS, SULFIX ODR: TEVERALVEE RANGE 66-68 DEGREES C, ALLUY LM AGUT 1.5 M THLOR	THO SPRING VENTS AND SCYERAL SEEPS, TEAPERATURE RANGE 40-43 (SCAREES C; PAST USE:RECREATION	TENPERATURE RANCE 49-65 DEGREE C. PAST USE: BATAINE	DRILLER'S LOG AVAILABLE	several spring vents, past use: bathing	tenperature rance 53-66 degrees C	SLIGHT SULFUR COOR	STRONG SULFUR COOR	
			FAULT		NORTHWEST TRENG NO NORMAL FAULT					NCRITHMEST TREND ING NURMAL FAULT		
	PLLIOGENE ANSALT NO	'n	- 189 DRETACEONS GUANTIC ROCKS	113 QUATERNARY ALLEVIUM NEAN MICCENE BASALT AND CRETACEOUS GANNITIC ROOK	189 DEFINCEDUS ORMITTIC ROOKS NEAR MILOCENE BASALT	אוואטע אדרמינאא און פו	162 DIATERNARY ALLIVIUM NEAR MICCENE BASALT	иниллти химанаций взе	. Outforwart alluvium near Miocene Basalt	757 NIOCENE BASALT	37 ORETACEOUS GRANITIC ROOK	
	The second s	# 5 AA15	COUNCIL MTN. COUNCIL MTN. H S 15N 1E 2-NDB1S	HHITE LICKS H S 16N ZE 3380C1S	KRIGBANM H S 19N 22 22CAIS	DIXON H S 20N TE 250CA15	DEL GUDES HELL 2011 LE 250001	GEDDES H S ZON IE ZSCCIS	EVMNS H S ZON 1E ZECAUDIS	ZIMIS RESORT ZON IE ZODAIS	STINKY W-S 21N IE ZJABAIS	

-261-

.* *

Spring/Weil dentification Number & Name	Dis- charge (1/∞in) Aquifer Age and Rock Typs	Geologic Structure Remarks S	Deposition Sili- bon- Ses ceous ates Present Use	Aqui- ¥eli Surf. fer [€] Depth Temp, Temp, Potential Use Based (m) (°C) (°C) Surface Tamperature	Potential Use Based on Best Estimate of ** Subsurface Temperature1	Chem/ Latitude Trace & Anal. Longitude Reference
			Adams County (cont'd.))		
BOULDER OXEEK RESORT 22N 15 340AD1S	18 ORETACEOUS GRANITIC ROCK	: SLIGHT SULFUR ODOR; TWO SMALL POOLS	UNUSED .	28 CATFISH FARMING -		YES 45.2009 GARCIA, 1978 116.3115 (SITE INSPECTION)
URAB AND THOMPSON WELL 16N TW 11ACD1	56 QUATERNARY AND TERTIARY SEDIMENTS	DRILLER'S LOG AVAILABLE	0 04€ 5710	64 Z2 HEAT PUMP FOR HEATING COOLING	w	44.7390 YOUNG AND OTHERS, 116.4181 1977
BILL KAMPETER WELL IGN IW 15BACI	. 113 QUATERNARY AND TERTIARY SEDIMENTS INTERBEDDED WITH MICCENE BASALT	DRILLER'S LOG AVAILABLE .	IRE (GATION	35 Z2 FISH FARMING AND HATCH	NG	44.7267 YOUNG AND OTHERS, 116.4453 1977
STARKEY . H S 16N 1W 34D6B1S	492 MIDCENE BASALT	SEVEN SPRING VENTS; SULFUR COOR; SECONDARY CALCITE IN BASALT NEAR SPRING VENTS		55 70 LAUNDRY USE	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 44.8528 LIVINGSTUR AND 116.4421 CANEY, 1920
			Bannock County			
5s 34e 258001		DESTROYED BY CONSTRUCTION OF INTERSTATE 15		152 32		42,9599 112,4298
SERALD JOHNSON WELL 55 34E 25CBb1	PLIOCENE AND PLEISTOCENE SEDIMENTS AND SILICIC VOLCANIC ROCKS	DRILLER'S LOG AVAILABLE	IRRIGATION	BO Z7 BIODEGRADATION		42.9563 TRIMULE, 1976 112.4342
ROBERT BROWN WELL /1 55 34E 260AB1	113 UPPER PLEISTOCENE SEDMENTS (?)	ORILLER'S LOS AVAILABLE	LPREGATION	70 25 62 HEAT PUMP FOR HEATING COOLING	AND APPLE DEHYDRATION	YES 42.9559 TRIMBLE, 1976 112.4411
ROBERT BROWN WELL#2 55 34E 26D801	662 PLIQCENE AND PLEISTOCENE SEDIMENTS AND SILICIC VOLCANIC ROOKS(?)	DRILLER'S LOG AVAILABLE; FLOWING WELL	space heating	177 41 63 GREENHOUSE SPACE HEAT1	NG GAME BIRD HATCHERY	YES 42.9543 TRIMBLE, 1976 112.4428
GRINN SIGMAIN HELL 55 34E 26DCC1	3406		IRRIGATION	50 29 CATFISH FARMING		42.9499 112.4449
TADPOLE W S 55 545 27ADD15		DRY	(NUSED	20 , HEATING AND COOLING WI HEAT PLANF	Гн	42.9573 112.4580

.

-262-

							·		·				
42.4476 RINGLE, 1976	YES 42,6642 112,2356	YES 42.6205 STEARNS AND 112.0082 OTHERS, 1938	YES 42.6198 STEARNE MD 112.0053 OTHERS, 1938	TES 42.3877 NORVITO 40		ES 42.4257 DION, 1969 111.5778	YES 42.1148 010N, 1969 111.2840		YES 43.1143 RDSS, 1971 112.1669	Y 43.0377 ROSS, 1971		YES 43,5056 LMPLEBY AUD 114,5542 DTHEHS, 1950	YES 43.5605 UMPLEEY AND 114.4147 OTHERS, 1930
	SOLL NSRMING	SN I MO25 WOO24'S TH	SM1MMING POOL	HUDROPONIE		GRAIN-HAY DRYING	HOT HED HEATING	· .	BI ODEGRADAT I OK	SPACE HEATING		PASTELRIZATION	BLACHING
Selection on the lease 14	40 CATFISH FARMING	50 BALNEOL COLCAL SOOMING	50 SEEDLING CONIFERS	46 CRAIN-HAY DRYING		5 49 CATFISH FARMING	8 54 GRAIN-HAY DRYING		32 35 ผูปหณาบาหย	3 405 BLODEGRADATION		55 BJ SEEDLING CONFIENS	52 87 SPACE HEATING
Ŕ	DOMESTIC 24 22	YES RECREATION 45	YEŚ RECREATION 45	RÉCREATION 45	Bear Lake County	STOCK WATERING	YES RECREATION 48	<u>Bingham</u> <u>County</u>	18RIGATION 3	IRRIGATION	Blaine County	Masuni	BALNEOLOGICAL
אווונאיג וסט אואיןאפוב	·	RAFFOUS SPRING YON'S; YES ENTINGIYE TRAVERYINE DEPOSITION		(2)	<u>ଅନ</u>	THREE SPRING VENTS IN QUITE EXTENSIVE TRAVERTIME DEPOSITS	LIGHT SURTHE VENTS,	Ξ.	TEMPERATURE RANGE 18-32 DEGREES C	BANADOK-SHOSHONE TRIBE, YES	편] ·	MUREROUS SPRIME VENTS. YES YES ONCE USED FOR HEATING NUCE USED FOR HEATING SULFUR ODOR SULFUR ODOR	SULFUR 0009; NIMEROUS SULFUR 0009; NIMEROUS TEMPERATURE RANGE 42-52 DEGREES C
1180		f Aull 7 EXTE DEPO				0430 3141 -	NORTH TRENDING NUME FAULT		9431			ALLA MUN MUN	SPRI SPRI TEM
75 UPPER PLICENE SEDMENTS (1)		Paledžolic umatzite and Yoyager travertine	PALEDZDIC QUARTZITE	1854 UUATERMARY ALLUVIUM NEAR TEKTIARY SEDIMENTS		37 PALEOZOIC LINESTONE	PALEOZOIC LINESTONE		5677 PRE-TENTIARY LIMESTONE	37 Tufa in quaternary alluvium		264 PALEOZOIC LIMESTONE	378 PALEOZOIC LIMESTONE
70 PETE 34E 33	DEAN MONRIS WELL 95 Joe JODA	LAVA H S 95 36E ZIJUDA1S	-LAVA H S	DOWNATA H S 125 57E 1200015		PESCADERO N 5 115 436 3680A15	BEAR LAKE H S 155 44E 1300A1S		YANDELL SPRINGS N S 35 37E 3108815	ALKALI FLATS M S 45 36E 3800015		HAILEY H S ZN 18E 180881S	GLARENDON H S 3N 17E 2700B1S

-263-

1000000

Sasic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Well Identification Number & Name	Dis- charge (1/min)	Aquifer Age and Rock Type.	Geologic Structure	Remeriks ()	SUI-11	tion Jar- bon- Ites Present Use		urt 1	qui− fer* emp. °Cj	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/Latitude Trace & Anal. Longitude	GB€€,θ1⊂6
	×			-	Blaine	<u>County</u> (cont'	d.)	•					
GUYER H S 4N 17E 15AAC1S	s785	" PALEOZOIC LIMESTONE	NORTHWEST TRENDING FAULT (?)	NUMEROUS SPRING VENTS; SULFUR COOR; TEMPERATURE RANGE 55-70 DEGREES C	YES YES I	TES COMMERCIAL SPACE HEATING		70		REFRIGERATION (LDWER TEMPERATURE LIMIT)	BARLEY MALTING PROCESS	YES 43.6836 114.4101	UPLEBY AND DTHERS, 1930
WARFIELD HIS AN 17E SIBBOIS		PRE-TENTIARY UNDIFFERENTIATED ROCKS		TWO SPRING VENTS	YES	UNUSED		51	85	SEEDLING CONTFERS	SPACE HEATING	YES 43.6413 114.4865	ROSS, 1971
SASLEY W S SN 16E 100BC1S	189	CEMENTED QUATERNARY ALUIVIUM NEAR PRE-TERTIARY UNDIFFERENTIATED RUCKS		SIX SPRING VENTS		SHIMMING POOL		38	43	HTOROPONICS	SOIL WARMING	YES 43.7795 114.5385	ROSS, 1971
RUSSIAN JUHN W S GN 166 5500A15	3	QUATERNARY ALLIVIUM		SEEPING MORE THAN FLOWING	YE5	UNUSED -		38	52	AQUACUL , J.KC	MUSHROOM GROWING	YES 43-8052 114,5850	ROSS, 1971
MAGTIC H S LANJING HELL 15 176 234AB1	56	QUATERNARY SEUTMENTS (?)		FLOWING WELL; SULFUR ODOR; DRILLERIS LOG ANALABLE; ONDE USED FOR SPACE HEATING AND HOT BATHS		yes unuşed	79	71	174	REFRIGERATION (LOWER TEMPERATURE LIMIT)	DRY CLEANING	- YES 43,3289 114,3980	SMETH, 1959
14AGIC H S · 15 12E 23AABIS	1514	WATERNARY ALLUVIUM (?)		- PAST USE: RESORT; ALSO KNOWN AS HOT SPRINGS LANDING; X-RAY DIFFRACTION INDICATED TROMA PLUS LESSE AMOUNT OF GYPSOM		yes unused .		73		BALNEOLOGICAL BATHS		43, 3281 114, 3987	SMITH, 1959
CHARLES LARKIN WELL 15 ZOE TOUCAI	2271	QUATERNARY ALLUVIUM		DRIGLER'S LOG AVAIGABLE		IRR I GAT 10N	30	36		HYDROPONICS		43.3320 114.0836	CASTELIN AND CHAPMAN, 1972
200015 H 5 15 216 1400015	1309	QUATERNARY ALLIVIUM NEAR PLEISTOCENE BASALT		X-RAY DIFFRACTION ANALYSIS INDICATED CALCIUM CARBONAT	YES E	YES IRRIGATION		51	89	grain and hay drying	BLANCHING	YES 43.3270 113.9178	STEARNS AND OTHERS, 1938
міц-Рож⊎ SwEAT ч.5 15 221: ШАн15	75	QUATERNARY ALLUYIUM NEAR HOLOCENE BASALT AND PALEOZOIC QUARTZITE	·	TWO SPRING VENTS	YES	YES IRRIGATION		44	64	HYDROPONICS	APPLE DEHYDRATION	YES 43.3630 113.7794	ROSS, 1971
нисны S 15 22: ыжА≦S		QUATERNARY ALLIN 158				UNUSED		Z2		FISH FARMING		43,3669 113,8843	800NER AND BUSH, 1979

		ter territ - Ayyekanası olu ta	• •	· ·	1.9.V	Area - C			1			
	YES 45.670 R035, 1971	43,8192 JOHNGN, 353 115,8682 [STTE_INSPECT_30]	43.8162 F035, 1971 115.8651	YES 44.0587 R055, 1971	YES 44.0540 R055, 1971	44.0532 ROSS, 197: 115.9077	- 44.0447 R055, 197: 115.0420	• YES 44.0439 ROSS, 197"	44.0439 R035, 1973 115.8423	44.0507 ROSS, 197: 115.8286	44,0620 H035, 197'	44.0610 R055, 197: 115.6849
								ONION DEHYDRATION				
	NOT TANGGARA	AUACULTRRE	HTDROPONI CS	STOCK WATERING	seedling confrems	SN I MOLES MOCHANIN	LAUNDRY USE	74 SOIL WAYNING	SEEDLING CONIFERS	ANIMAL HUSBANDRY	AQUAQUE TURE	GREENHOUSE
	8	0 4	. 4	4 1	4	R	55	55	4	15240 60	ŝ	59
Pres Contra	YES YES RECREATION & SPACE HEATING	UNUSED	RECREATION	YES YES IRFIGATION	(?) RECHEATION	YES HEAT FOUSE AND POOL	YES SWIMMING POOL	YES COMMERCIAL	- SPACE HEATING OF UREENHOUSE	HEATING OF Setimating POOL	YES YES UNUSED	HELDREAT I DN
	FOUR SPRING VONTS	LEQUED IN STOPE, PAST USE: WINING	THO SPRING VENTS	X-RAY DIFFNACTION ANALYSIS INCIONTED SILFLOODS SINTER NITH SWE CALCIUM CONSUNTE AND -MORPHOUS WITEN AL	TNO SPRING VENTS, SEVERAL SEEPS	FIVE SPRING VENTS, SEVERAL	NIXED NITH SPRING WATER	X-RAY DIFFNACTION ANALYSIS SINTEN SILICIOUS SINTEN	Mater Piped Adross River Daglining With Spring Dragsedaki			FJUG VENTS AND NAMEROUS
	1992 CHETACEOUS ORMUTTIC HOOK	DRIFACEOUS BRANITIC ROOK	1135 CRETACEOUS PRIMITIC ADOX	OREFACENUS GRANTIC RUCK	56 CREINCEOUS (RAMITIC ROOK	1892 DRETAREDUS GRANITIC KOOK	502 DHET MEEDUS GANNITIC POOK	757 DRETACEDUS BRANITIC ROOM	3 DEETACEOUS DAMITIC ROCK	3 DRETAGEOUS GRAVITIC ROOK	56 CHETACEOUS COMMITTIC ACCO	454 DRETALEOUS CHANTIC ROOK
	THIN SPHINGS 44 DE 2452015	STOPE N 5 6N SE 35MBC15	NAW SPRINGS RESAT 64 SE 5AUCTS	DANKKIN CHEK M S INCCIS BN 5E 1NCCIS	HOT SPRIMES CAMPASOUND BN 5E 640415	SIDDOR 35 NB S H HEITOC - 265-	CONDER M 5 BIL 5E IDAUDIS	DONLAY RANCH H S BN 3L 1050013	GRIMES PASS H S BN 36 100AA1S	NAM HODGES N 5 BN 5E 11AGB15	BINE FLAT N S BN 6E INDAIS	PHNE FLAT # 5 BN 6E INDE15

QOMMA BRANCH STREET SAME	annan mayaa madaanna faa madaanaa ay ahaa ahaa ahaa ahaa ahaa ahaa a	Deposition	A	
Spring/Well (dent)fication Number & Name	Dis- charge (1/min) Aquifer Age and Rock Type Structure	Remarks Gas Geoustates Present Use	Aqui- Veil Surt. for* Depth Temp. Temp. Potential Use Based on Best Estima (m) (°C) (°C) Surtace Tempersture** Subsurface Temp	te of Trace
		Boise County (cont'd.)		
		· · · · · · · · · · · · · · · · · · ·		
DEER H S 9N 3E 25BAC1S	113 DRETAGEOUS GRANITIC ROOK	STRONG SULFUR ODOR; X-RAY YES BATHING DIFFRACTION ANALYSIS INDICATED AMORPHOUS MATERIAL AND SILICIOUS SINTER	80 139 POWER GENERATION FREEZE DRYING	YES 44.0922 ROSS, 1971 116.0516
HAVEN LODGE H S 9N BE 31AAC15	302 CRETACEOUS GRANITIC ROCK	TEMPERATURE REPORTED TO YES SPACE HEATING HAVE INGREASED 5,5 DEGREES C IN THE LAST EIGHT YEARS	64 APPLE DEHYDRATION	44.0773 ROSS, 1971 115.5525
KIRKHAM H S 9N 8E 32CAB1S	151 TERTIARY GRANITIC ROCK	THO MAIN SPRING VENTS AND YES YES RECREATION NUMEROUS SEEPS; TEMPERATURE RANGE 48-65 DEGREES C; SULFUR QOOR	65 79 ANIMAL HUSBANDRY PEACH DEHYDRAT	10N YES 44.0718 ROSS, 1971 - 115.5425
WARM SPRINGS CRK, H S ION 4E 33C8015	5677 CRETACEOUS GRANITIC ROCK	FOUR SPRING VENTS; X-RAY YES SPACE HEATING DIFFRACTION ANALYSIS OF GREENHOUSES INDICATED ANORPHOUS MATERIAL AND SILICIOUS SINTER	75 REFRIGERATION (LOWER , TEMPERATORE LIMIT)	44.1539 R055, 1971 115.9929
BONNEVILLE H S 10N 10E 3180CTS	1374 CRETACEOUS GRANITIC ROCK, SILICIFIED IN PLACES	EIGHT SPRING VENTS AND YES YES RECREATION NUMEROUS SEEPS; SLIGHT SULFUR ODOR; TEMPERATUE RANGE 68-85 DEGREES C	85 142 BEET SUGAR PRO	CESSING YES 44,1572 WARING, 1965 115,3140
SACAJAWEA H S . ION LIE 3TAADIS	113 TERTIARY GRANITIC ROCK	THO MAIN SPRING VENTS AND UNUSED NUMEROUS SEEPS; TEMPERATURE RANGE 52-58 DEGREES C; SULFUR ODOR	67 GANE BIRD HATCHERY	. 44,1602 R055, 1971 115,1769
GRANDJEAN H S ION 11E 32BAD15	TERTIARY GRANITIC ROCKS (7)	TEMPERATURE NOT FIELD RECREATION CHECKED	0	44.1596 115.1674
		Bonneville County		
FALL CREEK MINERAL SPG, IN 43E 80CD15	264 QUATERNARY ALLUVIUM WITH NORTHMEST TRAVERTINE DEPOSITS NEAR TREADING FAULT PALEOZOIC LIMESTONE	SPRING VENTS EXTENDING YES YES ALONG OREEK INTO SECTION & AND 17, SULFUR ODOR; TEMPERATURE RANGE Z3-25 D EGREES C	25 42 CATFISH FARMING SEEDLING CONTR	ERS YES 43.4250 JOBIN AND 111.4140 SHROEDER, 1964
RICHARD PIGGOT WELL 2N 39E 30ADC1		DOMESTIC	20 HEATING AND COOLING WITH NEAT PUMP	43.4761 111.9065
BROCKHAN CREEK W S 25 425 2600015	49		35 DE-ICING HIGHBAY	YES 43.2095 111.4645

ىر الرحية أن في المجتمع أن توريغ المراجع برايد. من الرحية أن في المحتوية المحت

のないであるのである

ALPINE H 5 25 46E 19CAD15 94 QUATERNART ALLIVIUM NEAR TERTIARY SELICIC YOLCANICS SPRING IS NOW SHOPP 37 #1 BIODEGRADATION MALE DEMYSRET LOSS Butte County LEWIS ROTHWELL WELL 3N 25E 32CDC1 PLEISTOCENE BASALT DRILLER'S COS AFAILABLE STOCK WATERING 109 43 75 GREENHOUSE AND SOIL REFRIGERATION (LOWER YE5 43.5401 MITCHELL AND 113.5087 YOLNE, 1973 WARNING TEMPERATURE LIMIT) HARVEY WALKER WELL 3N 27E 9AAB1 NOT FIELD CHECKED STOCK WATERING 182 40 43,6093 113.2384 DRILLER'S LOG AVAILABLE; DRIGINALLY OF LLED TO 259 METERS IN RESEARCH OF COOLER BUTTE CITY WELL 3N 27E 9ABB1 473 PLEISTOCENE BASALT AND SEDIMENTS PUBLIC SUPPLY YES 43.6087 MITCHELL ND 113.2436 YOLNE, 1973 144 35 52 BIODEGRADIATION MUSHROOM GROWING KATER-TEMPERATURE INCREASED BUTTE CITY WELL 473 PLEISTOCENE BASALT AND PUBLIC SUPPLY 152 33 FERMENATION 43.6086 MITCHELL AND 113.2441 YOUNG 1973 3N 27E 9A882 SEDIMENTS 1 -267 Camas County ī NUMEROUS SPREING VENTS TEMPERATURE RANGE 60-67 DEGREES C; #CSO KNOWN AS HOT SPRINGS RANCH 719 QUATERNARY ALLUYIUM NEAR PLEISTOGENE BASALT AND CRETACEOUS GRANITIC ROCK NORTHWEST YE5 DOMESTIC WARDROP H S 64 91 APPLE DEHYDRATION YES 43.3632 #4_TDM, 1962 114,9319 PASTEURIZATION 1N 13E 32ABB1S TRENDING FAULT FIVE SPRING NENTS AND NUMEROUS SEE 5, TEMPERATURE RANGE 44-55 75 CRETACEOUS GRANTIC ROCKS NEAR CONTACT WITH OLIGOCENE SILICIC VOLCANIC ROCKS YES 43.4232 WALTON, 1962 114.6266 ELK CREEK H S IN 15E 14ADAIS YES UNUSED 52 94 BALNEDLOGICAL BATH SAUNA DEGREES C . BAUMGARTNER H S 3N 12E 7DCD15 75 CRETACEOUS GRANITIC ROCKS SLIGHT SULFUF ODOR RECREATION & SEEDLING CONTEERS YES 43+6025 RDSS, 1971 115+0704 44 SWIMMING POOL . LIGHTFOOT H S 3N 13E 7DCA1S SEVERAL SPRIME VENTS; TEMPERATURE RAMSE 49-62 UNUSED LAUNDRY USE YES 43.6054 GARC 4, 1976 114.9492 (S. E INSPECTION) 189 CRETACEOUS GRANITIC ROCKS 56 DEGREES C UNUSED 67 PASTEURIZING 43+6023 HOUSEMAN H S 3N 13E 7DCC1S 114.9516 43,5762 R085, 1971 114,8299 18 TERTLARY DIKES IN ORETACEOUS GRANITIC ROCKS PREISHS 3N 14E 1900B1S UNUSED 41 STOCK WATERING

						وينبع المحمد الفصيعة المحيدة بمردية		3.102/merill		marianalianagiananiiane anathiopiaise	
	Spring/Kell identification Number & Name	Dis- charge (1/min) Aquifar Age and Rock Type	Geologic Structure	Renarks	Deposition SIII- Dar- bon- ceous ates	Present Use	Aqu Weil Surf. te DapthTemp.Tem (m) (°C) (°C	x+1	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	Reterence
					Canas Coun	ty (cont'd.)		•			
	WORSWICK H S 3N 14E 28CAAIS	1763 ORETACEOUS BRANITIC ROOK		SEVERAL SPRING VENTS; GRANITIC ROCK SILICIFIED I PLACES; POSSIBLE INTER- SECTION OF FAULTS	YES YES N	-	82 93	PASTEURIZATION	SAUNA	YES 43,5646 UMPI 114,7975 ~	LEBY, 1913
	BIG SMOKEY N S 4N 14E 12BAA1S	37 CRETACEOUS GRANITIC ROCKS		NOT FIELD CHECKED; SEVERAL SPRING VENTS; REPORTED BY ROSS, 1971		unused .	O			43.7010 ROSS 114.7360	5, 1971
	SKILLERN H S AN 14E 2900C15	757				USED	60	ANIMAL HUSBANDRY		43.6470 114.8156	
>	SHEEP H S IS 12E 16CABIS	QUATERNARY ALLUVIUM			1	unused .	44 73	BALNEOLOGICAL BATH	APPLE DEHYDRATION	YES 43.3338 ROSS 115.0395	i, 1971
5	WOLF H S 15 12E 160BA1S	196 QUATERNARY ALLUVIUM			· •	unused	45 57	BALNEOLOGICAL BATH	•	YES 43.J346 ROSS 115.0440	., 1 9 71
	KEITH STROM WELL IS 12E 310BC1	QUATERNARY ALLUVIUM		FLOWING MELL		UNUSED	121 25 51	FERMENTATION	GREENHOUSE	YES 43.2892 WALT 115.0850	ON, 1962
	LEE BARRON WELL #1 15 13E 220001			UNABLE TO VERIFY TEMPER- ATURE; WELL NOT IN USE AT TIME OF INSPECTION		inused	57 26 92	FISH FARMING	BL ANCH I NG	YES 43.3142 114.9084	
	SUN VALLEY RANCHES WELL 15 13E 22DCC1	4542 QUATERNARY ALLUVIUM		DRILLER'S LOG AVAILABLE		IRR IG AT LON	140 25	DE-ICING ROADWAYS		43.3139 LOG, 114.8992	1977
	LEE BARRON WELL #2 IS IJE 270081	QUATERNARY ALLUVIUM		DRILLER'S LOG AVAILABLE	ĩ	NUSED	37 35	Mushroom Growing		YES 43.3016 WALT 114.9092	ON, 1962
	LEE SARRON WELL \$3 15 136 2700001	189 QUATERHARY ALLUVIUM		FLOWING WELL; DRILLER'S LOS AVAILABLE	; ,	MISED	120 45 79	SEEDLING CONTRACT	PASTEURIZED MILK PROCESS	YES 43,3071 MITO	H≦LI, }976

15 136 Z7COEI

-268-

AVAILABLE

114 9004

BARRON'S H 5 15 13E 34BCB1S	75 QUATERNARY ALLUYIUM NEAR TERTIARY SILICIC VOLCANIC ROCKS	; ;		DOMESTIC	75 95 DEHYDRATION	BLANCHING	YES 43,2939 ROSS, 1971 114,9007
LEE BARRON WELL #4 15 13E 34BCC1	37 QUATERNARY ALLUVIUM NEAR TERTIARY SILICIG YOLCANIC ROCKS	2	DRILLER'S LOG AVAILABLE FLOWING WELL	HEAT ING GREENHOUSE	18 72 · REFRIGERATION (LOMER TEMPERATURE LIMIT)		YES 43.292: ROSS, 1971 114.9093
FAIRFIELD CITY WELL 15 14E 908A1 2			NOT FIELD DIECKED		65 2l		YES 43.,5493 114,7965
- MORMON RESERVOIR W 25 14E 1788615	S ·		UNABLE TO VERIFY; REPORTED WARM; SUBMERAGED IN MORMON RESERVOIR		٥	~	43.2545 114.8293
				Canyon County			
H, NAITO HELL IN 24 30881	1885 PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT (?)	DRILLER'S LOG AVAILABLE	IRRIGATION	117 20 55 HEAT PUMP FOR HEATING COOLING	; AND BALINEDLOGICAL BATHS	YES 43.4520 SAV.AGE, 1958 116.5699
- GORDON TIEGS NELL IN 24 4DBA1	4163 PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	208 22 HEATING AND COOLING W HEAT PUMP	il Ter	43.4512 SAVAGE, 1958 . 116.5776
LEONARD TIEGS WELL #1 IN 2# 5ADD1	PLIOCENE AND PLEISTOCENE SEDIMENTS		OBSERVATION WELL; DRILLER'S LOG AVAILABLE	(RR)GATION	219 22 40 FISH FARMING AND HATC	SHING STOCK WATERING	YES 43,4524 5AVAGE, 1958 116,5941
LEONARD TIEGS WELL #2 IN 2W 50841	3596 PLIOCENE AND PLEISTOCENE SEDIMENTS	: •	DRILLER'S LOG AVAILABLE	(RR) GAT I ON	152 25 CATFISH FARMING		43,4503 SAVAGE, 1958 116,6069
LEONARD TIEGS WELL #3 IN 24 6ADD3	PLIOCENE AND PLEISTOCENE SEDIMENTS			IRLIGATION	28 26 FLSH FARMING AND HATC	HING .	43,4525 SAVAGE, 1958 116,6140
DON TIEGS WELL #1 IN 2W 8ABC1	PLIOCENE AND PLEISTOCENE SEDIMENTS	- -		1RR (GAT 10N	137 21 HEATING AND COOLING 1 HEAT PUMP	d; TH	YES 43,4414 SAVAGE, 1958 116,60%
DON TIEGS WELL #2 IN 24 BACCI	3028 PLIOCENE AND PLEISTOCENE SEDIMENTS			RR (GAT ION	162 22 43 HEATING AND COOLING N HEAT PUMP	IT SEEDLING CONTERS	YES 43,4379 SAV AGE, 1958 116,6018
RON GASSIDY WELL IN 2W 9AAAI	75 PLIOCENE AND PLEISTOCENE SEDIMENTS	: .	SULFUR ODOR; DRILLER'S LOG AVAILABLE	DOMESTIC	173 Z2 FISH FARMING AND NATO	20%G	43.6464 SAVAGE, 1958 116.5733

Spring/Well Identification Number & Name	Dîs- charge (J∕⊭io)	Aquifer Age and Rock Type	Geologic Structure	Ramar ks	Deposition Sili- Car- Sas ceous ates		Aqu Well Surf. fe Depth Temp. Tem (m) (°C) (°C	et i	Potential Use Based on Best Estimate of Subsurface Temperature***	Chen/Latitude Trace & Acal Longitude	Reference
					<u>Canyon</u> Cou	inty (cont'd	.)				
MARK HARKER HELL IN 24 12ADD1	8706	PLIOCENE AND PLEISTOCENE SEDIMENTS				IRRIGATION	152 22	HEATING AND COOLING WITH HEAT PUMP	:	43.4386 116.5141	SAYAGE, 1958
STEVE TIEGS WELL IN 2W 17DGC1		PLIOCENE AND PLEISTOCENE SEDIMENTS				IPRIGATION	121 20	HEATING AND COOLING WITH HEAT PUMP		43.4173 116.6000	SAVAGE, 1958
J. Sheral Johnston Mell IN 29 220ad1	1703	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVATLABLE		IRRIGATION	146 21	fish faâming and hatching		43.4063 116.5548	SAVAGE, 1958
NELBA STTY WELL IN 2W 36CAA1	757	PLIOCENE AND PLEISTOCENE SEDIMENTS			. *	PUBLIC SUPPLY	182 24	FISH FARMING AND HATCHING		YES 43.3780 116.5250	SAVAGE, 1958
M.O. CLEMENTS WELL #1 IN 3W 13DAB1	6132	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRRIGATION	185 20	HEATING AND COOLING WITH HEAT PLANP		43.4224 C 116.6359	5AVAGE, 1958
VES SCHOBER WELL ZN ZW 4DCA)	•	PLIOCENE AND PLEISTOCENE SEDIMENTS				IRLIGATION	112 22	fish farming and hatching		43.5345 146.5776	5AYAGE, 1958
IOHN TUCKER WELL ZN ZW 9BCA1	2649	PLIOCENE AND PLEISTOCENE SED IMENTS		DRILLER'S LOG AVAILASLE		IRR I GAT I ON	184 27	HEATING AND COOLING WITH HEAT PUMP	•	43.5281 : 116.5871	5AYAGE, 1958
ALE GETTER WELL 2N ZW 280981		• 3			ſ	DOMESTIC	9 9 20	FERMENTÁTION		43.48 09 (116 . 5808 (DENMAN, 1979 SITE INSPECTION
RCIL BOWMAN R WELL 2N 2W 34BDA1	2649	PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT	SULFUR ODOR; DRILLER'S LO AVAILABLE	G	IRRIGATION	96 49	BALNEOLOGICAL BATHS		YES 43.4698 S 116.5629	AYAGE, 1958
NY NÉIDER ELL∳1 2N 2W 34CAD1		PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT (7)	DRILLER'S LOS AVAILABLE		REGATION	97 29	DE-1CING ROADWAYS		43-4630 5 116-5637	AYAGE, 1955

-270-

	JAY NEIDER WELL #2 24 2W 34CCB1		PLIOCENE AND PLEISTOCENE SEDIMENTS	NORTHMEST TRENDING FAULT (?)		SRRIGATION	109 20	FISH FARMING AND HATCHING	43,462 116,5717	SAVAGE, 1950
	JAY NEIDER WELL #3 2N 2N 34CDA1		PLICENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT (?)	DRILLER'S LOG AVAILABLE	, DOMESTIC	91 20	HEATING AND COOLING WITH HEAT PLMP	43,4622 116,5632	SAVAGE, 1956
	DALE GROSS WELL 2N 2H 34DAA1	3406	PLIQCENE AND PLEISTOCENE SEDIMENTS	NORTHWEST TRENDING FAULT	DRILLER'S LOG AVAILABLE	* IRRIGATION	95 29	DE-ICING ROADWAYS	43.4661 116.5536	SAVAGE, 1958
	CANNON FARMS WELL #1 2N 3W 22ACD1	7570	PLICCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	136 26	CATFISH FARMING	43.4 956 516.6782	SAVAGE, 1955
	CANINON FARMS WELL #2 2N 3W 22BOD1	6813	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	195 31	TROPICAL FISH FARMING	43.4955 116.6872	SAVAGE, 1951
1	CANNON FARMS WELL #3 2N 3W 220001	7570	PLIDCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	223 28	CATFISH FARMING	43.4883 116.6870	SAVAGE, 1550
271-	CANNON FARMS WELL #4 2N 3W 220CC1	6813	PLICCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	RRIGATION	185 30	BI ODEGRADATION	43.4887 116.6898	SAVAGE, 1958
	CANNON FARMS WELL \$5 2N 3W 220001		PLIOCENE AND PLEISTOCENE SEDIMENTS		OBSERVATION WELL .	IRRIGATION	183 30 5 6	5 DE-ICING HIGHWAYS SEE	DLING CONIFERS YES 43,4884 116,6769	SAVASE, 1958
	CANNON FARMS WELL 176 2N 3W 23ACD1		PLICCENE AND PLEISTOCENE SEDIMENTS	•		1RRIGATION	29	TROPICAL FISH FARMING	43_496 8 116,6575	SAVAGE, 1958
	CANNON FARMS WELL #7 2N 3K 23CDC1	1676	5 PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOS AVAILABLE	DOMESTIC	110 20 110 20	Heating and cooling with Heat pump	43.4884 116.6564	SAV 435, 7555
	CANNON FARMS WELL #8 2N 3W 26AAC1	-	PLIQCENE AND PLEISTOCENE SEDIMENTS			IRRIGATION.	20	HEATING AND COOLING WITH HEAT PUMP	43,4856 116,6573	SAY 435, 1958
	CANNON FARMS WELL #9 2N 3W 2788A1	295	2 PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE	IRRIGATION	194 30	FISH FARMING AND NATCHING	45.4875 116.6867	SAV 425. 1955

and the second second

the low of

ing in the second s Second 2011

i.

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

6722) 5 500	Spring/Well Identification Number & Name	Dis- charge (1/min)	Aquifer Age and Rock Type	Gaologic Structure	Romarks Romarks	Ceposition Car- Gas ceous ates	Present Use	Aq Well Surf. f Depth Temp. Tem (m) (9C) (9	s**	Potential Use Sased on Best Estimate of Subsurface Temperaturef+*	Chem/ Latitude Trace & Anai, Longitude	Reference
						<u>Canyon</u> Cou	untg (cont'd	. ,		-		
WÉL	ERT SUN FARMS L 3W 340BA1		PLIQCENE AND PLEISTOCENE SEDIMENTS		¢		IRRIGATION	155 29	CATELSH FARMING		43*4663 116*6784	SAVAGE, 1958
WEL.	RLES PENTLERS L 3W 3509A1		PLICCENE AND PLE+STOCENE SEDIMENTS				IRRIGATION	167 29	DE-ICING HIGHWAY	• .	43,4657 116,6625	SAY AGE, 1958
SCH	HO STATE KOL-HOSP. 2W (4ADA)	4088	PLIQCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		IRRIGATION	170 20	HEATING AND COOLING WITH HEAT PUMP		43.6004 116.5329	SAY AGE, 1958
	19A YWELL ∦1 I 29√17BC81	·	PLIOCENE AND PLEISTOCENE SEDIMENTS				PUBLIC SUPPLY	198 25	FISH FARMING AND HATCHING		43,6002 116,6115	SAV AGE, 1958
NAM CIT 3N	NPA FY WELL ∳2 (2₩ 238CA)	1892	PLIOCENE AND PLEISTOCENE SEDIMENTS			·	IRRIGATION	121 31	QUACULTURE		43,5853 116,5487	SAY AGE, 1958
WE1	APEOT FEEDLOT		PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLED FOR OIL EXPLORATI ARTESIAN FLOW	ION	WASTE WATER	929 40	seedling conifers		43.6706 116.7360	SAYAGE, 1958
PAP	LOWELL MUNC. RK U 3W 28AAB1	567	PLIOCENE AND PLEISTOCENE SEDIMENTS		ORILLER'S LOG AVAILABLE; ARTESIAN FLOM; BACK FILLI TO 67 METERS	ED	PUBLIC USE	121 29	54 FESH FARMING AND HATCHING	s swithen ing pool	YES 43.6624 116.6963	SAYAGE, 1958
WEL	DWELL CITY LL N 3W 35AB01	3028	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE; FLOWING WELL		PUBLIC USE	130 20	36 HEATING AND COOLING WITH HEAT PUMP	DE-ICING ROADNAYS	YES 43.6453 116.6589	SAVAGE, 1958
WEI	DRGE WRIGHT LL N 4W 4DCC1	68	PLIOCENE AND PLETSTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE; FLOWING WELL		IREIGATION	128 21	fish farking and hatchin	3	43.7058 116.8209	SAY AGE, 1958
WF I	SSELL FIVECOLT LL N 4W 50801		PLICCENE AND PLEISTOCENE SEDIMENTS				DONESTIC	153 25	FISH FARMING AND HATCHIN	3	43.7 113 116.6376	SAY AGE, 1958

-272-

ikini, angali Di dina angali		sinera)											nin New Sector Distances
	PARMA CITY WELL #1 5N 5W 4DCD1	227)	PLICCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		PLALIC USE	126 27		FIRITOTING ON DELIGING		43.777 116.936	SemalEE, 1958
	PARMA CITY WELL #2 5N SW 9ADB1	454 2	PLIOCENE AND PLEISTOCENE SEDIMENTS		DRILLER'S LOG AVAILABLE		PUBLIC SUPPLY	96 20		CATFLER FARMING		43.786 116.934	LOG, 1957
	PARNA ICE WELL 3N 5W 9CAB1		PLICENE NO PLEISTOCONE SEDIMENTS				CD+++EPC AL	_20		FISH FARMING AND HATCHING		43.7843 116.9455	SADIAGE, 1958
	CLEO SWAWNE WELL 15 ZW 17ACA1		PLICCENE AND PLEISTOCENE SEDIMENTS				00%ESTIC	22		FISH FARMING AND HATCHING		43.3414 116.5990 14	SAV AGE, 1958
						<u>Cari</u>	bou County						
	BLACKFOOT RIVER W 5 55 40E 14BCD15	3	QUATERNARY BASALT				urkused	26	52	BIODEGRADATION	grain-hay drying	YES 42+986 111-7434	5 ₩ITCHELL, 1976 1
27	WILSON LAKE W S 55 41E GABBIS				NOT FIELD CHECKED; REPORTED TO HAVE SEVERAL SPRING VENTS		UNUSED	30				43.010 111.696	
ω 1	BLACKFOOT RESERVOIR 65 41E 1ADCIS	567	. QUATERNARY TUFA	•	THOTAN LAND	-	STOOK WATERING	22	40	HEATING AND COOLING WITH HEAT PUMP	SOIL WARMING	YES 42.928(111.5924	. METCHELL, 1976
	OURRAL OREEK WELL #1 65 41E 198AA1	598	PERMIAN PHOSPHATIC SHALE		TRAVERTINE DEPOSITS	YES		39 42	45	BALNEDLOGICAL BATH	SEEDLING CONTEERS	YES 42.889 111.6984	2 WITCHELL, 1976
	CORRAL CREEK WELL #2 65 41E 198AB1	397	PERMIAN PHOSPHATIC SHALE		TRAYERINE DEPOSITS	YES		36 41	48	SEEDLING CONIFERS	grain-hay drying	YES 42,889 111,701	MITCHELL, 1976
	CORRAL OREEK WELL \$3 65 41E 19BACI	79	PERMIAN PHOSPHATIC SHALE		TRAVERTINE DEPOSITS	YES		56 41	48	STOCK WATERING	Mushroom growing	YES 42,8880 111,700	MITCHELL, 1976
	CORRAL OREEK WELL \$4 65 41E 19BAD)		PERMIAN PHOSPHATIC SHALE		TRAVERTINE DEPOSITS	YES		64 36	48	FERMENATATION	BALNEOLOGICAL BATHS	YES 42,888 111,698	2 ¥1TCHELL, 1976 3
	HENRY W S 65 42E 80BA1S		QUATERNARY TUFA				UNUSED	30				42.910 111.555	5 MITCHELL, 1976

ļ

T.

ldentitication 🕻	Dis∽ charge (1∕mir	a f	Seclogic Structure	Remarks (Sili-bo	àř-	Weif Depthi (m) (Aqu urf fe antp Tem °C) (°C	r* P. Potential lise Based on	Potential Use Based on Best Estimate of Subsurface Tamperature***	Chen/ Latītude Trace L Anai. Longitude	Reference
					Caribou	<u>County</u> (cont'e	(,)					
PORTNEUF RIVER W S 75 38E 26C8D15		QUATERNARY BASALT (?)				:		34	AQUACULTURE	:	YES 42.7809 111.9827 -	M(TCHELL, 1976
STEAMBOAT SPRINGS 95 41E 100AA1S				SUBMERGED IN SODA POINT RESERVOIR				31			42.6554 111.6433	
SODA SPRINGS GEYSER 95 41E 12ADD1S	. 2	3 HOLOCENE TRAVERTINE NEAR PLEISTOCENE BASALT	NORTHWEST TRENDING THRUST FAULT		YES YI	s ssia County		28 54	FERMENTATION	grain-hay drying	YES 42,6570 111,6040	ARMSTRONG, 1969
J.T. ROBINSON WELL .95 28E 33DACI	44 28) PRE-TERTIARY (7) LIMESTONE		DRILLER'S LOG AVA;LABLE		HRRIGATION	259	25	FISH FARMING AND HATCHING			WALKER AND OTHERS, 1970
RAINBOW RANCH WELL #1 105 26E 28C81	9841	QUATERNARY BASALT AND PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVARLABLE		IRRIGATION	- 249	37	HYOROPONICS		42.5845 113.3917	WALKER AND OTHERS, 1970
RAINBOW RANCH WELL #2 105 26E 20BA1		PLIQCENE SHEICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE		IRRIGATION	190	24	CATFISH FARMING		42.5816 113.3999	VON LINDERN, 1978 (SITE INSPECTION)
SIX S RANCH WELL /1 115 25E 110CA1	4088	PRECAMBRIAN QUARTZITE	NORTH TRENDING FAULT	DRILLER'S LOG AVANLABLE; FLOWING WELL; SULFUE ODOR	YES YE	S IRRIGATION	136	55 B	9 LAUNDRY USES	SAUNA	YES 42.4768 113.5068	CROSTHWAITE, 1957
MARSH OREEK H S 115 25E 220001S	37	PLICCENE SILICIC VOLCANIC ROCKS	FAULT .			UNUSED		40	SOIL WARMING		42.446 6 113.5234	ROSS, 1971
MARSH GULLY H 5 115 25E 22DAD15	37	PLICCENE SILICIC VOLCANIC - ROCKS	FAULT .			UNUSED	-	41	SOIL MARMING		42,4490 113,5112	ROSS,1971
51X 5 RANCH WELL #2 115 244 20000;1	4220)				(RE) GATION		33 4	9 AQUAQULTURE	SEEDLING CONTRERS	YES 42,4454 113-4356	

£

TES 4244900 GROWING VES 424998 MULKER NO	42.5009 MALKER MU 113.3185 OTHER, 1970	HEAT PLUP FOR FEATING AND DOBLINE 115.3256 GTHERS, 1970	CATFISH FARMING FRUIT ALL YELL ALLE YES 42.2200 KALKER ALL DEMORATION 113.2970 OTHERS, 1970	42.425 R055, 1971	42.415 113.2149	HEAT PURP FOR HEATING AND COOLING 113,2540 OTHERS, 1970	42.3273 R055, 1971 114.1960	42,4101 R055, 1971	HEAT FULPF FOR HEATING AND 000LING 114.2062 R055, 1971	42-4106 ROSS, 1571	FISH FRANING AND HATCHING CONTRACT (127) 42.4123 4205, 1971
176 37 51 DE-LGINS	100 28 BLODESRADATION	42	23 75	182 Z4 FERMENTATION	24 FERMENTATION	8	- 298 35 ผูบควบเาบศะ	237 37 HIDROGONICS	21	4 Z7 BIODEGRADATION	12
n na serie de la companya de la comp	NO LLYS (SAL)	1884 (GAT LON 348	JERICATION 351	91	LECTION	DOMESTIC: NO 113 STOCK KATERING	IRRIGATION 23	1581 GAT LON	IRRIGATION 320	1681GAT10N 274	LIRELEATED W 213
TIM BUILD BU	2 °	WAILABLE THER'S LOS				סאורדנאנצ רסט אאיוראמינ		,		· .	
OW LIVE PICTURE	22 QUATERNARY ALLUVIUM AND TERTIARY SEDIMENTARY ROOKS	5299 QUATEBURRY SEDIMENTARY	9512 QUATERNARY SEDIMENTARY ROCKS			22 TERTIARY SEDIMENTARY ROCKS (1)	QUATERNARY ALLUVINA ABOVE PLIOSENE SILICIC VOLCANIC ROCKS	QUATERNARY ALLUVIUM ABOVE PLIOGENE SILIFIC VOLGANIC ROCKS	QUATERNARY ALLUVIUM ABOVE PLIODENE SILICIC VOLCANIC POCKS	ALLUVIUM ABOVE PLIOCENE ALLUVIUM ABOVE PLIOCENE	QUATERNARY ALLUVIUM ABOVE
CHITCHFIELD 4428 LAND L CHT 115 26E 288C91	CAY RANCH WELL (1) 2 115 275 SABAT	GAY RUNCH WELL #2 529 115 27E SHABT	RUBY FARMS WELL 951 115 27E 34D0B1	STOKER WELL 115 27E 3640A1	115 26E 310001	0.M. JOHNSON WELL 115 28E 34CDD1	Galen Meyers Well #1 125 196 20001	Galen meyers mell 12 125 196 - 2000 i	ROBERT PETERSON WELL FI 125 19E 238C1	ROBERT PETERSON WELL Z 125 196 38001	ROBERT PETERSON

-275-

-276-

.

·

÷

4

1

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

	Spring/Well Identification Number & Name	Dis- charge (1/min)) Aquiter Age and Rock Type	Geolog ⁱ lc Structure	Remainks	Deposition Car- Cas ceous ates	((Aqu ¥ell Surf, fe Depth Temp-Tem (m) (°C) (°C	p. Potential Use Based on	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	Raterence
			-			Cassia Cou	nty (cont'd.	, ,				
	R00ERT PETERSON WELL #4 125 19E 30881		QUATERNARY ALLUVIUN ABOYE PLIOCENE SILICIC VOLCANIC ROCKS				IRR I GAT I ON	266 <i>2</i> 7	DE-1CING		42,4104 114,2169 **	ROSS, 1971
	CREED CONCERN INC. /1 125 19E 508D1	2210	QUATERNARY ALLUVIUM ABOVE PLIOCEME SILICIC VOLCANIC ROCKS				IRRIGATION	· 304 36	FERMENTATION		42.4119 114.4443	ROSS, 1971
	CREED CONCERN INC. #2 125 196 6ADO1	2555	QUATERNARY ALLUVIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE		IRRIGATION	*304 3 7	AQUACULTURE		42,4109 114,2674	ROSS, 1971
>	CREED CONCERN INC. #3 125 19E 6CAD1	2725	QUATERNARY ALLUYIUM ABOVE PLIDCENE SILICIC VOLCANIC ROCKS		• •		IRRIGATION	162 27	FISH FARMING AND HATCHING	5	42.4070 114.2768	ROSS, 1971
7	CLARENCE DAGGNER WELL 12S 19E 6CDC1		QUATERNARY ALLUVIUM ABOVE PLIOCENE SILICIC VOLCANIC ROCKS				IRRIGATION	335 34	DE-ICING ROADWAYS		42,40 50 1 1 4, 2789	RDSS, 1971
	CREED CONCERN INC. #4 125 19E 60001	27 25	PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE		RRIGATION	234 38	HYDROPIONI CS		42,4034 114,2681	VON LINDERN, 1978 (SITE INSPECTION)
	THURBHAN WILLIS WELL 125 196 7ACA1	5621	PLIOCENE SILICIC VOLCANIC ROCKS AND SEDIMENTS (?)		DRILLER'S LOG AVAILABLE		IRRIGATION .	243 34	8100EGRADATION		42.3989 114.2724	LOG, 1960
	K.C. BARLOW WELL 125 20E 20001	4542	QUATERNARY BASALT AND PLICOENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE		FRIGATION .	272 24	Catfish farming		42.4029 114.0694	LOG, 1960
	NOUNTAIN YIEW RANCH INC. 125 206 30AC1	4542	PLIOCENE SEDIMENTARY ROCKS AND PALEOZOIC LIMESTONE	• •	DRILLER'S LOG AVAILABLE		IRRIGATION	204 32	GRAIN-HAY DRYING		42.4068 114.1008	A. PIPER, 1923
	JOE SAYAGE MELL 125 206 SCOB1		PALEOZOIC LIMESTONE (?)		ORILLER'S LOG AVAILABLE	·	FREIGATION	274 23	FISH FARMING AND HATCHING		42,4049 114_1455	LOG, 1974

12,4412 LB6, 1975	42,4103 ROSS, 1971 114,1685	42.4073 8055, 1971	42,3957 R055, 1971	42.3885 LOC, 1976	42.4156 1.06, 1966	42.14.78 LDS, 1975	42.3471 L06, 1975 114.0095	42,5336 L06, 1962 114.0290	42,2355 R055, 1971 113,9704	42,3370 L00, 1957 113,8705	42,4009 LOS, 1962
SEDLING CAN FERS	BIODEGRADATION	SNINGER HOCHISTN	reat frue for reating and cooling	CATFISH FARMING	stist fabring and matching	HYDROPORI CS	CATFLSH FARMING	LEAT PLAP FOR HEATING AND COOLING	CATFI SI FARNING	CATFISH FARMING	FISH FROMING AND HATCHING
137 41	198 37	25 122	467 28	8	306 27	6£ 585	548 21	76 21	6 5	342 24	ZZ 621
SPACE HEATING	IREA GATION	IRS (GATION	IRRIGATION	IRRIGATION	I REFLOAT FON	IRRIGATION	HRRIGATION	STOCK NO IRRIGATION	IRRIGATION	1981 GAT I ON	STOCK MATERING
BRILLER'S LOG ANALMALE				DRILLER'S LOG AVALLABLE	061ורנאי 20 איוראוב	DRITTER'S LOG AVALLABLE	אורדפאני וסט אאוראפור אנוררפאני	באווובאיל נוס איאונשנוב	DRILLER'S LOG AVAILABLE	DRILLER'S LOG WAILUBLE	DRILLER'S LOG AVALLABLE
ANTENNEY ALLIVIA ADDNIG	RANTERNARY ALLIVIUM ABOVE PLIOCENE SILLICIC VOLCMIC PLIOCENE SILLICIC VOLCMIC	ZZOG DIVLEBRNKK YTTRAINN	CULTERVIRY ALLUYINI ABOVE TERTIARY SILICIC VOLCANIC ROCK	870 PLIOGENE SILLICIC VOLCANIC ROCKS AND PALEOZOIC SEDIMENTARY ROCKS	PLIOCENE SILICIC VOLONIC	3633 PLIODENE SILICIO VOLGANIO BOCKS AND PALEDZOIC SEDIMENTARY ROCKS	QUATERNARY ALLUVINA AND PLIOCENE SILICIC VOLCANIC ROXS	6813 PALEOZOIC SEDIMENTARY ROCKS	1135 QUATERNARY ALLUVIUM ABOVE PLIOCENE SILICIO VOLCANIC ROCKS	5677 QUATERNARY ALLUVIUM ABOVE PLIODENE SILICIC VOLONIC ROCKS	QUATERWAY SEDIMENTARY ROOS ABOVE FLICEDKE SILICIE VOLGMIG ROOKS
COLINER BROTHERS MELL / I 1_25 20E 68AC1	COINER BROTHERS WELL #2 12S 20E 68CC1	HHROLD SAVAGE WELL 2 125 20E 60AC1	125 206 11ADCI	1.25 206 1.2003 WELL	GERALD CONVED WELL	122 216 210081 NTTEA NETT	Steven clarkk well 128 216 280081	SINON BIVER NELL #1	susan Bavera melil 128 21E Saadut	MDERSON BROTHERS NE 5677 1.55 2.25 JAACCI	125 226 120001 NILFORD ACIGLEY WELL

Identification c	Dis- harge 1/min)	Aquifer Age and Rock Type	üsologic Structure	Remarks	Sili-	tion Dar- bon- ates	Present Use	Well Su DepthIa (m) (^Q			Potentiz: Use Baser on Best Estimate of Subsurface Temperature	Dien/ Trace Atal.		Â6; €.9.1.2×
					<u>Cassi</u>	<u>a Co</u> u	inty (cont'd	•)						
VARD CHATBURN WELL 125 25E 48001	3482	QUATERNARY SEDIMENTARY ROCKS ABOVE PLIOCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE			IRR IGAT I ON	191	21	HEATING AND COOLING WITH HEAT PUMP			42.4087 113.5406	LOG, 1955
K.C. BARLOW WELL 13S 21E 580C1	13248	QUATERNARY SEDIMENTARY ROCKS		ORILLER'S LOG AVAILABLE			IRRIGATION	213	ź	FISH FARMING AND HATCHI	NG		42,3245 114.0267	LOG, 19%
SIMON BAXER WELL ∳2 13S 21E 6AAD1							IRRIGATION	104	22	CATFISH FARMING			42,5269 114,0251	
LYLE DURFEE WELL 135 25E 228081	681	QUATERNARY ALLUVIUM	FAULT (?)		. •		IRFIGATION	156	32	AQUADULTURE		YE	5 42.3209 113.5300	R055, 1771
WARD SPRING 135 26E 17CCD15 -	18	PRE-TERTIARY UNDIFFERENTIATED ROCKS	FAULT				IRLIGATION		20	34 CATFISH FARMING	AQU ACULTURE	ΥĘ	5 42.2360 113.4463	ROSS, '÷'''
RICE SPRING 135 265 1700815	18	PRE-TERTIARY UNDIFFERENTIATED ROCKS	·				IRRIGATION		22	HEAT PUMP FOR HEATING A DOOLING	NC		42,2867 113.4448	ROS5, =~
LESTER THOMPSON WELL 135 27E ZADCI		PALEOZOIC SEDIMENTARY ROCKS	5 .	DRILLER'S LOG AVAILABLE			IRRIGATION	336	26	Fish Farming and hatchi	NG .		42.3215 113,2598	106, 125
NELSON WELL 145 21E 34AAC1	3406	PRE-TERTIARY UNDIFFERENTIATED ROCKS					unused	299	43	STOOK WATERING			42,3667 113,9730	RÓSS, 1971
145 216 348001	189	PLICCENE SILICIC VOLCANIC. RODAS		FLOWING WELL; SULFUR ODOR		YES	UNUSED		40	97 HYDROPONICS	- 58000	YE	£ 42.1648 113.9535	PIPER 900
DAKLEY H 5 145 225 2700515	37	PRE-TERTIARI QUARTZITE		SLIGHT SULFUR 2009	(7)		RECREATION		48	92 GRAIN-HAI ORYING	8_*>>1NG	۴Ξ	∃ 42.1737 113.8609	₹ <u>.51</u> - 1

				a and a second second second	dire for the					
	SEARS SPRING 145 25E 680815	662 PRE-TERTIARY FAULT UNDIFFERENTIATED ROCKS		STOCK WATERING		29 X	9 FISH FARMING AND HATCHING	HTDROPONICS	YES 42, 2403 113, 5875	ROSS, 1971
	GRIFFETH-XIGHT WELL 145 26E 10001	378	DRILLED FOR GAS AND DIL EXPLORATION	•	1981	77 8-	4 APPLE DEHYDRATION	PASTEURIZATION	YES 42.2350 113.3649	
	harold wight well 145 25e 100a1		•			63 121	ANTMAL HUSBANDRY	HIGH ENERGY PROCESSING OF KILN LUMBER	YES 42.2297 113.3647	
	HAROLD WARD WELL #1 14S Z7E 180001	3399				24 104	DE-1CING ROADWAYS	WASHING AND DRYING OF WOOL	YES 42.1986 113:0530	
	HEPWORTH WELL 145 27E 18CCD1	11810 QUATERNARY ALLUVIUM AND SEDIMENTARY ROCKS	DRILLER'S LOG AVAILABLE	IRRIGATION	184	27	CATFISH FARMING		42.1937 113.3508	MITCHELL AND YOUNG, 1973
4	JACK PIERCÈ WELL 145 28E 18AAA)	56 QUATERNARY ALLUVIUM AND SEDIMENTARY ROCKS	DRILLER'S LOG AVAILABLE	STOCK WATERING	176	21	HEAT PUMP FOR HEATING AND COOLING		42.1366 113.1470	LOG, 1966
279-	OLD CAKLEY CANAL WELL #1 155 21E 4AC81			UNUSED	268 -	31	FERMENTATION		42.1540 124-0000	
	OLD OAKLEY CANEI WELL #2 155 21E 4ACB2			UNUSED	259	32	QUACULTURE		42,1540 113,9998	-
	OAKLEY CANAL CO. WELL #1 155 218 13DAB1	QUATERNARY ALLUVUIM, TERIIARY SEDIMENTARY AND PLIOCENE SILICIC VOLCANIC ROCKS	DRILLER'S LOG AVAILABLE	IRRIGATION	- 356	37	HTDROPONICS		42,1192 113,9362	PIPER, 1923
	OAKLEY CANAL CO. WELL \$2 155 218 2484Å1	QUATERNARY ALLUVUIH, TERTIARY SEDIMENTARY AND PLIOCENE SILICIC VOLGANIC ROCKS	DRILLER'S LOG AVAILABLE	IRR I GAT I ON	326	Z7	Fish Farming and hatching		42.1121 113.9415	
	MORRIS MITCHELL WELL #1 155 21E 250DA1			DOMESTIC AND SPACE HEATING		41 97	STOCK WATERING	BLANCHING	42.0869 113.9414	
	MORRIS MITCHELL WELL #2			IRRIGATION AND SPACE HEATING	79 2	47 94	SEEDLING CONFERS	BLANCHING	YES 42.0870 113.9882	

WELL #2 155 21E 25DCC1

-280-

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Well Identification Number & Name	Dis- charge (1/min) Aquiter Age and Rock Type Structure	Depos Sill- Remarks Gas ceous	Car-	Aqui- Nelli Surt, for * DepthTamp,Temp, Potential Use Based on (m) (*C) (*C) Surtace Temperature**	Best Estimate of	Chen/latitude frace & Nal.longituda Raference
		<u>Cassi</u>	a County (cont'd.	· · ·		
DURFEE SPRING 155 24E 22DACIS	189 QUATERNARY ALLUYIUM	• ^	UNUSED	39 DE-ICING		42.1015 R055, 1971 113.6319
HAROLD WARD WELL #2 15S 24E 22DDB1	378 QUATERNARY ALLUYIUM		DOMESTIC.	152 32 47 AQUADULTURE	SEEDLING CONIFERS	~ YES 42.0991 ROSS, 1971 113.6311
GRAPE DREEK ¥ S 155 25E 290CA1S	75	MARSH AREA	STOCK KATERING	5 22 FISH FARMING AND HATCHING		42.0854 113.5639
BLM 155 25E 29QDC1		NOT FIELD DHECKED FOR THIS REPORT	·	60 128 POULTRY HATCHERY	EVAPORATION AND DRYSTALLIZATION OF SALT	YES 42.0828 113.5623
BLM 155 26E 12ACC1	PLIOCENE SEDIMENTS	NOT FIELD CHECKEE FOR THIS REPORT; DRILLER'S LOG AVAILABLE	TESTING	26 30 CATE(SH FARMING	ALFALFA DEHYDRATION	YES 42.1335 LOG, 1974 113-3620
EGLG THERMAL #5 155 26E 2200A		RAFT RIVER PROJECT; "SURFACE TOMPERATURE IS 125 DEGREES C	TESTING	1476 CANNING AND PRESERVING		42,0993 113,5793
BLM 155 265 220001	1892	NOT FIELD OMEOXES FOR THIS REPORT; DRILLER'S LOG AVAILABLE	TESTING	442 28 103 FRUIT AND VEGETABLE DEHYDRATION	WASHING AND DRYING OF WOOL	YES 42.0971 LOG, 1974 113.3939
IVAN DARRINGTON WELL #1 155 266 23AAA1		SURFACE TOMPERATURE REACHES 140 DEGREES C AFTER BEING PUMPED FOR A PERIOD OF TIME		85 149 PASTEURIZATION	BEET SUGAR PROCESSING	YE5 42,1104 113,3737
IVAN DARRINGTON WELL #2 195 26E 23ABO1	208 PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	109 28 FISH FARMING AND HATCHING		42.1087 NACE MO OTHERS, 113.3782 1961
FRAZIER H S WELL 155 266 2388C1	219	FLOMING WELL; SC. KGAT SULFUR (?) DOR, NOT FIELD DAEDLED FOR THIS REPORT	TES	126 93 146 BLANCHING	CORN PRODUCTS (STRUP,01L)	YES 42.1079 113.3910

	EC4G MAIN THERMAL ME 155 26E 23CAA1			ANT RIVER MEDIECT; "SUPPACE TEMPERATURE IS 146 DEGREES C	EXPERIMENTAL POWER GENERATOR	1520			Content of			42.1030 713.3639	· · .		
	EG&G THERMAL WELL #4 155 26E 23CDA1			RAFT RIVER PROJECT	EXPERIMENTAL HONITORING WELL	1613	62		PASTEURIZATION			42.1333 113.3836			
	IYAN DARRINGTON WELL #3 ISS 26E 23DD01	3406	PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	79	40		soil warking			42.0984 113.3775	NACE 1961		ERS,
	GARY CROOK WELL 155 26E 2300C1	2271	PLEISTOCENE SEDIMENTS	FLOWING WELL; PAST USE: (7) YES NARRIAT ORAMK'S GREENHOUSE		164	90	139	BARLEY MALTING PROCESS	POTATOE DEHYDRATION	YES	42.0970 113.3772	NACE 1961	AND 27H	ERS,
	IVAN DARRINGTON WELL #4 155 26E 230001		PLIQCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	IRRIGATION	78	33	94	FERMENTATION	PASTEURIZATION	YES	* 42.0969 113.3735	LOG,	1967	
-2	LANCE UDY WELL 155 26E 24BAD1	3399			DOMESTIC		32	94	BIODEGRADATION	FRIUT NO VESETABLE DEHYDRATION	YES	42.1077 113.3644			
281-	REID STUART 155 26E 24BC81			-	IRRIGATION		24		FERMENTATION			42.1074 113.3725			
	IVAN DARRINGTON WELL 155 26E 240001			NOT FIELD QHEOXED FOR THIS REPORT	-		31	96	DE-ICING ROADWAYS	BARLEY MALTING PROCESS	TES	42.0968 113.3629			
	BLM WELL 155 26E 25ACA1	832		NOT FIELD CHECKED FOR THIS REPORT; DRILLER'S LOG AVAILABLE	TESTING	241	30	102	AQUACULTURE	WASHING AND DRYING OF WOOL	YES	42.0923 113.3588	LOG,	1974	·
	EG&G THERMAL WELL 155 26E 25ADAI	378		RAFT RIVER PROJECT; *SURFACE THEMPERATURE IS 12) DEGREES C	TESTING	i 158			BLANCHING			42.0920 113.3536			
	EG&G THERMAL WELL 155 26E 25BDA1			RAF: RIVER PROJECT; *SURFACE THEMPERATURE IS 144 DEGREES C	MONTORING				CURN PRODUCTS (SYRUP, OIL)			42,0927 13,3648			
	THOROUGHBRED W S 165 19E 28BBA1S		TERTIARY SILICIC VOLCANIC NOCKS	NOT FIELD CHECKED; REPORTED BY ROSS, 1971, SEVERAL SPRING VENTS	unused		21		FISH FARMING			42.0114 113.2392	ROSS,	197	

; Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/mell Identitication Number & Name	Dis- charge (1/min) Aguifer Age and Rock Typ:	Geologic Structure	Rsm2r Ks	Deposition Car Sill- bon- Ses ceous ates Present Use	Aqui Well Surt ter Depth Temp, Temp, (m) (°C) (°C)	Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal, Longitude Reference
				<u>Cassia County</u> (cont'd.,				<i>,</i>
BUM WELL 165 26E 588A1	1514		NOT FIELD CHECKED FOR THI REPORT; DRILLER'S LOG AVAILABLE	\$ TESTING	85 40 94	SOIL WARNING	BLANCH ING	YES 42.0671 L0G, 1970 113.4469
				<u>Clark Co</u> unty				પ
UIDYH5∦1 9N 33E 288С1S	946 PRE-TERTIARY LIMESTONE		PROCESSING FERTILIZER AND DOMESTIC USE, TRAVERTINE DEPOSITION NEAR SPRING VENTS	NOUSTRY	51 66	MAY DRYING	APPLE DEMORATION	YES 44.1438 ROSS, 1977 112,5527
WILSON BROS, WELL 9N 33E 20DC1	3785 PRE-TERTIARY LIMESTONE		PROCESSING PERTILIZER AND DOMESTIC USE: PAST USE: RECREATION	INDUSTRY	213 50	SPACE HEATING		44.1316 ROSS, 197 112.5475
£10Y K S WELL 10∾ 33£ 350001	6813 PRE-TERTIARY LIMESTONE	FAULT -	PROCESSING FERTILIZER AND DOMESTIC USE	INDUSTRY	125 58 68	GREENHOUSE	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YE5 44.1459 ROSS, 197: 112,5532
LIDY H S #2 10∾ 335 3500015	189 PRE-TERTLARY LIMESTONE	FAULT	PROCESSING FERTILIZER AND DOMESTIC USE		51	Laundry uses		44.1453 ROSS, 197: 112.5537
WARM SPRINGS 11N 32E 25AACIS	3406 PRE-TERTEARY LIMESTONE		TWO SPRING YENTS; X-RAY DIFFRACTION ANALYSIS INDICATED TRAVERTINE	YES STOOK WATERING	29 57	CATFISH FARMING	GREENHOUSE SPACE HEATING	YES 44.2565 ROSS, 1977 112.6591
BIG SPRINGS 13N 32E 15BCB15	189 PRE-TERTIARY LIMESTONE			UNUSED	23	FISH FARMING AND HATCHING		44.4538 RD55, 197 112.6958
				Custer County	-			
BOWERY H S 7N 17E GABAIS	PALEOZOIC SEDIMENTARY ROC	×S	NOT FIELD OVECKED	UNUSED	43 89	SEEDLING CONTFERS	BL ANCHI NG	YES 43.9707 ISOHNO NC 114.4949 OTHERS, 1974
PIERSON 5 \$ BK 142 2708015	416 QUARTZ MONZONITE		TEMPERATURE RANGE 37-43 DEGREES S: THE SPRING VEN	TS UNUSED	43 73	BALNEÛL OG I CAL BATH	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 43.9905 TSO A. A. 114.7996 OTHERS, 113

-282-

PALEOZOIC SECTIMENTARY 400K -There Fra NAT LET SHE ्रद् STOOK WATERING 51 64 MUSHROOM GROWING SULFUR ODOR APPLE DEHYDRATION PALEOZOIC SEDIMENTARY ROOK HEATING OF POOL QUATERNARY ALLUVIUM 37 HYDROPON ICS AND HOUSE

EDWER HOWERY M S

WEST PASS H S 6N 17E 328CA15

ROZALYS SMITH

WELL #1 9N 14E 18CAD1

CAPPED UNUSED 44.1013 DENMAN, 1978 114.8620 (SITE INSPECTION) ROZALYS SHITH QUATERNARY ALLUVIUM 50 GREENHOUSE WELL #2 9N 14E 19ABA1 REPORTED BY AGS.S; NOT FIELD DECKED 44.1010 ROSS, 1971 'YES UNUSED STOCK WATERING CRETACEOUS GRAVITIC ROCK 41 ROZALYS H S 9N 14E 19BAA15 114.8650

NUMEROUS SEEPS; TEMPERATURE YES RANGE 30-41 DEGREES C; SIX SPRING YENTS; SULFUR ODOR QUATERNARY ALLUVIUM NEAR ORETACEOUS GRANITIC FOOK NORTHEAST TRENDING FAULT YES UNUSED 41 47 SOIL WARMING YES 44,2242 CHOATE, 1962 STANLEY H S 378 GRAIN-HAY DRYING 10N 13E 3CA815 114,9285

1 28 TEMPERATURE RANGE 32-50 DEGREES C; EIGAT SPRING VENTS; SULFUR (DOR; X-RAY YES UNUSED SLATE OREEK H S ION 16E 30BAD1S 681 PALEOZOIC ARGILLITE YES 91 SPACE HEATING BLANCHING YES 44,1709 ROSS, 1937 50 ω I 114.6242 DIFFRACTION ANALYSIS INDICATED SULFATE (GYPSUM) 757 QUATERNARY ALLUYIUM NEAR NUMEROUS SEEPS UNUSED 58 93 GREENHOUSE YES 44.2453 ROSS, 1971 ELKHORN H S 11N 13E 36BAA1S BARLEY MALTING PROCESS CRETACEOUS GRANITIC ROCK 114.8850 YES YES UNUSED BASIN CREEK H 5 11N 14E 21DDB15 227 CRETACEOUS GRANITIC ROCK TWO SPRING YEATS 35 73 AQUACULTURE ONION DEHYDRATION YES 44.2637 ROSS, 1971 114-8163

YES YES FOREST CAMPGROUND 376 CRETACEOUS QUARTZ MONZONITE HOTBED HEATING 44.2643 DENMAN, 1978 114.8104 (SITE INSPECTION) CAMPGROUND H S 11N 14E 22CCA1S 56

TEMPERATURE NOT VARIFIED UNUSED YES 44.2600 DENMAN, 1978 114.8383 (SITE INSPECTION) 1135 CRETACEOUS QUARTZ MONZONITE 38 75 HYDROPONICS MORMON BEND H S 11N 14E 29AAB1S PASTEURIZED MILK PROCESS TEMPERATURE RANGE 61-76 DEGREES C; MLMEROUS SPRING YENTS; SLIGHT SULFUR ODOR; X-RAY DIFFRACTION ANALYSIS YES YES YES RECREATION SUNBEAM H S 1135 CRETACEOUS QUARTZ MONZONITE 76 104 REFRIGERATION (LOWER CANNING AND PRESERVING YES 44, 2679 TSCHANZ AND 114, 7478 OTHERS, 1974 TEMPERATURE LIMITI 11N 15E 19CAB15

AVAILABLE

100 A 100 A 100

45.9741 TSOHALZ AND 114.4986 OTHERS, 1974

YES 43.9818 TSCHANZ AND 114.4858 OTHERS, 1974

44.1065 DENMAN, 1978

114.8654 (SITE INSPECTION)

1 - Carlos and the second s

an Alfred

2

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

	Dis- charge (1/min) Aquifer Age and Rock Type	Geologic tructure Remarks Gas	Deposition Car- Sill-bon- ceous ates Present Use (m	oth Temp. Temp. Potential Use Based on	Potentiai Use Based on Best Estimate of Trace & Subsurface Temperature*** Anal. Longitude	Reference
			Custer County (cont'd.)			
EAST ROBINSON BAR H S 11N 15E 26CCC1S	ORETACEOUS QUARTZ MONZONITE	POUR SPRING VENTS; TEMPERATURE RANGE 38-42 DEGREES C	z	42 SEEDLING CONIFERS	44, 2481 114,6730 વ	TSCHANZ AND OTHERS, 1974
ROBINSON BAR H S 11N 15E 2700C1S	264 CRETACEOUS QUARTZ MONZONITE	SPRING PIPED TO POOL	RECREATION	55 97 GRAIN-HAY DRYING	WASHING AND DRYING OF WOOL YES 44.2456 114.5764	TSCHANZ AND OTHERS, 1974
WARM SPRINGS OREEK H S LIN 15E 34ADC1S	18 CRETACEOUS QUARTZ MONZONITE	SLIGHT SULFUR COOR	UNUSED	52 BALNEOLOGICAL BATHS	44.2410 114.6762	JOHNSON, 1978 (SITE INSPECTION)
SULLIVAN H S Jin 17e 27B0D15	757 CONTACT BETWEEN OLIGOCENE SILICIC VOLCANIC ROCKS AND PALEOZOIC DOLOMITE AND ARGILLITE	SULFUR COOR	YES YES RECREATION	41 99 SEEDLING CONTFERS	PASTEURIZATION YES 44,254 114,6427	RD55, 1937
BARNEY W S 11N 25E 23CAB15	643 QUATERNARY ALLUVIUM NEAR TERTIARY SILICIC VOLCANIC ROCK AND PRE-TERTIARY UNDIFFERENTIATED		STOCK WATERING	28 59 AQUACULTURE	ANIMAL HUSBANDRY YES 44.2689 113.4491	ROSS, 1971
CAPE HORN W S 12N 11E 2CDB1S	37 CRETADEDUS GRANITIC ROCK	SNAKE RIVER BOY SCOUT COUNCIL CAMP; THREE SPRING VENTS	RECREATION	35 FERMENTATION	44.3979 115,1491	ROSS, 1971
LITTLE ANTELOPE FLAT W S 12N ZOE 10CBD1S	1135 QUATERNARY ALLUVIUM NEAR TERTIARY SILICIC VOLCANICS	SEVERAL SPRING VENTS	UNUSED	34 HTDROPONICS	44,3817 114,0673	ROSS, 1971
SULPHUR OREEK H S 14N 11E 16 15	15 CRETACEOUS GRANITIC ROCKS	REPORTED WARM; NOT FIELD CHECKED	UNUSED	0	44.5846 115.0719	ROSS, 1971
- BEARDSLEY H S 14N 19E 23D0D1S		SEVERAL SPRING VENTS; ALSO KNOWN AS CHALLIS HOT SPRINGS	RECREAT) ON	43 BALMEOLOGICAL BATH	44.5230 114.1733	RDSS, 1971
BILL JOHNSTON WELL 14N 19E 340AA1	189	FLOWING WELL; DRIGINALLY DRILLED TO APPROXIMATELY 2236 WETERS, CAVED BACK TO PRESENT DEPTH	IRRIGATION	914 40 60 SOIL WARMING	GAME BIRD HATCHERY YES 44,4994 314,1944	

-284-

yind (difference)	4	94	PRE-TERTIARY	SULFUR ODOR	рана Л. К. с. – – – – – – – – – – – – – – – – – –	IMUSED		1999 (1997) 1999 (1997) 16	MUSHROOM GREENING		44.631 114.734	5 s s€7t
	UPPER LOON OREEK H S 15N 14E 1000C15	18	PRE-TERTIARY UNDIFFERENTIATED ROCK	NUMEROUS SPRING VENTS; TENPERATURE RANGE 45-63 DEGREES C; SULFUR ODOR		UNUSED	6	3	GREENHOUSE		44.644 114.738	7 8055, 197 9
	SUNFLOWER FLAT H S 16N 12E 800B1S			NOT FIELD CHECKED; REPORTED BY ROSS, 1971		UNUSED		13 71	SEEDLING CONTERS	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 44.733 115.017	1 6
	THOMAS OREEK. RANCH H S 36N 12E 17DAD1S	257	TERTIARY GRANITIC ROCKS	NOT FIELD CHECKED; REPORTED BY RDSS, 1971		UNUSED	4	13 90	BALNEOLOGICAL BATHS	BLANCHING	YES 44.721 115.015	2 RDSS, '5'' 0
	LOWER LOON CREEK H S 17N 14E 1960B1S	30	TERTIARY GRANITIC ROCKS	NOT FIELD CHECKED; REPORTED BY ROSS		UNUSED	4	19 73	SPACE HEATING	APPLE DEMICRATION	YES 44.798 114.604	8 ROSS, 15"` 7
					Elmo	pre County						
- 2	LANDA H 5 2N 10E 5AADIS			THO SPRING VENTS AND SEVERAL SEEPS	YES	SPACE HEATING		60	game bird hatchery	, , .	43,54 115,281	15 7
285-	BRIDGE H S 2N IDE SACAIS		QUATERNARY ALLUYIUM OVERLYING CRETACEOUS GRANITIC ROCK	SIX SPRING VENTS; TEMPERATURE RANGE 52-59 DEGREES C	YES			59	GREENHOUSE		43-53 15-28	98 ROSS, \{"\ 22
	TOWNE OREEK W S 2N 10E 19ABA1S							24	HEATING AND COOLING WITH HEAT PUMP		43.49 115.30	96 76
	RATTLESNAKE H S 3N 7E 7DCA1S			NOT FIELD CHECKED		เหมระอ		56	GREENHOUSE		43.60 115.66	55 56
	CHARLES BAKER WELL 3N 10E 10ABAT	26	CRETACEOUS GRANITIC ROCKS	DRILLER'S LOG AVAILABLE; NATER IS PUMPED FROM APPROX 49 M TO 90 M WHERE IT IS NARMED SEVERAL DEGREES ON THE HOT ROCKS THEN RETURNED		SPACE HEATING	89	43	SEEDLING CONSFERS		YES 43.61 115.24	50 ROSS, -, -, -, -, -, -, -, -, -, -, -, -, -,
	PARADISE H S 3N 10E 33ACDIS	37	QUATERNARY ALLUVIUM OVERLAYING GRETAGEOUS GRANITIC ROCK		YES	SPACE HEATING		52 7.	3 LAUNDRY USE	NION DEPECTATION	YES 43.55 115.26	27 ROSS, :\$ ⁻ : 70
	PARADISE H S WELL 3N 10E 33B0B1	75	CRETACEOUS GRANITIC ROCKS	DRILLER'S LOG AVAILABLE; FLOWING WELL		UNUSED	57	38	HYDROPONICS		43,55 115,27	46 ROSS, :≑^; 40

Thermal Springs and Wells in Idaho (continued)	
se of	
se and Potential U	
Present Us	
. Geologic Environment,	
Location	
Basic Data Table 4. I	

1 1	ļ										
Latitude Langitude Reierence		43.7175 R055, 1971 115.5629	.≪ 43.6966 ≈055, 1971 115.6607	43.6962 ROSS, 1971 115.6576	43.6372 ROSS, 1971 115.1295	45.7595 R055, 1971 115.5602	43.7553 жалыс, 1965 15.5709	43.7243 #055, 1974 115.6041	43.7242 RUSS, 1971 115.6040	43.724 3 ROSS, 1971 115.604:	43.7785 62.877, 1475 113.4860 15'11 15.95(11.95)
Portantial _se 35sec on Chenvil Best Earinate of Subsurface Tence*** Anol.		-			-	-	SUGARBEET -LLP DEHYCRATION YES 43.7553 WARING, 1965	-	-		m
Potential Use Based on Surface fengerature**		4) - 4	STOCK MATERING	GNE BIRD HATCHERY	GREENHOUSE	SM1 MATMA LIOS	PASTEURIZED MILK PROCESS SUC	REFUSENTION (LONGR TEMPERATURE LINIT)	ANI MAL HUSBHADRY	SAIN-HAY DRYING	SH I NORS MORE STW
Aqui- Surt fer- th Temp. Temp. (CC) (CC)		o	- a	19 .	5	42	76 125	ŝ	55	5	20
rijon var - 2901- 2001- Present Use (m)	Limore County (cont'd.)	LIMUSED	UNUSED	STOCK WATERING	REDREATION	INUISED	- INUSED	UNISED	UNUSED .	YES YES BATHING	
Jeyos Remarks Jas ceous	Elmore	REPORTED BY ASSS, 1971; UNABLE TO LOCATE 1971;		TNO SPRING VENTS; KINIMAL YES DEPOSITION OF SILICIOUS SINTER	THREE SPAING, YENTS AND MUMEROUS SEEPS	SEEPAGE	TEMERATURE RANJE 65-75 YES YES DEGREES C; THIRTEEN SPRING VENTS	TEMPERATURE RANSE 54-68 DEGREES C, THREE SPRING VENTS	spring years	TEMPERATURE RANJE 41-54 DEGREES C; TWC SPRING VENTS	NI 5 H 72254 H 2 MARAN 2012 - 2017 - 2019 2013 - 2019 2013 - 2019
Geologic Structure		REPORTEL UNAGLE		TNO SPR. DEPOSIT SINTER	THREE S	SOME SEE	TEMPERA DEGREESE VENTS	TEMPERA DEGRECS VENTS	FOUR SM	TEMPERA DEGREEA	и 1973 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
i Bls- charge Aquiter Åge and Rock Typs		CRETACEOUS GRANITIC ROCKS	18 CRETACEDUS GRANITIC ROCKS	205 OREFACEOUS GRAWITIC PROCKS	OWATERNAT ALLYVIN KEAR OTE ACENS RANTIC ROCK WITH TEATLARY DIKE	7 CRETACEOUS GRAVITIC FOCKS	1321 DRETADEDUS GRANITIC ROOKS	378 CRETACEOUS GRAVITIC ROCKS	2649 DRETACEOUS GRANITIC ROCKS	151 OPETADEOUS GRANITIC ROCKS	757 ONETACEOUS GRANITIC NOON
Spring/Weil Di Laenin ication cha Number & Name (1)		BASSET H S 4N 7E TAABIS	REED H S ADCIS	SHEEP CREEK BRIDGE H S 4N 7E 8/3815	Willow C45EK H S 4N 11E 3403815	PDOL CREEK H S 5N 7E 24ADIS	NINPAEYER H S 5N 7E 248001S	VAUCHN SPRING 5N 7E 260AB15	SMITH CABIN H 5 5N 7E 3400815	LOFTUS H S 5N 7E 34DBA1S	BROW OREEV. H S SM BE TOULT IS

-286-

					1				
	STRAIDATT OREEK H S 58: 88: (2ABU1S		VESTION AND VESTION VES SEFER, ACTIVE REPORTING FORMING SILLICIDUS SINTER, NOT FIELD OPEORED	UNUSED	67	WPLE DEMORATION	w	15,444	a Sector sector and a sector
	GRANTE DREK H S 58 96 540A1S	75 LAETACEOUS GAMITIC ROCK	FOUR SPATING YEARS AND SEVENUL SEEPS	UNUSED	N.	GREENHOUSES		43.8053 86.400, 1978 115.4006 (SITE NGSECTION)	مىمىر <u>ەن يەرىمىرەرى</u>
	DUTCH FRANK IS H S 5N 9E 78BA15	1135 ORETACEOUS GRANITIC ROCK	NAMERAUS SPRING VENTS; YES YES YES TEMPERATURE RANGE 3D-65 DEGREES C, AUTIVE DEPOSITION OF SILLICIOUS SINTER	YES UNUSED	65 72	2 APPLE DEHYDRATION	REFRIGERATION (LOWER TEMERATION (LOWER TEMERATINE LIMIT)	YES 43.7894 WAR(NE, 1965 115.4344	ann
	MEATHERBY MILL WELL 6N 9E 35ACA1	CRETACEOUS (BRANITIC ROCK	FLOWING MELL, DEPTH REPORTED BY ROSS, 1971	RECREATION	535 30	-FERICITATION		45.870 RDS5, 1971	
	MENTHERRY H S 6N 10E 30CC915	189 ORETACEOUS GAMILTIC ROCK	SEEPASE TYPE SRING	LINUSED	ে ধ	SALIN-HAY DRY INS		43,6255 R055, 1971	
2	QUEENS RIVER H 5 6N 11E 30ADB15		NOT FIELD OFECKED; REPORTED		o			- 43.8314 43.8314 115.1915	
87-	ATLANTA H. S GN 11E 35DAD1S	378 CRETACEOUS CRANTTIC ROCK	TEMPERATURE RAMES 43-60 YES DEPRESS CARTINE RAMES 43-60 DEPRESS CARTINE REPR	UNUSED	60 76	TEPPERATION (LOWER		43,8116 R055, 1971	a an
	CHATTANOOSA H S 6N 11E 3508815	37 CRETACEDUS GRANITIC ROCK	SEVERAL SPRING VENTS ACC NUMEROUS SEEPS	UNUSED	о Б	LAUNDRY USES	·	45,0130 R055, 1971 115,1157	(an and the property of the pr
	LEGGIT CREEK H S 6N 12E 33BCB15	CRETACEOUS CRANITIC ROCK	THIS IS AN APPROXIMATE LICONTING, REPARTED IN THE IDAHO ENCYCLOPEEDIA, 1938	NNRED	0			43, 8168 115, 0459	in Angeleria
	BIG D RANCH WELL 25 4E 288001	9463 PLEISTOZENE BASALTIC LAVA	DRILLER'S LOS AVAILABLE	I RRIGATION	365 27	DE- [CING		43.2223 YOUNS, 1977 115.9666	Mart Barr
	FRED HICKEY WELL 25 55 11 NODI	7210 PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	DRILLER'S LOS AVAILABLE	IRRIGATION	182	FISH FARMING		45.2665 YOUNG, 1977 115.6198	The service states and
	CHARLES COE MELL 25 56 22M01	567 PLEISTOCENE BASALTIC LAVA	WATER TEMPERATURE ELECTUARES BETHEEN 15-21 DEGREES C) DRILLER'S LOG AVALUBLE	DOMESTIC	132 21	HEATING AND COOLING NITH HEAT PLAP		43.2406 LOS, 1977 115.6576	
							•		

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Weil Identification Number & Name	Dis- charge (i/min)	Aquifer Age and Rock Type	Geologic Structure		Deposition Car- Sili- bon- Ceous ates	ור	Weii S⊔ DepthTe (m) [Գ		Potential Use Based on Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Tamperature***	Trace	Latituse & Longituse	Referance
_				E	lmore Cou	unty (cont'd.)	,						
JOHN MALOTA WELL 25 5E 23BBC1	757	PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE		DOMESTIC	128	21 77	FISH FARMING	OHION AND CARROT DEHYDRATION	YES	43.2403 115,8368	LOG, 1977
MICHAEL JACKSON WELL 35 6E 24DCB1	90	PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE		DOMESTIC		46 21	HEATING AND COOLING WITH HEAT PLANP			43.1442 115.6853	LOG, 1969
MOUNTAIN HOME CITY WELL 35 GE 26ADC1	6 056	PLEISTOCENE BASALTIC LAVA AND SEDIMENTS				PUBLIC SUPPLY		294 Z	BIODEGRADATION			43,1341 115,6989	YOUNG, 1977
RICHARD CHANDLER WELL 35 6E 358001		PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		DRILLER'S LOG AVAILABLE		REIGATION	134	20	HEATING AND COOLING HITH			43.1198 115.7142	LOG, 1972
ROBERT FORD WELL #1 35 7E 2ACA1		PLEISTOCENE BASALTIC LAVA AND SEDIMENTS		NOT PUMPING AT TIME OF DHECK; TEMPERATURE REPORTED BY ROSS, 1971; DRILLER'S LOG AVAILABLE		IRRIGATION	158	31	CATFISH FARMING			43,1939 115,5835	YOUNG, 1977
LONG TOM RANCH WELL \$1 35 7E 1AGA1		PLEISTOCENE BASALTIC ROCK AND SEDIMENTS				DOMESTIC .	53	20 56	FISH FARMING	GREENHOUSE SPACE REATING	YES	43,1945 115,5652	YOUNG, 1977
ROBERT FORD WELL #2 35 7E 2ACC1	37	PLEISTOCENE BASALTIC LAVA AND SEDIMENTS				DOMESTIC	152	21	HEATING AND COOLING WITH NEAT PUMP			43,1926 115,5856	YOUNG, 1977
DEL FOSTER WELL 35 7E 3ADD1	158	PLEISTOCENE BASALTIC ROCK ND SEDIMENTS		TEMPERATURE RANGE 29-35 DEGREES C; FLOWING WELL; DRILLER'S LOG AVAILABLE		STOOK WATERING	176	31	DE-1CING			43.1908 115.5982	LO3, 1977
LONG TOM RANCH WELL #2 35 8E 6CBC1	7570	PLEISTOCENE BASALTIC ROCK AND SEDIMENTS				IRIGATION	137	21	FISH FARMING AND HATCHIN			43.1886 115.5572	YOUNS, 1977
HOT SPRINGS 35 BE 1600015			FAJLT	DRIED OF WHEN WELL WAS DRIED IN OSSORIOSOMU		Det.		70				43-1554 115-5177	

									n na kalo in ji na ni	n na	
un 13.113 and an article	43.1146 DION NC BIFFIN,	43-1292 JOHNSA, 1978 115.3397 (SITE INSPECTION)	YES 43,1155 JOHNSON, 1938 115,3054 (SITE INSPECTION) *	43.0350 L06, 1976 116.0061	43,0666 YOUK, 1977	YES 43.0531 LCC, 1957 115.6150	43.0518 YOUNG, 1977 115.0160	43.0471 YOUNS, 1977 115.8233	43.0205 115.8065	45,0902 L05, 1977 115,7864	43-0360 LCG, 1967 115-6921
The second in the second s	FERENTIATION	POULTRY HATCHERY	137 MINAL HUSBAUDRY FREEZE ORTING	HEAT PLAP COLLING HITH	FISH FARMING	47 HEATING AND COOLING MITH SEEDLING CONFERS	DE-ICING	HENTING AND COOLING MITH	FERGENTATION	HEATING AND COOLING KITH HEAT RUMP	F154 FARMING
	STOCK WATERING 178 36		IRRIGATION 62	IRRIGATION 94 21	147 20	15416AT1ON 161 23	jercication 115 24	RRIGATION 122 21	PRIGATION 24	DOMESTIC 165 22	IRRIGATION 219 24
	SLIENT SULFUR COR, FLOWING	5	COVERED NED RIPED TO NEMBY	DRILLER'S LOS MAILABLE	BRILLER'S LOS MAILABLE	OBSETVATION MELL FOR GROUND MATER LÉVELS: DRILLER'S LOG AVALLABLE	ά,	DRITLER'S LOS AVAILVBLE	¥1	DRILLER'S LOS WAILABLE	NILLER'S LOG AVAILABLE
ZI44 PLOCENE NO PLEISTOCENE	113 PLIOCENE MO PLEISTOCENE SEDIMENTS	283 PLIDGENE SILICIC VOLCHUIC	PLOCENE SILICIC VOLCANIC	7570 PLEISTORENE BASALTIC LAVA	B\$16 PLEISTORENE BASALTIC LAVA AND SEDIMENTS	PLEISTOPONE BUSALTIC LAVA	- 6813 PLEISTOCENE ENSAUTIC LAVA AUD SEDIMENTS	AS PLEISTOCRE ENSALTIC LWA	7370	121 PLE ISTOCENE BASALTIC LAVA MD SEDIMENTS	10182 PLEISTOCENE BASALTIC LAVA MO SEDIMENTS
VELL PENN VELL JI BE SECADI	LESLIE BEAM MELL #2 35 BE 36CDA1	COYOTE H S JS 9E 2500B1S	LATTY H 5 35 10E 510DB15	JOHN DOBARON KELL 45 4E 52ACCI	PETE NIELSON MELL 4.5 ° 5E 19ABCI	ROBERT BRUCE WELL #1 #5 SE 25BBC1	ROBERT BRUCE WELL #2 45 55 26AND1	TERRY PETERNAN MELL	TERRY PETERNAN MELL 45 5E 36CAD1	HUGH HARDEN MELL	DAVE SPENCER HELL 1 45 GE 2590A1
					-28	9-					

Steal area

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (Continued)

Spring/Well Dis- lgentification.ctarge Number & Name (1/min) Aquifi	Geologic er Age and Rock Type - Structure	Remarks Gau	Deposition Car- Sill-bos- s ceous ates	Эс	Aqui sii Surf. fer pth Temp. Temp m) (°C) (°C)	- • • Potential Use Based on Surface Temperature**	Best Estimate of	Chem/ Latitude Irace & Mal. Longitude	Raterence
			Elmore Cour	ity (cont'd.)					
FRANK LUTZ WELL #1 9084 PLEIST 45 6E 310001 AND SE	OCENE BASALTIC LAVA DIMENTS	DRILLER'S LOG AVAILABLE	1	RELGATION	149 21	HEATING AND COOLING WITH HEAT PUMP		43-0268 115-7759	LOG, 1967
FRANK LUTZ WELL #2 1022 PLEIST 45 6E 320001 · AND SE	OCENE BASALTIC LAVA DIMENTS	DRILLER'S LOG AVAILABLE		REIGATION	126 21	FISH FARMING		¥2 43.0268 115.7746	LOG, 1969
RALPH MOORE WELL 11280 PLEIST 45 5E 35BCD1 AND SE	OCENE BASALTIC LÂVĂ DIMENTS	DRILLER'S LOG AVAILABLE	17	RR IGAT ION	l96 24	CATFISH FARMING		43. 0333 115.7119	LOG, 1972
RALPH YRAZABAL WELL 10220. 45 7E 988A1			1	RRIGATION	173 24	CATFISH FARMING		43.0967 115.6339	
BEVERLY OLSON WELL 45 7E 1980B1			if	REIGATION	- 184 23 63	HEATING AND CCO∟ING WITH NEAT PJMP	APPLE DEHYDRATION	YES 43.0647 115.6698	·
TOM GILL WELL 18926 PLIQCE 45 8E 1DBA1 SEDIME	NE AND PLEISTOCÈNE NTS	ORILLER'S LOG AVAILABLE; FLOWING WELL	If	REIGATION	438 58	GAME BIRD HATCHERY		43.1029 115.4465	LOG, 1961
PIPELINE WELL SEDIME 45 8E 3688A1	NTS	USED AS COOLANT FOR TURBINE DRILLER'S LOG AVAILABLE	i)	NDUSTRY .	580 43 101	SKINAING POOLS	WASHING AND DRYING OF WOOL	YES 43.0377 + 115.4576 +	RALSTON AND CHAPMAN, 1968
BILL DAVIS MELL 18926 PLIOCE 4S 9E BACA1 SEDIME	NE AND PLEISTOCENE NTS	DRILLER'S LOG AVAILABLE; FLOWING WELL	¢F	RIGATION	358 60 B2	GREENHOUSE	PASTEURIZATION	YES 43.0923 1 115.4073 0	RALSTON AND DHAPMAN, 1966
	NE SILICIC VOLCANIC	SULFUR ODOR; FLOWING WELL	15	RR) GATION	701 59 97	LAUNDRY USES	BLANCHING	YE5 42.9894 116.0762	YOUNG, 1972
MIKE WISSEL WELL #1 55 GE 24ANC:			×	≫∈sTic	124 20 -	HEATING AND COOLING WITH HEAT PONF		4⊊.978¢ 135.¢77≚	

DOMESTIC.

137

adhining an	HINT HIDSEL HELL #2 55 7E 164001	PLIGENE AND PLEISTOCHME SEDIMENTS		DOMESTIC	13-7 20 64	5 %15H yylaniyas	איזי איז איז איז איז איז איז איז איז איז	725 42.7947 YO 115.6244 YO	WMG, 1977
	CHARLES BOYD WELL 55 8E 348DC1	PLIOCENE AND PLEISTOCENE SEDIMENTS	DRY; REPORTED TEMPERATURE YES		34	QUAQULTURE		42,9465 YO 115,4934	KUNG, 1973
	RAY THOMPSON WELL SS IDE 25ACAI	49 PLIDCENE AND PLEISTUCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	00MEST I C	144 21	HEATING AND COOLING WITH NEAT PUMP		42.9625 L0 115.2098	G, 1973
	DANIEL HATCHER WELL 55 IOE 2820C1	378 PLEISTOCENE SEDIMENTS	SLIGHT SULFUR ODOR; FLOWING WELL	DOMESTIC	304 32 ·	HYDROPONICS		42.9617 RA 115.2770 CR	LSTON ANC A7MAN, 1968
	LLOYD KNIGHT WELL 55 IDE 28CABI	75 PLEISTOCENE SEDIMENTS	TEMPERATURE RANGES FROM 28-33 DEGREES C; FLOWING WELL; ORILLER'S LOG AVAILABLE	DOMESTIC	335 30	CATFISH FARMING		42.9594 ೬00 115₊2763	5, 1969
-2	MAGIC WEST DD. WELL 55 10E 32EDB1	PLIDCENE AND PLEISTOCENE SEDIMENTS		RECREATION	284 38 68	HYDROPONICS	APPLE DEHYDRATION	YES 42.9479 RA(115.2959 OH)	STON AND APMAN, 1968
291-	CHARLES ANDERSON WELL 55 TIE 7ACC1			DOMESTIC .	396 30 64	CATFISH FARMING	animal Husbandry	YES 43.0834 115.1926	
	UNION PACIFIC RR WELL 55 11E 70881	189 PLIOCENE NO PLEISTOCENE SEDIMENTS	DRILLER'S LOG AVAILABLE	DOMESTIC .	93 Z3	FISH FARMING		43.0027 RDS 115.2023	5, 1971
	RODNEY RUBERRY HELL 55 11E 188AD1	45	FLOWING WELL	DOMESTIC	132 23	HEATING AND COOLING WITH NEAT PUMP		42,9934 115,1959	
	DARRELL DRAKE WELL 55 11E 188CB1	18 PLEISTOCENE SEDIMENTS	ORILLER'S LOG AVAILABLE	00M€ STIC	73 27	CATFISH FARMING		42.9908 LOG 115.2010	,1969

130 24 ROBERT GRAHAM WELL 55 11E 19CCA1 71 PLEISTOCENE SEDIMENTS DRILLER'S LOG AVAILABLE DOMESTIC FISH FARMING 42.9695 LOG, 1974 115.2001 BLACK MESA FARM WELL 75 PLIOCENE AND PLEISTOCENE 65 10E 12CAA1 SEDIMENTS DRILLER'S LOG AVAILABLE DOMESTIC 301 30 CATFESH FARMING 42.9147 LOS, 1987 115.2147

1

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

fridar

Identification	Dís- charge (1/min)	Aquifer Age and Rock Type	Geologic Structure	Renarks Gr	Depos SILI- SCODUS	Car- bon- ates	C	ell Sur eptr Ter (m) (°t	n p. Ter	iui er mp C)	Potential Use Based on Surtace Temperature**	Best Estimate of	Trace	.atítude Ł_ongitude	Reference
					Fr	<u>ankli</u>	n <u>County</u>								
MOUND VALLEY W S 12S 40E 13DCD1S	÷.	QUATERNARY ALLUYIUM WITH TRAVERTINE DEPOSITS		NOT FIELD CHECKED		-			0					42.3739 111.7263	MITCHELL, 1978
TREASURETON W S 125 40E 36ACD15	н	QUATERNARY ALLUVIUM	NORTHWEST TRENDING FAULT	NUMEROUS SPRING VENTS			UNU SED		35	75	AQUACULTURE	RLFRIGERATION (LOWER TEMPERATURE LIMIT)	YES	2.3373 111.7270	MITCHELL, 1976
CLEVELAND H S 125 41E 31CAC15	18	QUATERNARY ALLUVIUM WITH TRAVERTINE DEPOSITS	NORTHWEST TRENDING FAULT	NUMEROUS SPRING VENTS AND SEEPS	YES		t≫uSED		66 I	81	FRUIT AND YEGETABLE DEHYDRATION	PASTEURIZATION	YES	42.3329	MITCHELL, 1976
WEST BANKS W S 128 41E 31C8015		QUARTERNARY ALLUVIUM WITH TRAVERTINE DEPOSITS	NORTHWEST TRENDING FAULT	NUMEROUS SPRING VENTS					35		AQUACULTURE			42.3338 111.7160	MITCHELL, 1976
MAPLE GROVE H S 135 41E 7ACAIS	1324	PALEOZOIC QUARTZITE (?) WITH TRAVERTINE DEPOSITS	NORTH TRENDING FAULT	NUMEROUS VENTS AND SEEPS; TEMPERATURE RANGE 60-78 DEGREES C: PAST USE: POWER GENERATION AND RECREATION; SULFUR COOR	YES	YES	PELTON WHEEL (POWER)		78 1	104	PASTEURIZED MILK PROCESS	WASHENG AND DRYING OF WOO	UL YES	42,3083 111,7068	DION, 1969
BEN MEEK WELL 145 39E 36ADA1		QUATERNARY ALLUVIUM		SLIGHT SULFUR ODOR		-		12	44 1		SEEDLING CONFFERS	CANHINNG AND PRESERVING	YĘS	42,1646 111,8381	DION, 1969
RAY BARRINGTON WELL 145 40E 318CB1	246	QUATERNARY ALLUVIUM		DRILLER'S LOG AVAILABLE	·		STOCK WATERING	22	40		SOIL WARNING			42.165 1 111.8366	LOG, 1977
ELDIN BINGHAM WELL 155 39E 708C1	37	QUATERNARY ALLUYIUN							63	88	ANIMAL HUSBANDRY	BLANDHING	YES	42,1296 111,9426	010 x , 1969
BATTLE OREEK H S 155 39E BBDC15	3406	QUATERNARY ALLUVIUN WITH TRAVERTINE DEPOSITS	NORTHWEST TRENDING FAULT	TEMPERATURE RANCE 43-84 DEGREES C: NUMEROUS SPRING VENTS; ALSO KNOWN AS WAYLIND H S	YES	YES			84 1	142	8LANCH ING	POTATOE DEHYDRATION	YES		DION, 1969
500 Am Pris HELL 151 396 17162 :	113	QUATE-MARY ALLUNIUM WITH TRAVER VIE DEMOSTLY	NORTHNEST TRENCLING FAULT		YES	YES		6	64 1	149	PASTEURIZING	CORN PRODUCTS (STARCH, OIL)	YE5	42.1191 111.9299	510N, 1969

-292-

2								្ម	74	~	3
111,923 42-111 70-06 AC	YES 42.0257 LOG, 1969 111,9621	42,0225 1.05, 1969 111,9635	45.9326 L05, 1972 111.5714 L05, 1972	43,9328 ±26, 1970	YES 43,0013 00051444.1TE A.C. 111.5735 0746RS, 1970	YES 43.9056 111.3666	43,8847 STEARNE, 1939 111,5150	YES 43,8906 2005THAHTE MC 111,5980 0THERS, 1970	YES 43,8859 2021HHHTE AL	YES 43,8842 10,16 AU 111,3699 AUD-6 1913	43.8850 2005-44115 MC
And the second se	PASYEURIZATION				BARLEY WALTING PROCESS	CANNING AND PRESERVING		APPLE DEHYDRATION	REFRIGERATION (LOWER TEPPERARIJKE LINIT)	Pasteuri 24NG	
100 APPLE DENTRATION	NEATING MO COOLING AITH HEAT PARP	61 00 EGRADATI (ON	HEAT PLAP COULING NITH	HEATING AND COOLING RITH	94 AQUARULTURE	tos Heating and colling with	Fish from the particular	76 TROPICAL FISH FARMING	81 BIODERADATION	84 BIODEBRUDATION	KUNCULTURE OR HORSCOMICS
8	156 22	172 21	213 23	213 23	55 IQ	2	2 5	83 ¥	91 32	8 8	100 57
	IRSIGATION	IRRIGATION Fremont County	IRRIGAT LON	IRRIGATION	IRFIGATION		DOMESTIC	IRRIGATION	IRRIGATION	YES	
SZ VERAL SPRING VERTS; TEMERANG SPRING VERTS; DEGREES G; ALSO RADER AS VINCENT H S	DRILLER'S LOS MAILABLE	DRILLER'S LUG AVALLABLE	NOT FIELD OFENED	DRILLER'S LOS AVAILABLE		NOT FIELD DAEDKED, REPORTED TEMPERATURE	DRILLER'S LOS AVALLABLE	DRILLER'S LOS AVALLABLE		reported temperatures . Hot Field Oreced	DRIFTERIS LOG AVALLABLE
TRENDING FAULT								. :	е		
AT WILLIAM AN ALTERNAL	אחו אחד אחיז במאאנא אחדות אווידא	9463 QUATERNARY ALLUVIUM	PLEISTOCENE SEDIMENTS NO BASALTIC LAVA	4239 PLEISTOCENE SEDIMENTS MED BASALTIC LUNA	- B706 TEHTIARY SILICIC VOLCANIC ROCK (?)		PLEISTOCENE SEDIMENTS MOD BASALTIC LAVA	TERTIARY SILICIC VOLCANIC	2271 TERTIARY SILICIC VOLOWIC	TERTIARY SILICIC VOLCANIC ROCKS (1)	TERTIARY SILICIC VOLCANIC
SQUAR H S 155 \$9E 178DC15		P.L. KOLLER WELL 165 58E 248001	KEITH JERGENSON HELL &I. 7N 41E 15CABI	, KEITH JERGENSON MELL #2 7N 41E 13CAD1	Donald trupp well 7n 41e 256301	HATHE LARSON WELL 7N 41E 26ACCI	CORDEN CLARK NELL	HENRY HARRIS HELL 7N 41E JANDDI	N 41E 340001	7N 41E 350001	STETER AND SwithElman 7h 4tE 550001
					- 2	93-					

	Potential Use Based on Chew/ Letitude Best Estimate of Trace & Trace Subsurface Trace Reterence		MIMAL HUSANDRY YES 43,8852 DOGTHAMITE AD 111,5569 DTHERS, 1970	ж GRAIN-HAY DRYING YES 45,9481 DROSTHMAITE АЮ 111,5291 ОТНЕНS, 1970	2829.43 3062.411	43.5364 111.5374	43-9399 LOE, 1974	41,9325 LOS 1973	YES 43.5144 LOG, 1965 111.5540	HING YES 44.0513 STEARNS AVC 111.4279 GTHERS, 1935	APPLE DEHYDRATION YES 44.4995 HWMLTON, 1965 111,2345		47,971 45,571
and Potential Use of Thermél Springs and Wells in Idaho (continued)	<pre>well Surf tquit vell Surf tquit DapthTemp.Terp. Potential Use Sased on Ess (m) (CC) (CD) Surface Tarpenter. Subsurf (m) (CC) (CD) Surface Tarpenter.</pre>	(ANIMAL SA AQUACULTURE	54 45 AQUAGULTURE GRAIN-	Z7 HEATING AND COOLING MITH HEAT PUMP	39717-ILUANOA 65		201 33 BLODEGNAUATION	193 26 CATFISH FARMING	26 91 SOLL MARVINE . BLANDHINE	12 66 HEATING AND COOLING MITH APPLE HEAT PLUP		20 CATFISH FARMING
lse of Thermal Springs and	Lieposition Sill-bone Freentijse Gas reeus gras	Fremont County (cont'd.)	IRRIGATION		NO1 1091 1811	IRRIGATION	IRRIGATION	HRIGHTJON	1991 I CM	I.RIGATION	ve	<u>Gem County</u>	STOOL MATERIAL
	Geotagic Structure Structure						DRILLER'S LOG ANALABLE;	DRILLER'S LOG AVAILABLE; NOT FIELD OEOXED	DRILLER'S LOG AVAILABLE	TWO SPRING VENTS	TEMPERATURE RANGE 10-12 DEREES C, 10 C. DEREES ADVE MEAN MNULL TEMPERATURE; POSSIBLE THERMAL THERMAL ANOMALY; SEVERAL BYRING VENTS		FLOWING INTO MATER TROOGH
le 4. Location, Geologic Environment, Present Use	jis- charge (1/⊼.a) Aquiter Age and Rock Type		TERTIARY SILICIC VOLCANIC ROCK (2)	LL TERTIARY SILICIC VOLCANIC			B327 TERTIARY SILICIC VOLCANIC RCCX5	LL TERTIARY SILICIC VOLCANIC	1892 TERLIARY SILICIC VOLCANIC ROOK (7)	PLEISTOCENE BASALT	345247 QLATERNARY OBSIDIAN (RAYOUITE)		<u>ي</u>
Basic Data Table 4.	Spring/Well Spring/Well Joantification Almentaneous		CLAUDE HANS WELL 78 41E 360041	DEAN SWINDELMAN MELL 7N 42E BCAAI	KEITH JERGENSON MELL #5 7N 4.25 17BACI	KEITH JERGENSON WELL #4 7N 4.2E 1788C1	KEITH JERGENSON HELL #5 7N 4 2E 188AA1	NAONI JERGENSEN MELL 7N 42E 186AA1	REMINGTON PRODUCE WELL 7N: 42E 1900A1	ASHTON W S 9N 42E 230AC1S	BIG SPRINGS 14N 44E 54BBCIS		SWEET W S 7N 16 SOAA1S

-294-

PASTEURIZATION TES 43229	43.0315 ROSS, 1571	43.6325 SAVKGE 1973 116.4137 %	43.8304 SAVAGE, 1973 116.4155	43.8547 k02, 1577-	43.8572 SAV42E, 1973 116.5970	42-8786 SANAE, 1973	43,0364 RC55, "471	41.0299 STEAMS W	YES 43.0534 STEARS &	43.0472 RCSS. 1971 114.9201
	·									
543						·				
84 SEEDLING COMIFERS	CATFISH FASANING	HEATING AND COOLING WITH HEAT FUND	FISH FASHING	HEATING AND COOLING WITH HEAT PUNP	HEATING AND COOLING KITH HEAT PLAP	HEATING AND COULING MITH HEAT PURP		STOCK MATERING	3SU พ.พ.พ.	FISH FASALING
	ສູ	21 20	21 20	1 2 6	54 24	12 17	3	168 45	50 53	27
STOON MATERING	STOOK WATERING	DOMEST I C	IRRIGATION	DWESTIC	DOMESTIC	DOMESTIC Gooding County	ž	DOMESTIC	YES DOMESTIC MU SPACE HEATING	YES UNUSED
NOT FIELD OHEXED, REPORTED TENEERATURE	SEFAGE; TOPERATURE MAY BE LESS THAN NEASURED	PRILLER'S LOG AVALABLE	SULLER'S LOG AVILABLE	VERY SHALLON MELLY DRILLERY'S LOS AVALABLE	DRAILLER'S LOG AVAILABLE	SLIGHT SULFUR COOR	TENPERATURE REPORTED BY	DRILLER'S LOG AVALLABLE;	ELOWING; REEA OVERED KITH	NO VISABLE FLOW; SPRING IS SUBAQUEDUS
DURTERNAT ALLUVION NEAR	3 QUATERVARY AND TERTIARY SEDIMENTS	75 PLIOCENE AND PLEISTOCENE SEDIMENTS	75 PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS	757 PLEISTOCENE SEDIMENTS	189 PLE1STOCENE SEDIMENTS	PLIOCENE BASALT	140 PLIOCERE BASALT AND SEDINENIS	PLE ISTOCENE EASALT	302 QUATERNARY BASALT
EAST POYSTONE H S	HIGHLAND LAND CO. K S 2540BIS 6N 1W 2540BIS	DONALD JENSEN MELL Ø1 JENSEN 6N IN 2642A1	DONALD JENSEN MELL #2 6N 14 26ADC1	PAUL CRANK MELL 6N 2M 140BC1	FRED SOUT WELL 6N 2M 1708A1	RANLA IZATT MELL 64 34 12ABI	TSCHANRE H S 45 12E JJAAA1S	DAVE ARCHER WELL #1 45 12E 35CAD1	J, SHMHION WELL 45 15E 28ABB1	HOT SULFUR LAKE 45 13E 29ADD15
如此	S THATERAMAY ALLAVION NAMA BALT (?) NOT MAISAN (?) ALLAVION NAMASAN (?) ALLAVIOS NAMASAN (?) ALLAVIOS NAMASAN (?) ALLAVION NAMASAN (?) ALLAVIOS ALLAVION NAMASAN (?) ALLAVIOS ALLAVION NAMASAN (?) ALLAVION ALLAVION NAMASAN (?) ALLAVION AL	TUMPERAMAN ALLAVIUM NEW TOT TELED DECAED: REPORTED STOCK MATERIAGE 23 54 PLIDGENE BASALTI (1) 3 QANTERNARY AND TERTIARY ELECTRON ELESS THAN MEASURED MAY BE STOCK MATERIANG 23 5 EDIMENTS	S PLOCENE BASALT (?) MARKAN ALLO TUN NEW MULTIELD GEVALL, REVEILD ALCOMMENTER AN TERTIAN ALCOMMENTER ALCOMMENTER AN TERTIAN ALCOMMENTER ALCOMMENTER AN TERTIAN ALCOMMENTER ALCOMME TERTA ALCOMMENTER	 S QUATERNART ALLOTION NEW B QUA	TAL REVENTIOR IN SUCCEMENTATION WATER TAXANG TERTARY AND TERTARY A	5 PUIDDENE BASAIT (1) TOPERATURE MAY REPEATING MAY TOPERATURE MAY REPEATING MAY TOPERATURE MAY REPEATING TOPERATURE MAY REPEATING TOPERATURE MAY T	THE INFORCER IN SUMMERANAL LIFE AND TERTIARY TERTIARY SUPPORTING STOCK WITERING D THE UNDEL LAND 3 DUTERIARY AD TERTIARY SEEPMER, INFORCER STOCK WITERING D EXAMPLE 2 DUTERIARY 3 DUTERIARY MATERIARY STOCK WITERING D D EXAMPLE 2 DUTERIARY 3 DUTERIARY MATERIARY EEFMER, INFORMACE D D D EXAMPLE 2 DUTERIARY 3 DUTERIARY MATERIARY D D D D D D EXAMPLE 2 DUTERIA 2 DUTERIARY D	This is address Beneficier and Testiere Beneficier address Beneficier addres Beneficier addres Beneficier ad	No. If a model and bit if 2 model J. Only the model and bit if 2 model J. Only the model and bit if 2 model J. Only the model and bit if 2 model J. Only the model andothe model<	No. If a reaction is a conservation of the formation is a constant of the con

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

	YES 43.0466 MALDE NO OTHERS, 114.9511 1963	% YES 43.0247 мыль мил отнекс, 115.0092 1963	42.9907 STEARNS AND 115.0966 UTHENS, 1938	YES 45,2768 MARINE, 1965 115,9124	YES 45.4162 HAMILTON 1969 116.1722	45.4316 ANDERSON, 1976 116.0148 (SITE INSPECTION)	YES 45.5126 8055, 1971	YES 45,7877 WARING, 1965 115,1977	45.8516 ROSS, 1971	1,20,44 1,20,44
	CANNING AND PRESERVING	REFRIGERATION (LOWER TEMEEATION (LOWER		LAUKDRY LISES	31.PVICHING		BARLEY MALTING PROCESS	PASTEURIZED MILK PROCESS		
	63 108 APPLE CERTORATION	136 57 70 GREENHOUSE	62 28 CATFISH FRANING	45 57 BALKEQLOSICAL BATH	41 95 SEEDLING CONTERS	59 GREEKADUSE	90 NUALUTIRE	55 BC GUIN-HAY DRYING	41 BALNEDLOGICAL BATH	·
Gooding County (cont'd.)	YES YES QREAMOUSE MO	YES IRRIGATION	STOCK WATERING ¹ <u>I</u> đaho <u>County</u>	YES YES RECREATION	YES YES DOMESTIC			YES RECREATION	UNAISED	
	FOUR SPRING VENTS	FLOWING MELL, DESLER'S	DRILLER'S LOC AVALABLE	Two SPRING VENTS, SLIGHT DIFENETION, X-8A DIFERATTON MALLYSIS AVALLABLE	NG POUR SPRING VENTS MU NUMEROUS SEEPS	PAST LUSE: MINERS BATHING FACIL [1]ES	NOT FIELD ONEONED	NINE SPRING VENTS; TEMERATURE RANGE 37-55 DEPRESS C	FIVE SPRING VENTS	NOT FIELD OFENE:
	- HOLANTTR J	DM STREWIGS	re basalt	5 SAMITIC RUCK		ET ANOPHOSED	GRAVITIC ROCK	GUNITIC ROOK	GRANITIC ROCK	ORETACEOUS JAWI TLU ADDA
	WHITE ARROW H 5 4542 QUATERNAR 45 15E 50A0B15	DAVE AROHER 2725 PLIDGENE S WELL #2 55 12E 3AM1 BUSALT	BLM BJ PLE ISTOCEN 65 12E 56001 83 PLE ISTOCEN	BURGDORF H S 613 QUATERNARY 22M 4E 180CIS CHETAGEOUS	RIGGINS H S ULATERARY 24N 22 140BD1S DVERTYNG MESOZOIC G	OM FLATS H S 24N & 700A1S 31 CAETACEOUS 24N & 700A1S	BARTH H S 22M 12E 1800 15 757 CRETACEOUS	REU RIVER H S 24N 10E 3DDD1S 24N 10E 3DDD1S	RUMING SPRINGS 264 QUATERNARY 294 12E 14.08915 264 GUATERNEDUS	MARTEN H S 314 11E 2400015
	<u>But poos</u>	4542 QUATERNER ALLIVITIM FOUR SPRING VENTS YES REEVIDUSE AND 63 108 APLE DEMORATION CANNING AND PRESERVING YES 43,0466	4542 QUATERNER ALLIVITION FOUR SPRING VENTS YES PREMIUSE NO 63 108 APLE DEMORATION COMMING NO PRESERVING YES 43.0466 11591 FARMING OF 60 APLE DEMORATION COMMING NO PRESERVING YES 43.0466 11591 FARMING OF 60 APLE DEMORATION COMMING NO PRESERVING YES 43.0466 114.0511	1342 Quatebookt Alluntion Gooding County (cont ¹ d.) 1342 Quatebookt Alluntion Fous series Vents res res gegewools wo 63 rol were convertion County, res res 43,006 1323 Piloceke sconeorris No Feb reservice 75 res res res 43,006 2729 Piloceke sconeorris No Feb reservice 75 res res 43,006 273 Piloceke sconeorris No Feb reservice 75 res res 43,006 273 Piloceke soon Econeorris Yes res res 83,006 13,000 274 Districted soon Econeorris Yes res res 45,006 273 Piloceke soon Econeorris Yes res res 45,006 274 Districted soon Too of the reservice Yes res 45,006 273 Pilorine soon Too of the reservice Yes res 45,006 273 Pilorine soon Too of the res Too of the res res 45,006 274 Res Res Res Res Res 45,006 275 Res Re	43.2 ONTERNEY NUMME FOR SMING WERE TS TS <tht< td=""><td>4041 Antenent Alument Fight Gounty (concrit.) Fight F</td><td>042 Outflower ALLINTH Too Smine Forts 15<</td><td>Rodrig Counci, Circuity Rodrig Counci, Circuity<td>Outside truttering Constant (contrivi) Constant (contrivi)</td><td>Other Autorial Statistic Control Statistic Control</td></td></tht<>	4041 Antenent Alument Fight Gounty (concrit.) Fight F	042 Outflower ALLINTH Too Smine Forts 15<	Rodrig Counci, Circuity Rodrig Counci, Circuity <td>Outside truttering Constant (contrivi) Constant (contrivi)</td> <td>Other Autorial Statistic Control Statistic Control</td>	Outside truttering Constant (contrivi) Constant (contrivi)	Other Autorial Statistic Control Statistic Control

-296-

MAT RIFLO ONEOVED

UNUSED

46.1582 PC01. 0

	STUART H S 32N 116 4CAA15	CRETACEOUS GRANITIC ROCK	NOT FIELD CHECKED	u≫useD	C.		-1342 ROSS, 1971
	PROSPECTOR H S 53N 14E 4A 15	ORETACEOUS GRANITIC ROCK	NOT FIELD CHECKED		0		45.2350 ROSS, 1971 114.7073
	STANLEY H S 34N TOE GCAATS	113 DRETACEOUS GRANITIC ROCK	, THO SPRING VENTS	UNUSED	49 SPACE HEATING		46.3154 ROSS, 1971 115.2575
•	WEIR DREEK H S 36N ITE I3BOCIS	227 CRETACEOUS GRAMITIC ROCK	SIX SPRING VENTS; TEMPERATURE RANGE 44-47 DEGREES C	YES UNUSED	7 70 LAUNDRY USE	REFRIGERATION (LOWER TEMPERATURE LIMIT)	YES 46.4636 KARING, 1965 115.0350 - W
	COLGATE LICKS A S 36N 12E 15ADB1S	189 CRETACEOUS GRANITIC ROCK	SEVERAL SPRING VENTS		41 MUSHROOM GROWING		46.4656 ROSS, 1971 114.9388
	LITTLE JERRY JOHNSON 36N 13E IBADBIS	ORETACEOUS GRANITIC ROCK (7)	THO SPRING VENTS; TEMPERATURE RANGE 38-41 DEGREES C		43 BALNEOLOGICAL BATH		46.4656 114.8743
97-	JERRY JOHNSON H 5 36N 13E 18A0015	1135 DRETACEOUS GRANITIC ROCK	TEMPERATURE RANGE 41-48 DEGREES C, EIGHT SPRINS VENTS	YE5	48 70 SEEDLING CONIFERS	APPLE DEHYDRATION	YES 46.4629 WARING, 1965 114.8718
	HEISE H S 4N 40E 2500A1S	227 TERTIARY SILICIC VOLCANIC ROCK	TWO SPRING VENTS; EXTENSIVE TRAVERTINE DEPOSITION	Jefferson County YES RECREATION	49 79 GRAIN-HAY DRYING	PASTEURIZED MILK PROCESS	YES 43.6440 ROSS, 1971 111.6867
				<u>Jerowe</u> <u>County</u> UNUSED	222 43 QUACULTURE		YES 42,6133 L0G, 1970
·	ROYAL CATFISH 10 INDUSTRY 95 17E 29DAD1	0523 PLIQCENE BASALTIC LAVA	DRILLER'S LOG AVAILABLE; FLOWING WELL; PAST USE CATFISH FARMING	Lenhi County			114,4678
	FOSTER RANCH H S 15N 15E HBOCIS	18	SULEUR ODOR: NUMEROUS SPRING VENTS, TDØPERATURE RANGE 42-57 DEGREES C	UNUSED	57 GREENHOUSE		44,6610 114,6521
	SHOWER BATH SPRINGS	757 TERTIARY SILICIC VOLCANIC FAULT ROCKS	NUMEROUS SPRING VENTS; NOT FIELD CHECKEC; TEMPERATURE		50 AQUACULTURE		44.6279 ROSS, 1971

.

Basic Data Table 4. Location, Geologic Environment, Present Uge and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Wei! Spring/Wei! lentification Rumber & Name	Dis- Crange Crange Liymin) Aquiter Ago and Rock Type Structure	Remarts Sas	Deposition Sili- Dar Seus ares Present Use (n)	5 Agai Surt, fer Paro-Tero, Poterial ise Sased on (PC) (PC) Surtace Teroverine*	Forential Use Bases on Chenk untilude Best Estimate of Trace d. Subsurtate transmission fubl. iongitude Partence
			<u>Lemhi County</u> (cont'd.)		
BIG EIGHTMILE CRAX N 5 ISN 20E BODBIS	OUATERNARY ALLUYIUM		IRRIGATI DN	33 SOIL MARKING	44-6399 8-15H AKD BXDRER, 113-5037 1978 AKD BXDRER, 4-
MHITTAKER N S 15N 26E 2108CIS	3406 QUATENNEY ALUVIUM NEAR FAL-TERTARY UNCIFFERENTIATED POCK	·	STOCK WATERING	24 HEATING AND COOLING NITH HEAT PLOPE	44.6121 R055, 1971
DRONKS CANYON IN S 16N 21E 1840C15	TERTIMPY SILICIC VOLCANIC ROCK	NOT FIELD CHECKED .	ŶĔŜ	46 57 SPACE HEATING	GREEMAUSE HOT ± HENTING TES 44.7196 ROSS, 1971
FORGE OREEK H S 18v 16E 1488B1S		MOT FIELD OVERVED		o	5964.99 114.2020
COLDRUG H S COLDRUG H S 18N ZIE 128CD1S	662 PRECUMBRIAN QUARTZITE		HEDEATION	45 GRAIN-HAY DRVING	44.9053 MITCHELL, 1978 115.9287 (SITE INSPECTION)
MORMON RANCH H S 194 146 2600015		NUT FIELD DREAED	UNUSED	O GREENHOUSE	6169.45 9407.411
SNONSHOE JOHNSON'S H 5 ZOM 16E 2000C15	56 PRECOMBRIAN ARGILLACEOUS QUARTZITE	SLIGHT SULFUR 0006, THO YE SPRING VENTS	YES	- HPDRAPONICS	45.0422 JOHNSON, 1978 114.6160 (SITE INSPECTION)
SALINON H S 20th 22E SACA1S	548 CONTACT BETWEEN OLIGOCENE MORTHMEST BASALT AC DUDER TUFFACEOUS ROCK	THREE SPRING VENTS	YES	45 52 BALNEOLOGICAL BATH	GRAIN-HAY DRY INC YES 45,0949 FORRESTER, 1956
SHARKEY H S 20N 24E 3400015	757 OLISOCENE SILICIC VOLONIC NOTIMEST		YES UNUSED	52 104 ELECTRICAL POWER GENERATION	CONNING NO PRESERVING TES 45-0130 ANDERSON, 1957
UML CRÉEX H 5 234 17E 1085A15	189 PRECAMBRIAN SCHIST	SEVERAL SPRING VENTS: MUNEDOUS SEEPS :	YES YES BATHING	20 ספגא ואי-אאי איז איז	45,3444 LOHEDY, 1598 114,4627 1.517E NE-LGT(3N)

-298-

	1.671			LGC, 1973	1962	tos, 1967	34051-6411E A4D 9THERS, 1970	- čč11,2, 1965	ОСОЗТНИКТТЕ АКО ОТНЕКS, 1970 -			
-mail the and a second se	45.5034 R055, 1971 114.4627		43.6597	YES 43.7921 LOC 111,7805 *	YES 43.7800 LOT	YES 43,7719 LO	43.7222 CK	YES 43.7909 WA	43.8786 OF	YES 43.8621 111.6065	YES 43,8682 111.6172	YES 43,8612 111,6669
TOWARDON SATH	.			AJUACH TURE	SEEDLING CONFERS	REPARENTATION		ONION DEHYDRATION		PASTEURI ZAT I ON	FRUIT AND VEGETABLE DEHYDRATION	PASTEURIZED MILK PROCESS
TT REVENUES CONSI	ASPLOULTURE		DNINCTAH GAN ONINGAT HEIS	36 HEAT PLAN COOLING WITH HEAT PLAN	44 DE-ICING RORDKAYS	30 STOD. WATERING	CATETSH FARMING	72 SEENLING OONIFERS	BIOSERADATION	81 FERMENTATION	78 DE-ICING SIDEWARKS	. BO BIODECRADATION
	45		12	106 21	28 28	12 57	v 405 22	4	8	8	80 24	27
TTS TTS TTS TWUELD	RECREATION	<u>Madison</u> <u>County</u>	(TWRISED	18R1GAT10N	I PRIERI I ON	IRRIGATION	IRRIGATION	YES RECREATION	IRRIGATION	IRRIEATION	FRRIGATION	IRAIGATION
TEPPEDATION CONTINUE AND CONTIN	NOT FILLD OMECKED; SEVERAL SPRING VENTS			TEMPERATURE NOT CONFIRMED; TEMPERATURE NOT CONFIRMED; CRILLER'S LOG AVAILABLE	TEWPERATURE NOT CONFERMED; DRILLER'S LOG AVAILABLE	TENPERATURE NOT CONFIAMED; DRHLLER'S LOG AVAILABLE	Delicer's Los Avallable	SEVERAL SPRING VENTS, ALSO KNOMN AS PINDOOCH H S. TRAVENTINE DEPOSITS	DRILLERIS LOS AVAILABLE	temperature not confirmed	TEMPERATURE NOT CONFIRMED	TEMPERATURE NOT COMFINANED
245 VARTARENS FARMATIC RACK	57 OMÉTACEUUS BRANITI É MOCA			, Tertiary silicic volcanic	TENTIAN SILICIO VOLGANIC	PAULINE SMITH WELL .12491 TERTLARY SILICIC VOLCANIC SN 402 90001	10977 TERTIARY SILICIC VOLCANIC	TERTIARY SILICIC VOLGANIC	TERTIARY SILICIC VOLCANIC ROCKS			
BIO CMEER 4 5 234 186 220AD15	HORSE DOCEN H 5 254 17E 158JA15		ELKHORA N S 4N 40E 23CADIS	LAVERE RICKS WELL 5N 40E 508A1	MARK FLONS WELL 514 405 89001	PAULINE SMITH WELL . 5N 40E 90001	טו.ר אכטאדבת אנוור 5ג גונ גופטטטו	GREEN CANYON H S 5N 43E 660A15	YAL SCHWENDIMAN WELL 6N 41E 1ADOI	NALZ ENT. INC. WELL GN 415 10AGCI	MANDA MOOD MELL 41 64 41E 109881	WANDA WOOD WELL \$2 6N 415 103661
						-2	99-					

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Marcal Same Same Same Same Same Same Same Same Same Same Same Same Same Same Same Same Same Same Same	Sprìng/Well Sprìng/Well Number 5 Nome	Sis- charge (1/mim) Aquiter Age and Rock Type	Geologic Structuré	Rendrks	Separitor Jar Jar Sitte bon- Present Use Sas coous ares	Metl Cepth (m)	≲yr tar tar anb tanp Porential Use Eased or (°C) (°C) Surface Temperature**	Potential Use Based on Best Estimate of Subsurface Tamperbture***	Chenv/Latitude 5 5 Anal: Longitude Reference
The product is the function of the product is the product					<u>Madison County</u> (cont'd	5			
1000 MERRIAL M	RUREAU OF RECLAMATION 7x 42E 300801	TERTIARY SILICIC VOLCANIC	÷	DRILLER'S LOS AVAILABLES TETON DAN SITE	1537 MELL	74 500			
700 NUMBER MANUTATION MULTION (MALE MANUAL) M					Minidoka County				ж.
APPERCER CIGILITY APPERCER CIGILITY 543<	PAUL CITY WELL 95 236 2800A1	7570 PLIDCENE AND PLEISTOCENE BASALTIC LAVA AND SEDIMENTS	10	DRILLERIS LOG AVAILABLE	PUBLIC SUPPLY		FISH FARMING		
4021 MICRINE MALT PURPAGE FAMILIARIE					Nezferce County				
13 13 12 <th12< th=""> 12 12 <th1< td=""><td>LEWISTON CITY WELL 35N 5K 60801</td><td>4542 MIDCENE BASALT</td><td></td><td>DRILLER'S LOG AVAILABLE; TEMPERATURE REPORTED BUT NOT FIELD DHEDKED</td><td>ENERGENCY AND PUBLIC SUPPLY</td><td></td><td>HEATING AND COOLING RITH HEAT PURP</td><td></td><td>46.4040 117.0217</td></th1<></th12<>	LEWISTON CITY WELL 35N 5K 60801	4542 MIDCENE BASALT		DRILLER'S LOG AVAILABLE; TEMPERATURE REPORTED BUT NOT FIELD DHEDKED	ENERGENCY AND PUBLIC SUPPLY		HEATING AND COOLING RITH HEAT PURP		46.4040 117.0217
13 PLEEDOIC LINESTONE MUREIONE MUREIONE VEITS MUREIONE VEITS <th< td=""><td></td><td></td><td></td><td></td><td><u>Oneida County</u></td><td></td><td></td><td></td><td>·</td></th<>					<u>Oneida County</u>				·
WATERWER LAUNUAR Det SMHG VEN YS YS YS KENTIKE ADD COLINE MITH REALTING ADD COLINE MITH TEN FROMING 14421 DATERWER ALLUNUAR Det SMHG VENT YS YS Z3 MORPMENIS MOLOCUME NITH YS YS 14421 DATERWER ALLUNUAR NAKBOUS SMHK VENT YS YS Z3 MORPMENIS MOLOCUME NITH YS YS 14421 MULENDIRE MERTING NAKBOUS SMHK VENT YS YS Z4 DOTORE YS YS Z42.056 14421 MULENDIRE MERTING MULENDIRE YS YS Z4 GATHER YS YS Z42.056 14421 MULENDIRE MERTING MULENDIRE YS Z7 Z7 Z6 YS Z5.056 QUATER MULENDIRE MULENDIRE MULENDIRE YS Z7 Z7 Z6 Z6.0526 MULENDIRE MULENDIRE MULENDIRE MULENDIRE MULENDIRE YS Z7.0562 MULENDIRE MULENDIRE MULENDIRE MULENDIRE YS Z7.0562 YS YS Z6.0523 MULENDIRE MULENDIRE MULENDIRE MULENDIRE YS Z7.0562 YS Z6.0523 <td>ENT % S</td> <td>715 PALEDZOIC LIMESTONE</td> <td></td> <td>NUMEROUS SPRING YENTS</td> <td>UNUSED</td> <td>ĸ</td> <td></td> <td>FERMENTATION</td> <td></td>	ENT % S	715 PALEDZOIC LIMESTONE		NUMEROUS SPRING YENTS	UNUSED	ĸ		FERMENTATION	
14421 QMTERMARY ALLUVLIM NUMERBOUG SPRING VENTS YES 25 33 MORRPONICS MONOLUTICR YES 42,1353 PALEDCUC LIMESTONE MREPRING RAWE MINE SPRING RAWE YES YES Z1 46 ORTFINE FAMILIES YES	MALAD W 5 145 36E 27CDA1S	OLATERNARY ALLUVIUM WITH		ONE SPRING VENT		¥3		FISH FARMING	42,1734 112,2395
PALEDZOIC LINESTONE MRFHMEST TREBRING FAULT NINE SPRING VENTS; TREBRING FAULT YES ZI 45 ORTFINIS YES YES 42,0502 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI 45 CATENSI FRANING SEEDLING CONFERS YES 112,2468 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI 45 CATENSI FRANING 3EEDLING CONFERS YES 12,2468 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI ZI 45 CATENSI FRANING 12,2268 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI ZI 45 12,2268 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI ZI 45 12,2268 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI 25 12,2268 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI 45,0005 QUATERNARY ALLUVIUM IN MULAD RIVER, UNABLE TO ZI 45,0005 QUATERNARY ALLUVIUM RELIVER RIVER RELIVER RIVER 26 45,0005 QUATERNARY ALLUVIUM RELIVER RIVER RELIVER RIVER 26,0005 QUATERNARY ALLUVIUM RELIVER RIVER RELIVER RIVER 45,0005	LERSANTYLEW H S 55 35E 3AAB1S	1442) QUATERNARY ALLUVIUM		NUMEROUS SPRING VENTS	YES	ĸ		AQUAQULTURE .	42,1557 112,5486
QUATERNARY ALUVIUM IN WLAD FIVER, UABLE TO 23 11.12.2269 DOTTE CONTENT ALUVIUM IN UCATE OUTLEY 24.0255 DOTTEM FOR ALUVIUM 11.12.2269 DOTTEM FOR ALUVIUM 11.22.2269 DOTTEM FOR ALUVIUM 12.22.2269 DOTTEM FOR ALUVIUM 12.22.2269 DOTTEM FOR ALUVIUM 12.22.2269 DOTTEM FOR ALUVIUM 12.22.2269 DOTTEM FOR ALUVIUM 12.22.22.22.22.22.22.22.22.22.22.22.22.2	000RUFF H 5 65 36E 1088C15	PALE0201C LINESTONE	NORTHWEST TRENDING FAULT	NINE SPRING VENTS; TEMPERATURE RANGE 27-32 DEGREES C	YES	27		SEEDLING CONFFERS	42,0562 112,2468
DUNTERMENT SCHEMMT SCHEMMT SCHEMMT SCHEMMT SCHEMME NULL DAS DULETOR REALTING NO 41 FISH NUTOHING NO 45.4477 BELLET REALTING NULL DURING NULL DURING NULL REDREATION 41 FISH NUTOHING NO 45.4477 BELLET	RICES N 5 65 36E 238B01S	MULAULA ALLUN		IN WILAD RIVER, UNABLE TO	and the second second	Ŕ			
	taeran mutu 11 - Maria Maturi	Quarternary scholars and		ຄືເປັນທີ່ເຊັ່ງຊີ້ແມ່ນ, ເລີຍ, ຫຼວມເຮັດຕິດ ກຳເຫຼືອ, ອາເຊັ່ນ, ເລີຍ, ຫຼວມເຮັດຕິດ ທີ່ມີມີ, ເວັ້ນ, ຫຼືເຊັ່ນ,	Ĭ	4	FISH MUTCHING MC		43,4427 - 15,470 - 15,0 116,7240 - 00000644, 1922

-300-

43.4339 86.452, 1978 16.1238 (SITE INSPECTION)	43,4335 LOG. 1970 116,7250	43.4195 R055, 1971	43.4245 R055, 1971 116,7130	43.4053 LCG, 1962 116.7157	43.4143 ROSS, 1971 16.7066	D DRYING OF NOOL YES 43.4137 ROSS, 1971	42, 1955 116, 1975	43,4410 NEHTON AND 116,7503 CORCORAN, 1963	43.4403 NEHTEN ALD 116.7626 CORCERMM, 1963	YES 43.4360 NEMTON AND 116.7396 CORCURAN, 1963	45-4272 NEW 200 116-7652 CONCORM, 1963
SPACE HEATING	6 GREENHOUSE	SULLISH ENANING MO	4 SPACE HEATING MO CATFISH FAMILING	17 GREENHOUSE	SHOE HEATING	100 BALINEOLOGICAL BATH	7) SPACE HEATING	40 HYDROPONI CS	2) CATFISH FABRING	36 AQUACULTURE	39 Soil wraning
ODESTIC 156 3	HRRIGATION 213 3	r Naviseo	DOMESTIC 3	HARIGATION AND 599 DOMESTIC	C STAN	RECREATION	IPRIGATION	DOMESTIC NO 457 -	DOMESTIC AND 39 STOOX MATERING	IRRIGATION 195	UNUSED 871
ננטאואפ אבויד	FLOWING WELL, JFILLER'S LOG AVAILABLE	FLOWING WELL.	FLOWING WELL	אאווראנד אאווראנד	FLORING NELL; CUPPED	גרופייל גערדואי מססא		רוסאואפ אבורי, ציופאע אחרנאצ גרסאואפ אבורי, ציופאע	MALL LOCATED IN SMALL GREEN	MELL NOT PARPINE, PAST USE MENTING GREEN-OUSE; DRILLER'S LOG A ALLABLE	KELL PLUGGEO AT 25 METERS OMMER CALMINS TEAPERATURE EXCEEDS 36 DESSES C: EXCEEDS 36 DESSES C:
1892 DUATERNARY BASALT	11.35 QUATERNARY SEDIMENTS	QUATERNARY BASALT	. QUATERNARY MO TERTIÁRY SEDIMENTS, QUATERNARY BASALT	302 PLIOGENE AND PLEISTOCENE SEDIMENTS (7) AND SILICIC VOLCANIC ROCK	QUATERNARY BASALT	QUATERNARY ALLUYIUM		PLIDGENE SEDIMENTS NO . BASALT	PLI LOCENE SEDIMENTS AND BASALT	M4. PLIOCENE SEDIMENTS AND BASALT	PLIDCENE BASALT AND SILICIC
M. GOFF MELL IN 3N 800AL	NORORIS MITTE MELL IN 3M 80.0181	108091 MC NI	JIM AVAHAUSER WELL JIN SW 17ADDI	CHARLES ELUMERAUCH MELL 1N 3M 20DAG1	ELDON WASH WELL	GIVENS H S IN SM 216ABIS	IN 3W 288001	MARIE BRUNELL WELL IN 4M 12ABCI	ROBERT ODFELT WELL IN 4M 1280A1	MESLEY HIGGINS MELL	GUY FREEWAN WELL #1 IN 44 138AGT
	1692 DUATERNARY BASALT ROWING MELLE SOMESTIC 156 26 SPACE HEATING	183 DUATERNART BASALT ROMING KLLL ROMING KLLL ZOMEGTIC 156 26 SPACE HEATING - 1135 DUATERNART SEDIMENTS ELONING VELLL JFILLER'S LOC IRRIGATION 213 26 GREENOUSE AVAILABLE	182 DATERNAR' BAALT RONNE KLI. RONNE KLI. DORESTIC 156 26 26/02. HEATING 1135 DATERNARY SEDIMENTS FLOWING VELL. DFLLER'S LOG IRRIGATIO. 213 20 GREENHOLE 1135 DATERNARY SEDIMENTS FLOWING VELL. DFLLER'S LOG IRRIGATIO. 213 20 GREENHOLE QATERNARY BASALT FLOWING VELL UNISED 20 25 CATFISIS FRANKING MOD	102 DATERMONT BASALT ROMEN MAL. ROMEN MAL. DOMESTIC 26 BAGE HEATHAGE 113 DATERMONT SEDIMENTS FONNES WELL, SFILLEN'S LOG IREIGATIO 213 26 BAGE HEATHAGE 113 DATERMONT SEDIMENTS FONNES WELL, SFILLEN'S LOG IREIGATIO 213 26 BEEMOLIS 114 QATERMONT BASALT FLOMING WELL UNISED DATESTI SECIMENTS DATESTI PROVIDER MAL 11 QATERMONTS MALENANTY BASALT FLOMING WELL DATESTI 37 SECIMENTS	Ve3 OutEnsider BASALT NOME MELL: Deletitie Deletitie Deletitie Deletitie Deletitie 113 OutEnsider Schlebris Koning MeLL: Provide MeLL: Provide MeLL: Provide MeLL: Previde 113 OutEnsider Schlebris Koning MeLL: Prioritie 13 20 Resource 114 OutEnsider Mol MeLL: Koning MeLL: Bulls Bulls 20 20 20 11 OutEnsider Mol MeLL: Koning MeLL: Bulls Bulls 20 20 20 20	192 DATERMONT BAAAT CONTENTION CONTENTION	We3 ANTERNANCE MALLE LUMMA MLL. CAREFIC No. MACE MALLE III 10 UNTERNANCE SCILIENTS UNMARE ENFLIRE ENFLIRE ENFLIRE III 10 UNTERNANCE SCILIENTS UNMARE ENFLIRE ENFLIRE ENFLIRE III 10 UNTERNANCE SCILIENTS UNMERE ENFLIRE ENFLIRE ENFLIRE III 10 UNTERNANCE SCILIENTS UNMERE ENFLIRE ENFLIRE ENFLIRE III 10 UNTERNANCE SCILIENTS UNMERE ENFLIRE UNTERNANCE SCILIENTS ENFLIRE III 10 UNTERNANCE SCILIENTS UNMERE INVESSCILIENTS UNTERNANCE SCILIENTS ENFLIRE III 10 UNTERNANCE SCILIENTS UNMERE INVESSCILIENTS UNTERNANCE SCILIENTS INVESSCILIENTS INVESSCILIENTS III 10 UNTERNANCE SCILIENTS UNTERNANCE SCILIENTS UNTERNANCE SCILIENTS INVESSCILIENTS INVESSCILIENTS INVESSCILIENTS III 10 UNTERNANCE SCILIENTS UNTERNANCE SCILIENTS INVESSCILIENTS INVESSCILIENTS INVESSCILIENTS IIII 10 UNTERNANCE SCILIENTS UNTERNANCE SCILIENTS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	473 DATERNAME REALT Contre etc. <	Vity buttander Schleber Useder Schleber Useder Schleber Oddrike KLL, Dr.L.BFS GG Oddrike KL Oddrike KLL, Dr.L.BFS GG Oddrike KLL, Dr.L.BFS GG Oddrike KLL Oddrike KLL, Dr.L.BFS GG Oddrike KLL, DR.LEB Od	Wet Wordset Wordset Wordset Wordset Wordset Wordset Wordset 1 13 Jordset 20 Marriely 13 23 26 26 2 Jordset Wordset Marriely Marriely Marriely 13 29 26 26 3 Jordset Wordset Marriely Marriely Marriely 26 26 26 4 Jordset Marriely Marriely Marriely 26 26 26 26 3 Jordset Marriely Marriely 13 26 26 26 4 Jordset Marriely Marriely 26 26 26 26 4 Jordset Marriely 13 26 26 26 26 4 Jordset Marriely 26 27 2 26 26 4 Jordset Marriely 26 26 26 26 26 4 Jordset 16 26 26 26 26 26 4 Jordset 26 26 26 26 26 26 4 Jordset 16 <th>Weil purcharen monta University University Description Description Description 1 101 purcharen monta Contraction Contraction Monta Monta Monta 1 1 purcharen monta Contraction Contraction Monta Monta Monta Monta 1 1 purcharen monta Contraction Monta Monta Monta Monta Monta 1 1 Percention Monta Monta Monta Monta Monta Monta 1 1 Percention Monta Monta Monta Monta Monta 1 Percention Monta Monta Monta Monta Monta 1 Percention Percention Monta Monta 1 Mon</th>	Weil purcharen monta University University Description Description Description 1 101 purcharen monta Contraction Contraction Monta Monta Monta 1 1 purcharen monta Contraction Contraction Monta Monta Monta Monta 1 1 purcharen monta Contraction Monta Monta Monta Monta Monta 1 1 Percention Monta Monta Monta Monta Monta Monta 1 1 Percention Monta Monta Monta Monta Monta 1 Percention Monta Monta Monta Monta Monta 1 Percention Percention Monta Monta 1 Mon

٠,

-301-

tirued)
daho (cor
Wells in I
as and We
mal Spring
of Therma
tial Use
d Poten
t Use an:
, Presen
Елуітопшелт
Geologic
focation,
Data Table 4.
Basic

e lfuce e 3. ituce ference		43.4274 NEWTON AND 116.7614 CORCORAN, 1963	43.620 NEMTON AND 116,9346 ONCORM, 1963	43.6165 NENTON AC 116,9341 CORCOMM, 1965	43.5643 NEMTON AND 115.9487 COPCORAN, 1963	43.5740 NENTON AC 116.9702 CONCORAN, 1965	43.45703 NEWTON AC 116.45700 COHCORAN, 1953	YES 43,3466 ROSS, 1971 116,6275	43.3285 RDSS, 1971 116.6194	42.3009 ROSS, 1971	43,2571 - 4055, 1971 116,5724
Potentiel Use Based on Chemi Bast Estimate of Trace Subsurface Temperaturet** Anal.											
Potentiai Use Baser on Surface Tenperature ⁴⁴		FERMENTATION	FISH FARMINS AND HATCHING	B100ESRATAT ION	HEAT AND COOLING WITH HEAT PLAP	FISH FARMING MC HATCHING	HEAT AND COOLING WITH HEAT PUMP	GRAIN-HAY DRYING	FERMENTATION	HEAT AND COOLING MITH HEAT PLUAP	OXTELSH FARMING
Meli Eur. fer Depth Temp. Temp. (m) (90) (90)		335 29	228 20	165 23	210 21	137 20	126 21	518 46	289 30		121 28
Jeposition Sill-bor- Carus ates Fresent use (<u>Owyhee</u> <u>County</u> (cont'd.)	DOMESTIC AND STOCK WATERING	PUBLIC MATER SUPPLY	PUBLIC WITER SUPPLY	STOCK, DOMESTIC	STOCK AND DOMESTIC	STOOK AND DOMESTIC	SPACE HEATING AND IRRIGATION	HRHIGATION AND DOMESTIC	DONESTIC	IRRIGATION NO Seitering
0 Renerks Ges Co	0 O	SLIGHT SULFUR SELL	SLIGHT SULFUR ODOR	DRILLER'S LOS AVAIVABLE; SLIGHT SULFUR ODOR		· .	DRIVLER'S LOS MAILABLE	SLIGHT SLEEUR ODOR		OMMER STATED MELL PLOMED PRIOR TO DEVELOPMENT OF NEW MELL 1 MILE S.E.	THO MELLS AT THUS SITE, MATER MIXED AT DUE SITE, MATER MIXED AT DUE MATER MIXED AT DUE LEONS INTO SMICHARING AND
Goulogic Structure											
j:s- ctarye (1/m.m) Aquiter Age and Aoc÷ Type		PLIOCENE BASALT AND SILICIC VOLCANIC ROCKS	340 QUATERNARY ALLUVIUN, PLIOCENE MD PLEISTUCENE SEUIMENTS	370 WATERNARY ALLUYIUM, PLIOGENE MD PLEISTOGENE SEDIMENTS	340 QAATERNARY ALLUYIUM, PLIOCENE AND PLEISTOCENE SEDIMENTS	189 quaternary alluyium, Pliocene and Pleistocene seoiments	136 QUATERNARY ALLUVIUM, PLOGENE AND PLEISTOGENE SEDIMENTS	643 QUATERNARY BASALT AND GLATERNARY-TERTIARY 5EDIMENTS	QUATERNARY BASALT AND QUATERNARY-TERTIARY SEDIMENTS	757 QUATERNARY BASALT AND QUATERNARY-TERTLARY SEDIMENTS	406 QUATERNARY BASALT AND QUATERNARY-TERTI ANY SEDIMENTS
Spring/Well 5 1 gentif/cetton cm Number & Name (1)		GUY FREEMAN WELL #2 1N 44 138431	HOMEDALE CITY MELL Ø1 3N 54 40AC1	HOMECALE CITY MELL #2 3N 5W 9AABI	GEORGE JOHNSTONE NELL 3N 5% 28C8U1	JUSTANERE FARMS MELL #1 SN 54 JOAAA1	JUSTAMERE FARMS HELL #2 3N 5N 30ADA1	EARL FOOTE MELL FS ZW 70081	COTNER FARM NELL 15 24 180001	JIM TAYLOR WELL JS ZM 270001	JACK MORGAN WELL 15 24 330001

-302-

ROGER OLINNEY WELL 378 OUATERN 15 ZM 34CABI 15 ZM 34CABI	QUATERMARY BASALT AND QUATERMARY-TERTIARY SEDIMENTS	SOME SULFUR TOOP	DOMESTIC	R 8	HEAT AND COOLING WITH HEAT	43.2926 NOS5. 1971
16 QUATERA QUATERA GUATERA SEDIMEN	QUATERNARY BASALT NO QUATERNARY SASALT NO QUATERNARY -TEXTI ARY SEDIMENTS	FLOWING MELL	STOC. AND SOMESTIC	365 40	GREENHOUSE	43.5607 ROSS, 1971
94 QUATERN QUATERN SEDIHEN	QUATERNARY BASALT WU QUATERNARY-TERTLARY SEDLIMENTS	. Flowing were	IRRIGATION	274 36	FÊRMENTATION	155, 1971 (15, 1971)
2725 QUATEAN SEDIMEN BASALT	QLATESHMARY-TERTIARY SEDIMENTS MOD QUATERNARY BASALT	DRILLER'S LOS AVALABLE	STOCK WATERING	182 27	BI ODECRADATION	: 43,3525 LOG, 1966 116,6975
1703 QUATERN SEDIMEN	QUATERNARY-TERTIARY SEDIMENTS	- DRILLERIS LOS WALLABLE	STUCK	167 37	SPACE HEATING	43,3533 LOS, 1968 116,7005
PAUL WARRICK WELL 1115 QUATERN 25 In 20061 BUSALT BUSAL	QUATENNARY-TENTIARY SEOIMENTS ALD QUATERNARY BASALT	DRIFLER'S LOG ANILABLE	DOMESTIC	221 30	DE-ICING HIGHMAT	43,2329 LGS, 1966 116,4325
LUNINIS GIVENS NELL 1135 PLIOGEN 25 24 20801 NELL 1135 PLIOGEN	PLIDORME AND PLEISTOCENE SEDIMENTS AND QUATERNARY BASALT	PLONING MELL FLONING MELL		260 38	. SPACE HEATING .	43,2752 L05, 1955 116,5465
GUY GIVENS WELL #1 378 QUATERN 25 2# 360A1 SEDUREN SEDUREN	QIATERNARY BASALT AND QUATERNARY-TERTI ARY SEDIMENTS-TERTI ARY	SULFUR CDOF; FLOWING WELL	STOCK WATERING	274 38	SCI MOROCHH	43,2814 ROSS, 1971 116.5624
GUY GIVENS WELL #2 757 QUATERN 25 24 38001 SEDHAR	QUATERNARY BASALT AND QUATERNARY-TERTLARY SEDJAGNIS	SULFUR ODOR; FLOMINS MELL	STOCK WATERING	274 43	SEDLING ONIFERS	43.2801 R055, 1971 16,562
757 QUATERN QUATERN SED1MEN	QLATERNARY BASALT NID QLATERNARY-TERTLARY SEDIMENTS	SULFUR ODOR, FLOWING MELL	IRFIGATION	274 36	AUAQULTURE	43.2779 R055, 1971 116.5696
SKYLES MU NEELEY QUATEN MELL I SOMA 25 24 35ABAI BASALT	quatennary-terti ary Sediments and quatennary Basalit	BEING DRILLED AT TIME OF HISPECTION	REATION	335 25	·	43.2113 BEARO, 1978 116.3384 (SITE INSPECTION)
SKYLES MID NEELEY 11355 QUATERNARY BASALT KELL 2 255 28 4554201	NARY BASALT	DRILLER'S LOG AVAILABLE	IRRIGATION	761 41	SDIL, WARNING, AD GPEENHOUSE, SPACE - EATING	43,2058 L05, 1976 116,5373

-303-

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential fise of Thermal Springs and Wells in Idaho (continued)

<u> </u>		r	T	· · · · · · · · · · · · · · · · · · ·	Deposition	· •	1 -	Agui			-		<u> </u>
Identification (Cis∽ harge (}∕min)) Aquifer Age and Rock Type	Geologic Structure	Remarks	Sili- Car- Sili- bon Sas ceous ate	-	DepthT	urf fen emp Temp PC) (^P C)	 Potential Use Based on Surface Temperature** 	Potential Use Based on Best Estimate of Subsurface Temperature***	Trace	Latitude & Longitude	Reference
					Owyhee Co	unty (cont'd.	,						
YLES AND NEELEY ELL 3 25 ZW 35BAA1	7192	QUATERNARY BASALT		DRILLER'S LOG AVAILABLE		IRRIGATION	637	32	FERMENTATION			43.2131 16.5223	LOG, 1970
YLES AND NEELEY LL 4 25 2w 360001	5602	QUATERNARY BASALT AND QUATERNARY-TERTIARY SEDIMENTS		TO BE DRILLED DEEPER; WATER TEMPERATURE HIGHER WHEN FLOWING		IRRIGATION	360	23	FISH FARMING NO HATCHING			43.1997 116.5237	ROS5, 1971
MALLEY WELL IS 2W 1BC81	945	QUATERNARY BASALT AND QUATERNARY-TERTIARY SEDIMENTS				IRRIGATION	121	24	CATFISH FARMING			43.1943 116.5311	ROSS, 1971
FRED HEYWOOD WELL IS IE 35DACI		PLICCENE AND PLEISTOCENE SEDIMENTS		NOT FIELD CHECKED			91	20	HEATING AND COOLING WITH HEAT PUMP		YES	43.1176 116.2970	YOUNG AND WHITEHEAD, 1975
YNE SMITH WELL IS 1E GABBI	1135	- PLIOCENE AND PLEISTOCENE SEDIMENTS		SULFUR ODOR; WELL FLOWS WHEN ADJACENT COLD WELL I SHUT OFF	IS	PRIGATION	213	22	HEATING AND COOLING WITH HEAT PUMP			43,1120 116,3839	ROSS, 1971
ILLIAM COX WELL ≸1 45 IE 250CD1		PLIOCENE AND PLEISTOCENE SEDIMENTS		FLOWING WELL		STOCK WATERING	·	32	FERMENTATION		YES	43.0412 116.2890	YOUNG AND WHITEHEAD, 1975
ILLIAM QOX WELL #2 IE 26ABC1	18	PLIOCENE AND PLEISTOCENE SEDIMENTS		FLOWING WELL		unused	518	27	CATFISH FARMING		YES	43.0521 116.3016	YOUNG AND WHITEHEAD, 1975
ADCOCK WELL 45 1E 290001	6813	TERTIARY SILICIC VOLCANIC ROCKS AND PLIOCENE SEDIMENTS		FLOWING WELL; DRILLER'S (AVAILABLE; PAST USE: HOC SCALDING	L06 5	BRIGATION	926	68	APPLE DEHYDRATION		YES	43.0400 116.3692	LOG, 1959
EORGE KING WELL IS 1E 34BAD1 -	12112	TERTIARY SILICIC VOLCANIC ROCKS AND PLICCENE BASALT		FLOWING WELL; DRILLER'S (AVAILABLE; SULFUR ODOR	LOG YES	RRIGATION	90 ,8	76	PASTEURIZED MILK PROCESS		YES	43.0374 116.3235	RALSON AND CHAPMAN, 1969
ES-CON INC. WELL IS 2E 19ACC1	1268	PLIOCENE AND PLEISTOCENE SEDIMENTS AND PLIOCENE STLICIC VOLCANIC ROCKS		FLOWING WELL; DRILLER'S I AVAILABLE	.0 0	RARELY USED	938	42	SEEDLING CONTRERS			43,0636 116,2677	LOG, 1956

DOMESTIC

FLOWING WELLS SILGHT

622 26 CATFISH FARMING

YES 43.0450 YOUNG AND 116.2427 WHUTEHEAD, 1973

	*0 1975	RALSON, MUD DHAPPING, 1969	TOUNG AND INTEAREAD, 1975	TOUNG AND MHITEHERO, 1975	YOUNG AND WHI TEMEAD, 1975	1954	Young And MHITEHERO, 1975	RALSTON AU DAPWAN, 1969	RALSTON AC GIAPHAN, 1965	٤٢٤١ ,		round Ard Hittererol, 1972
	TES 45.0430 YOUNG MD 116.2427 WHITERED, 1975	YES 43,0932 RM.50	YES 43.0247 YOUNG 116.3172 MHITE	YES 43.052 YOUNG 116.3242 MHITE	175	YES 42.9728 LOG, 1954 116.3507	YES 42.9753 YOUNG 116.2799 WHITE	YES 42,9787 RML5TC 116,2773 CHPW	YES 43.0244 RALSTO 116.1745 CHAPAG	YES 43.0150 YOUNG, 1973 116.1867	YES 43.0194 116.2500	YES 42.9926 YOUNG 116.1583 MILTER
		·		SL NCHI KS			BLANCHING	PASTEURIZED NILK PROCESS				
	SHIRE FREE FREE	50 I MOGORCH4	QUADUTURE	- AHOMESPE THAT 66	STOCK WATERING	REFRIGERATION (LOWER) TEAPERATURE LINIT	96 AN I MAL HISBADISK	77 SPACE HEATING	SKI NOSHISTN	ST IND SOLUTION	Selleting POOL	FISH FRANKING AND HATCHING
	8.22 3 8	824 39	579 52	902 64	274 48	5 01 64	755 67	950 86	548 49	749 37	612 45	532 æ
÷	DOMESTIC	DOMESTIC		IRRIGATION	DOMESTIC	IRFIGATION	YES IRRIGATION	I RRIGATION	YES SFACE HEATING	IRPLGATION	IRRIGATION	DOMESTIC -
	7.000° אנטע אנוב, גוואיז צורוא 2008	FLOWING WELL; SULFUR DOP YES	FLUNING WELL; REPORTED INFORMATION; NOT FIELD CHECKED TON; NOT FIELD	FLOWING WELL; DRILLER'S LOG WAILABLE	INTERNITTENT FLOW	FLOWING WELL; DRILLER'S LOS	FLUMING MELLY SLIGHT SULFUR 0004, DRILLER'S LOC MAILABLE	FLOWING WELL; SLIGHT SULFUR -0006; DRILLER'S LOG AVAILABLE	FLOWING WELL, SULFUR COOR YES	SLIBHT SULFUR COOR, NOF SLIBHT SULFUR COOR, NOF REPORT: FLONING WELL; REPORTED CAVED N.	NOT FIELD OFECKED	FLOWING WELL; DRILLEN'S LOG AVAILABLE
	4 PLIOGENE MO PLEISTOREME SEDIMENTS	PLIOGENE SEDIMENTS AND BISALT, AND TEATLARY SILICIC VOLCANIC ROCKS (?)	PLINGNE AND PLEISTUCENE SEDIMENTS	B TERTIARY SILICIC VOLCANIC ROOKS	PLIOCENE BASALTS	JG14 PLIDCENE BASALTS	MO TERTIARY SILICIC VOLCANIC	DI TENTIARY SILICIC VOLCANIC	PLLIOCENE BASALT (?) AND SEDIMENTS	PLLIOCENE MUD PLEISTOCENE SEDIMENTS	PLIOGENE MO PLEISTOCENE SEDIMENTS	PLIOCENE MU PLEISTOCENE SEDIMENTS MU BASALT
	G. DMRISTENSEN WELL 94 45 ZE 2008CH	R, KETTERLING WELL 45 ZE 524001	CHARLES STEINER HELL 55 IE SAABI	E, LANERENCE HELL /1 5518 55 16 108201	ELMER JOHNSTON MELL /1 216331	ELMER JOHNSTON WELLEZ 55 18 210801	E. LANEPENCE MELL J2 55 IE 24400	E. LANGRENCE 4701 NELL 73 55 IE 24.0081	OSCAR FIELDS MELL 55 25 18801	CLARENCE HOPKINS MELL 55 22 200A1	COX AND LAMFENCE WELL 55 25 58CD1	HEMAY ORESCLL NELL N 55 ZE 1340A1
14 A A A A A A A A A A A A A A A A A A A						2	05					

なるのないで、「ないないない」というないのでは

-305-

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued:

Sortential Use Based on Cheer/Latitude Best Estimate d'arterit Lucsurface Temetraturerit Amal, Longitude Raterence		42.9646 L06, 1965	¥ YES 42,9973 LOC, 1959	YES 42,0820 YOUNG AND 116,1356 MHITEHEAD, 1975	42.9796 16.11.55	42.9782 116.1144	YES 42.9811 YOUNG AD 16-0765 MITENEND 1975	HIGH ENERGY PROCESSING OF YES 42-9639 YOUNG, 1972 KILN LUNBER	YES 42.9639 YOUNG, 1973 116,0730	YES 42,9619 YOUNG AG 116,0861 MITTENEXO, 1973	DANNING AND PRESERVING YES 42.49013 YOUNG AND 100.1141
Surf. Rev. Teon. Teon. Porterial use Essed on Bug (CD) (CD) Surface (anywerune * jungur)		ZI MIMAL MISBUCSY	59 ଜଣକ ଥାଇ ଏକ ଅମ୍ବର	Z) CATFISH FARMINS	22 HEAT AND COOLING WITH HEAT PUMP	ZI CATFISH FARMING	DE-ICING ROXOWAYS	8 116 BARLEY WALTING PROCESS HIGH 5	67 REFRIGERATION (LOMER TEMERATURE (14417)	60 GREENHOUSE .	64 106 HCTBEC HEVTING
Debus: field Meil 30 Sili 35- Sili Don: Present use 0010000	<u>Owyhee</u> County (cont'd.)	DOMESTIC 45	HEATING HOME 737 & OVTOULLDINGS	STOCK WATERING	BONESTIC 609	- bokestic 609	. 960	Yes (1) Yes greenhouse 905 e	YES IPRIGATION 905 6	AIR CONDITIONING 883 6	3 277 - 774 6
Seelogic Structure Structure		WELL CIVED, ORIGINAL DEFT- NAS 922 WETERS WITH A RECONSTIT TERFEGATURE OF 60 DEFREES C, DATLLEFF: 5 LCG MAILLABLE	ננסאות אנון אווי אוויגנע סטא איזראפרבי מווינגע סטא	FLOWING NELL	י.	FLOWINS WELL	FLOWING WELL	FLOWING WELL	FLOWING WELL	FLOWING WELL	too wal-yait
ojs- oterje 11/min) Aquiter Age and Rock Tr≠e Sec		PLIQENE AND PLEISTOCENE SEDIMENTS AND BASALT (7)	1957 PLIOCENE AND PLEISTOGENE SEDIMENTS AND BASALT (1)	7 PLIOCENE MO PLEI STOCENE SEUTINENYS	37 TERTIARY SILICIC VOLCANIC BOOS (1)	TERTIARY SILICIC VOLCANIC	PLIOCENE AND PLEISTOCENE .	1059 PLIBGENE SILICIC VOLCANIC ROCKS WD PLIDCENE BASALT	1711 PLIOCENE SILICIC VOLCANIC ROOS AND PLIOCENE BISALTS (3)	PLIOCENE SILICIC VOLCANIC ROCS AND PLIOCENE BASALT	TEATINGY SILLEIC VOLCANIE ROOKS MAD PLIOCENE BESILT
Spring/Well 5 laentificerion	-	HENRY DRISKELL NELL #2 55 25 25/0A1	NORRIS INCKEETH NELL 55 36 2040A1	BURGH WEDT CO. WELL 55 3E 208881	HARALD, SIMPER MELL, #1 55, 36 218801	HARALD SIMPER HELL #2 55 3E,216051	LEROY BEAMAN MELL 55 3E 22AMD1	CONKELS GREENHOUSE #1 55 3E 268081	ODOME15 BARENHOUSE ∦2 55 3E ZENDE2	0, BYBKE M€LL #1 55 3€ 278001	AL WHITTEU MELL SL 36 26MCL 1

-306-

						·			5	۵ م	ي ت
47.9460 USt	YES 42,9400 YOU'G, 1973 116.0742	YES 42.9425 115.9752	YES 42,9507 YOUNS 45, 1975 115,8706 WITTENEX3, 1975	YES 42,8396 YOUNG MU 113,8371 MITTEREN, 1975	42,9399 Loc, 1967 115,7920	YES 42.8648 YOUNE 4.0 16.3679 MAITEREK, 1975	YES 42.9313 YOUNG ALC, 1975 116.0747 WHITERE-C, 1975	YES 42,9259 RALSTOV NC 116,0754 CARPAN, 1969	YES 42,9311 YOUNG 40 116,1153 MHTE-FQ, 1975	YES 42,9297 YOUNG AC 116,1301 MHITENEGO, 1975	YES 42.9168 YOUNG AVC 1375 116.1042 MHITEHEAC, 1375
	FRUIT AND VEGETABLE DEHTORATION		HEATING AND COOLING NITH. HEAT PUMP	CATEISH FARMING	HEAT NUMP COOLING WITH HEAT PUMP	HEATING AND COOLING WITH HEAT PUMP	GAME BIRD HATCHERY	DRY ING	GRENHOUSE	HDT MATER NEATING	SOIL WARNING
25	785 72	108 27	201 25 .	59 58	149 21	R	935 59	591 54	512 48	1097 60	434 41
DOME STIC	NO1 LYSI 321	DOFESTIC	I RRIGATION	IRGIDATION	IRELGATION	UNUSED .	1382/16.4T1.0M	YES YES INSIGNTION	RELIGATION	NOT TON	IRRIGATION
LCONING METER DESITERYS	FLOWING MELL	NOT FLELD OFFICIED	MATER COES THROUGH A HOLDING TANK FIRST SO TEMPERATURE MAY NOT RE ACOURATE	DRILLER'S LOG N'AILABLE	NO ACCESS TO WELL: REPORTING: REPORTING: CALLER'S LICE WALLABLE	NOT FIELD OFENED	FLOWING WELL; DRILLER'S LOG AVAILABLE	FLOWING WELL, SULFUR (2008).	FLOWING MELL	FLOWINS WELL; DRILLER'S	DRILLER'S LOG AVAILABLE
1703 PL.LOCENE MID PLEISTOCENE SEDIMENTS	2271 SILICIC VOLCANIC ROOKS ARE PLIOCENE BASALT	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE BASALT AND SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALT	9064 PLIDCENE BASALT AND SEDIMENTS	PLIOCENE SEDIMENTS	1022 PLIDOENE BASALT AND SEDIMENTS	Z725 PLIODENE BASALT AND SEDIMENTS	PLIODENE BASALT (7) MED SEDIMENTS	7570 RLIOCENE SILICIC VOLCANIC	88576 PLIOCENE BASALT AND SEDIMENTS
D. LAYTON NELL 55 3E 340AA1	0. BYBEE MELL #2 55 35 550001	IDAHO PONER CO. MELL 55 4E 340081	CHESTER TINDALL HELL 55 338501	OLAY ATKINS NELL SE JAADDI SS SE JAADDI	STREETER-BRADBERRY WELL 6E 310001	LONER BIRCH SPRING 65 1E 3288A15	1 POST WELL ()	LESUIE POST MELL / Z 65 - 35 - 20001	W, BUNT MELL 65 35 49001	J, AGENBROAD HELL	NIELSON AND CAROTHERS

-307-

t substance instance and and

present Use and Potential Use of Thermal Springs and Wells in Idaho {continued}
Table 4. Location, Geologic Environment,
Basic Data Tab

Spring/well 2:s- identification charge Name A Name (1)/min) Aquifer Age and Acck Type Structure	Remarks Sas cavus the	Hell Present Use (m)	Surf. Aqui- Surf. tere. Forential Temp. (9C) (9C) Surface T	Forantial Use Based on Enstitute Based on Cu Baset Estimate of Ti Suptace Temperature** Subsurface Temperature*** A	Chen/ Lafitude Trace & Anal. Longitude	Reference
	Orginee	<u>Owyhee</u> <u>Courty</u> (cont'd.)				
BOR DIPAS WELL 7570 PLIOCENE MO PLEISTOCENE 65 JE IOCAAI SEDIMENTS	PARTY CAVED IN, DRILLER'S	IRRIGATION_ 350	350 30 BIOCERADATION	3	42.9156 L 116.0881	1969
TREANGLE DARRY 605 PLIOCENE ND PLIESTOCENE WELL #1 SEDIMENTS NO PLIOCENE 55 SE LIDADI BNSALT (3)	DRILLER'S LOG AVALAALE; NO 402555 TO 4ELL BEFORE HOLDING TAN	STOCK MATERING 435	уч үрилсигтияс		YES 42.9136 h	YOUNG AND MILTEHEND, 1975
TRIMALE DATRY 11 PLIOCHE MU PLEISTOCENE WELL 2 65 36 148081	סאוררפאי איס איזראשר פ	DOMESTIC 408	29 FERMENTATION		42,9063 LI	L06, 1923
ROBERT LUAVIS MELL #1 7570 PLIOCENE AND PLEISTOCENE 65 35 23-03A1	DRILLER'S LOG AVAILABLE	1R816A710N 378	30 DE-ICINS HIGHMAY	, v va	42,8821 LC	1968
ROBERT DAVIS MELL #2 9961 PLICCENE NUD PLEISTOCENE 65 3E 26CBC1 SEDIMENTS	DAILLER'S LOS MAILABLE	IRRIGATION 256	8	SI SHEMING AND INTERNING RELI	42.8705 LC	106, 1974
B, BURGHNEDT WELL #1 2649 PLIOCENE AND PLEISTOCENE 65 3E 34DCC1 \$2649 PLIOCENE AND PLEISTOCENE		IRRIGATION . ZAO	HUDROPONI CS		42,8513 116,0865	
JIM MORRISON MELL #1 5299 PLICOCKE SILICIC VOLOMIC 65 4E 146001 SOOKS AND BASALT	טאודרנאיט נגס אאוראפרב	18816AF10N 580	55 LAUNURY USES		YES 42,9073 YO	YOUNS AND WHITEHEAD, 1975
JIM MOPPISON WELL // 2 30 PLEISTOCENE SEDIMENTS 65 4E 148002	טאוררנאי, s וְסָכּ אַראוראַפּרנ	DOMESTIC 42	27 CATFISH FADAING	9	42.9051 LO 115.9682	LOG, 1970
KENT KOMRING WELL ≢1 7570 PLIOCENE AND PLEISTOCENE 65 4€ 2580C1 SEDIMENTS	· .	{RR16AT10+ 533	Z? DE-ICING		YES 42,8740 YO	YOUNG AND WHITEHEAD, 1975
ANTONIO DELEON 1022 PLIOCENE MO PLEISTOCENE Veli fi 55 42 322 451 560 142 375	DRIFTER'S LOC AVALAGLE	HREIGATION 362	33 FERMENTATION		42,8571 LOS, 1971 115,9978	1261 (0

-308-

42,8579 LOC, 1976 115,9865	YES 42.6547 YOMG MD 115,9463 MITTERENO, 1975	42,8576 L05, 1972 115,9366	لاً 42.6581 נ05, 1972 115,9455	42.8523 LOG, 1967 115.9354	42,8522 115,9344	YES 42,9117 YOUNG, 1972 115,6389	YES 42,6969 LOG, 1973 115,9156	YES 42.8990 YOUNG, 1975 115.6794	YES 42,8897 YOUNS, 1973 115,8113	YES 42-8842 YOUNS 1973 115-8006	YES 42-R667 105 1925
ž		HLIN SWITCO		·	¥	÷.,	9 I N	FERS	ž	553004 94711 MC 1980	z
BLODEGRADATION	QUACULTURE	HTIN ONLOOD ING WITH HEAT PURP	DE-ICING	HYDROPOWICS	CATFISH FARMING	KUAOL TURE	DR00001LE FAMING	sedling onlifers	CATFISH FARMING	96 FERVENTATION	B) (DESRADATION
358 31	8 Ř	2 2	272 30	609 40	152 20	508 39	902 27	\$	¥.	590 32	475 33
(PRIGAT) ON	IRRIGATION	HRR LGAT FOR	IRRIGATION	IRRIGATION	IRIGATION	STOCK WATERLING	DOMESTIC	STOCK WATERING	DOMESTIC	FUBLIC SUPPLY	STOCK MATERING
DRILLER'S LCG WAILABLE	DRILLER'S LOS AVALABLE	DRILLER'S LOS AVALABLE	DRILLER'S LCG MYILABLE	DRILLER'S LOS WAILABLE		DRILLER'S LOG AVALABLE; FLOW) NG MELL	DRILLEP'S LOG AVALABLE	FLOWING WELL	SLIGHT SULFIR (2008; FLORING MELL; (RELLER'S LOG MAILABLE	י. גוואיז גטסא	A DATE OF A DEFENSION
P. LOZNE MO PLEISTOGNE SELIMENTS	11923 PLIOCENE NO PLEISTOCENE SEDIMENTS	. 4920 PLIOCENE MO PLEISTOCENE SEDIMENTS	9614 PLIOCENE MO PLEISTOCENE SECINENTS	9463 PLIDOENE BASALT AND SILICIC YOLCANIC ROOKS	KENT KOHRING MELL #3 3785 PLIOCENE BASALT (2) 65 4E 360002	15 PLIOCENE MO PLIOCENE SEDIMENTS MO PLIOCENE BASALT	PLIOCENE BASALT AND SILICIC VOLCANIC ROOKS	PLIOZNE BASALT	75 PLICOENE BASALT	PLIOGNE BASALT AND SILICIC VOLONIC ROOGS	11 BY LOCCUE AND BY FEETDOTSNE
ANTONIO DELEON MELL #2 65 4E 330BA1	DICK WARD WELL 11 65 4E 3500A1	MERRILL TALIWAN - 4 MELL FI 65 4E 350AA1	MERRILL TALLWAN NELL 72 65 4E 350891	KENT KOMRING WELL #2 9463 65 4E 360001	KENT KOMRING NELL #3	ODLYER CATTLE CO. HELL 65 SE 100001	J.R. SIMPLOT MELL #1 65 5E 180081	J.R. SIMPLOT NELL #2 65 56 20AABI	GEORGE HUTCHINSON KELLL 5E. 248CA1	BRUNEAU CITY MELL 65 55 2400B1	
~	њя	**		đe.		109-					

(panu	
(cont i	
orab I	
a Ti	
1 Well	
ds and	
Sprin	
Thermal	
se of	
u tai	
Potent	
e and	
nt Use	
Pres¢	
ument,	
nviror	
gic E	
Geolo	
tion,	
, Loca	
ble 4.	
ta Tak	
sic Da	
Bas	

ļ

beposition

Reterence		YOUNG, 1973	1958, 1968	102, 1928	YOUNG, 1973	YDUNG AND WHITEHEAD, 1975	YOUNG AND MHITEHEAD, 1974	YOUNS AND WHITEHEAD, 1974	YOUNG, 1973	YOUNG AND WHITEHEAU, 1974	Moral Ad
Chem/ Latitude Trace & Anal. tongitude		YES 42,8547 115,8314	тез 42.9108 115.6939	YES 42,8820 115,7925	YES 42.8856 115.7819	YES 42.8600 115.7683	YES 42.9342 115.5678	YES 42,9285 115,5639	YES 42.9249 115.7072	YES 42.9217 115.6528	YES 42.8435 116.0955
Pertential Use Based on Bast Estimate of Subsurface Temperature**		АТ									
- Potential Use Based on Surface Temperature*		PLART AND COOLING WITH HEAT	AQU ADUL TURE	HOROPONI CS	SHIMMING POOLS	FERMENTATION	QUAQUE TURE	SCHOLABIDH	BLODEGAVOATION	CATFI SH FAHNING	JE−1Jthú HIGHMAK
Well Surf ferrer Depth Temp. Temp. (m) (PC) (PC)		140 22	301 37	278 36	410 42	427 35	304 42	52 025	411 35	8 111	245 23
tion Càr- bon- Present Use	<u> Gwyhee</u> <u>County</u> (cont'd.)	IRGIGATION	IRRIGATION	DOMESTIC	NC 1 LON	STOOK WATERING	DOME STIC	STOCK WATERING	DOMESTIC	DOMESTIC	RR DA
Benarks Sas Geous a	Owuhae 0		ORILLER'S LOS AVALABLE	FLOWING WELL; DRILLERIS LOG MAILABLE	DRILLER'S LOG AVAILABLE; SULFUR COOR	FLOWING WELL; SLIGHT SULFUR	FLOWINS WELL	FLOWING WELL		DRILLER'S LOS AVALLABLE	DRILLER'S LOS AVALABLE; DEPTS, PAPEDE FROM 220 METE: DEPTS, MATER 15 REPORTE: TO BE 60 DEMLE C
Geologic Structore		L									
bis- charge (1/min) Kquiter Age and Rock Type		PLIOCENE AND PLEISTOCENE SEDIMENTS	499 PLIDGENE MAD PLEISTOGENE SEDINENTS	65 66 190001 MELL	PLIOCENE PRACTURED BASALT	151 PLIOCENE FRACTURED BASALT	11 PLIOCENE AND PLEISTOCENE SEDIMENTS	34 PLIOCENE AND PLEISTOCENE SEDIMENTS	1) PLIOCENE AND PLEISTOCENE SEDIMENTS	52 PLIOCENE AND PLEISTOCENE SEDIMENTS	5299 PLIOCENE BASALT
Spring/well Fdentification Number & Name		CARL MID HARRY LOUS 65 5E 35CCA1	IDAHO PARKS DEPT. 65 66 120001	ы цркер восними иесц.	BRUNKEAU OENETARY RELL 65 190801	ACE BLACK WELL 65 6E 328051	MILEAR MILSON MELL () 65 7E 1ACBI	MILBUR WILSON MELL #2 65 7E IDBUT	LOIZZ JE SS CARL JONNAGU JEL	SAND DUNES FANS WELL 65 75 BBBA!	81LL BURGHARDT WELL #2 75 55 4ACC1

-310-

The second se

WILBER MASTRE MELL 7570 75 3E 12A021		I RR IGAT 1 CN	249 33	n nunger (n. 102)	42,0310
CELTH THOMAS NELL PLIOCENE SILICIC VOLCANIC	FLOWING WELL	IRRIGATION	548 40	STOD, WATERING	YES 42.6442 YOUNG, 1973
PETE MERRICK MELL≢I PLIOCENE JOINTED BASALT 75 4E 34BD1 .		IRR16A7104	348 42	SUDAN POOLS	YES 42.4466 115.9566
CLAMERKE MERRICK 9027 PLIOCENE SEDIMENTS Kell an 75 46 38801	DRILLER'S LOS AVAILABLE	IRRIGAT (DA.	274 33	DE-ICING RODWAYS	r 42.8486 L05, 1965 115.9729 **
BOB MASTRE MELL PLIODENE BASALT 75 4E 440B1	DRILLER'S LOS AVAILABLE		458 34	WAAULTURE	42.8462 1.06, 1974 115.9761
DELBERT MRIGHT MELL 6013 PLIODENE JOINTED BASALT 75 4E SOCAT		IRRIGATION	316 30	AQUACULTURE	42,8800 YOUNG, 1973 116,0085
LES ISAAC MELL 7570 PLIOCENE JOINTEL BASALT (?) 75 4E 50001		IRRIGATION	277 50	DE-ICIMS	526575 525975
PETE MERRICK WELL #2 PLIOCENE JOINTED BASALT 75 4E 102091	נאורדנאר ז רספ אאעוראפר צ	IRRIGATION	348 38	BIODEGRADATION	YES 42.6322 YOUNG, 1973 115.9661
CLARENCE REARICK 10220 PLIOCENE AD PLEISTOCENE NELL #2 SEDINENTS AD PLIOCENE 75 4E 100BC1 BASALT	סאוזרפאיז זעט אאוראפרב י	IRRIGATION	276 35	FERMENTATION	42.8271 LOG, 1965. 115.9617
PAUL QLERUM MELL 2649 75 42 TIACCI		I RRIGATION	349 43	SEEDLING CONFFERS	42.8295 115.9426
FRANK MILLETY 11923 PLIODENE SILICIC VOLCANIC WELL #1 75 4E 1108C1	Deiller's LOS WAILABLE	IRRIGATION	457 36	AQUAQUITURE	YES 42.6861 YOUNG 1973
FARIA BROTHERS HELL 5602 PLIOCENE SILICIC VOLCANIC 75 4E 128001 ADDXS	FLOWING WELL; GRILLER'S LOG MAILABLE	I RRIGAT I ON	336 43	STOCK MATERINS	YES 42.6306 YONG, 1973

-311-

.

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Spring/Nell Identification Kumber & Name	Dis- charge (1/m/m) Fawiter Age and Rock Type	Geologic Structure	Remarks	Deposition Sill- Gas ceous ates	Present Use	Hell Surf fe Depth Temp Tem (m) (°C) (°C	***	Potential Use Based on Best Estimate of Subsurface Temperature***	Ctem/ Latitude Trace & Anal, Longitude	e. Reference
					Owyhee Cour	<u>ity</u> (cont'd.,)				- -
WILLIAM ROBERTSON MELL 75 4E 120001	13286	PLIOCENE SILICIC VOLCANIC ROCKS AND BASALT		ORILLER'S LOG AVAILABLE; FLOWING WELL	I	IRRIGATION	274 43	: SEEDLING CONTFERS		42.8224 115.9334	LOG, 1968
CLARENCE COOK WELL 75 4E 13BCC1	5621	PLIQCENE SILICIC VOLCANIC ROCKS		TOTAL DEPTH IS UNKNOWN, WELL WAS DEEPENED	1	IRRIGATION	323 39	SOIL WARMING		YES 42,8153 115,9336	YOUNG, 1973
DAVE LAHTINÊN WELL 75 4E 13DCD1	3785	PLIOCENE SILICIC VOLCANIC ROCKS	-	DRILLER'S LOG AVAILABLE; FLOWING WELL	I	IRRIGATION	304 40	STOCK WATERING		YES 42.8061 115.9194	YOUNG, 1973
FRANK MILLETT WELL #2 75 4E 14ABC1	20440	PLIOCENE STLICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE	. '	RRIGATION	349 39	QUACULTURE		YES 42.8189 115.9433	YOUNG, 1973
ELMO GRIFFITS WELL 75 4E 14CDC1	11242	PETOCENE STETCIC VOLCANIC ROCKS (?)		- DRILLER'S LOG AVAILABLÉ	I	RRÍGATIÓN	289 29	BIODEGRADATION -		42.8080 115.9479	LOG, 1963
ROBERT BLACK WELL 75 4E 15ADD1	10704	PLIOCENE JOINTED BASALT AND SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE		REIGATION	324 33	FERMENTATION		YES 42.8153 115.9606	YOUNG, 1973
BLAINE RAWLINS WELL 75 4E 22ACB1		PLIDCENE SILICIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE	1	REGATION	304 38	SHRIMP FARMING		42.8028 115.9615	LOG, 1966
C. RUSSEL WELL 75 4E 22BAD1	16276	PLIOCENE SILICIC VOLCANIC RDCXS		DRILLER'S LOG AVAILABLE	ŀ	RRIGATION	243 41	GREENHOUSE		42.8042 115.9649	LOG, 1972
BLAINE RAWLINS WELL ≢2 75 4E 23CBB1	15 1	PLIOCENE STUTCIC VOLCANIC ROCKS AND BASALT		DRILLER'S LOG AVAILABLE .	D	OMESTIC	108 35	QUAQULTURE			YOUNG AND WHITEHEAD, 1975
BLAINE RAWLINS MELL #3 75 41 20006	19141	PLIOCENE SILICIC VOLCANIC POORS AND JOINTED BASALT		DRILLER'S LOG AVAILABLE	11	PRIGATION	246 39	FERMENT AT ION		YES 42.7994 115.9531	Youna An; ₩TEHEA, "975

JOHN HEGUIRE WELL 75 4E 248DC1

3785

BELL BRAND RANCHES 10220 PLIOCENE SILICIC VOLCANIC 75 4E 25ADC1 ROCKS AND JOINTED BASALT		IRRIGATION	Z24 56	BIODEGRADATION	YES 42.7872 YOUNG, 1973 115.9186
GUTHERIES RANCH WELL 5677 PLIQCENE SILICIC VOLCANIC 75 4E 268081 ROCKS AND JOINTED BASALT	DRILLER'S LOG AVAILABLE	IRRIGATION	264 3 ¹	DE-1CING HIGHWAYS	YES 42.7881 YOUNG, 1973 115.9528
DAVE LAMTINEN WELL 775 PLICCENE SILICIC VOLCANIC 75 4E 278CC1 ROCKS	DRILLER'S LOG AVAILABLE	IRRIGATION	423. 27	HEATING AND COOLING WITH HEAT PUMP	YES 42.7860 YOUNG, 1973 115.9725
DON DAVIS WELL #2 3 75 56 584A1'		UNUSED	Ž	CATFISH FARMING	42.8504 115.8869
DON DAVIS MELL #3 75 SE SBACI		IRRIGATION	20	HEATING AND COOLING WITH HEAT PUMP	42,8484 • 115,8894
AGE BLACK WELL #2 757 PLIOCENE JOINTED BASALT 75 5E 50BC1	DRILLER'S LOG AVAILABLE; FLOWING WELL	IRRIGATION	733 32	ລຸບແລງ Ture	YES 42,8417 YOUNG NO . 115,8828 MRITEHEAD, 1975
DAVIS BROTHERS 20440 PLIOCENE SILICIC VOLCANIC WELL #1 ROCKS 7S 5E TABB1	DRILLER'S LOG AVAILABLE; FLOWING WELL	IRRIGATION	495 39	MOROPONICS .	YES 42.8367 YOUNS, 1972 11 5.904 4
MERLE BACHMAN 1892 NELL /1 75 56 BBCC1	FLOWING WELL	IRR IGATION	396 40	AQUAQULTURE	42.8306 115.8928

IRRIGATION

219 32

NO LONGER A FLOWING WELL

and the second secon

42.0021

J

DE-ICING ROADWAYS

MERLE BACHMAN WELL #2 7S 5E BBCC2	37 · FLOW		FLOWING WELL	LOWING WELL IRRIGATION		FERNENTATION	42.8303 115 . 8934
DAVIS BROTHERS WELL #2 75 5E 800001	PLIOCENE SILIGIC VOLCANIC ROCKS		DRILLER'S LOG AVAILABLE; FLOWING WELL	IRRIGATION	457 40	SOIL WARMING	YES 42.8239 YOUNG, 1973 115.8936

FLOWING WELL; DRILLER'S LOG AVAILABLE YES 42.8228 YOUNG, 1973 115.8564 HARRY LOOS WELL 075 SE 90001 13248 PLIOCENE JOINTED RHYOLITE 1RRIGATION 629 40 AQUACULTURE

-313-

ntinued)
Idaho (co
B Wells in
springs and
Thermal 5
cial Use of
nd Potenti
ent Use a
ent, Presi
Geologic Environme
Location,
Basic Date Table 4.

ide : Reference	÷	207 979 *	94 YOUNS, 1973	47 MHITEHENC, 1973 58	44 YDUNS, 1973 506 .	86 BEARD, 1978 041 (Site Inspection)	197 LOG, 1967 134	50 LOC, 1951	145 LOG, 1976 116	36 Селнии, 1966 33	42.7661 YOUNS, 1975 115.6614
Chem/ Latitude Trace & Anai. Longitude		42,8207 115,7979	YES 42.8194	YES 42,8147 115,8158	YES 42.8144 115.8606	42.5186 115,9041	42,8197 :115,9034	42,8150 115,9076	42.6145 115.9016	YES 42,7936	YES 42.76 115.86
Portential Use Based on Best Estimate of Subsurface Temperature***		۰								·	
Aqui- fers Temp. Fotential Use Based on Temperature**		, HEATING AND COOLING NITH HEAT PUMP	DE-ICING HIGHWAYS	SD INDROUMI CS	STOOK WATERING	BI COEGRADATI ON	TROPICAL FISH	ST INDED ON I CS	SVINAM TICS	B1 OD EGRUD AT 1 ON	FERNENTATION
Meli Surf ∱ 1 Surf 1 Depth Temp 7 (m) (°C) (°	_	8 8	121 25	- 2 65 -	461 39	30	54 571	157 57	285 41	231 25	305 34
tion Car- bon- Bresent Use	Owyhee <u>County</u> (cont'à.)	IRRIGATION	IRRIGAT JON	IRRIGATION	IRRIGATION	IREUGAT JOK	IRRIGATION	DOMESTIC	IRRIGATION	IRRIGATION	JRR1GAT1.OK
202611 202611 20110 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Oryitee	THIS WELL WAS ORIGINALLY 427 METERS DEPP, BUT MAS CAVED TO 115 PRESENT DEPTH	PARTIAL DRITLER'S 105 MAILABLE	ORILLER'S LOS MAILABLE	DRILLER'S LOS AVALLABLE	-	FLOWING WELL, DRILLER'S	FLOWING WELL DRILLER'S	-DRITLER'S LOG AVAILABLE; FLOWING WELL	DRILLER'S LOG WALLABLE	DRILLEN'S LOG AVALVALE
Geologic Structure											
Aquiter Age and Rock Type		PLIOCENE MD PLEISTOCENE SEDIMENTS (?)	PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE FRACTURED BASALT	PLIOGENE SILICIC VOLCANIC ROCKS MUD SEDIMENTS	PLIOCENE AND PLEISTOCENE SEDIMENTS (?)	PLIOCENE AND PLEISTOCENE SEDIMINITS AND PLIOCENE BASALT	PLIOCENE AND PLEISTOCENE SEDIMINTS AND PLIOCENE BASALT	PLIOCENE AND PLEISTOCENE SEDIMINTS AND PLIOCENE BASALT	PLICENE STLICIC VOLCANIC ROCKS	VOLGANIC ROOKS NE SILICIC
Spring/well Dis- ldentification Charge Number & Name (17/min)		ROY DAVIS MELLAI 4542 75 55 13.4441	ROY DAVIS WELL #2 75 SE 13AACI	CARL STEINER WELL 11355 75 56 13CB81	ROBERT TINDALL WELL 15141 75 SE 16ACDT	CHESTER SELLMAN HELL #1 75 5E 18ABC1	CHESTER SELLMAN 3596 MELL #2 75 5E 18ABC2	CLARENCE MILLER 2838 MELL #1 75 5E 1880C1	CLARENCE MILLER 5299 MELL #2 75 5E 1808A1	BELL BRAND INC. WELL 44.28 75 5E 1900C1	GENE TINDALL WELL 75 56 28ACD1

-

-314-

42-8404 R052, 1971	42-8985 RUSS, 1971 115,7450	42.8511 LOG, 1959 115.7874	YES 42,4354 MHITEHEAD, 1975 115,7813	42,78225	YES 42.8342 YOUNG, 1972 115.7474	42.8155 L05, 1969 115.7207	YES 42.6691 YOUNG, 1973 115.7514	42,8215 115,7994	YES 42,7378 YOUNG, 1971	42.7349	
B) (D)E (RAV), AT (CA	SEEDLING ODMIFERS	DE-1CING RONDWYS	CATFISH FARMING	HEATING AND COOLING WITH HEAT PURP	grain-han arring	HEATING AND COLUNG WITH "		FISH FARMING	SEEDLING DOWIFERS	GRAIN-HAY DRTING	
2	77	77 A21	2	36 23	. 277 50	685 27	156 42	121 23	231 43	155 47	
IRRIGAT LOW	NO J LON	DOMESTIC	DOMEST1C	DOMESTIC	NO LOON	STOCK WATERING	I I I I I I I I I I I I I I I I I I I	RR IGAT JON	IRRIGATION		
		FLOWING MELL, WELL DRIES UP IN SUMMER TINE, DRILLER'S MANLABLE, DRILLER'S	ттам вкімота			PILLER'S LOG AVALABLE; PRILLER'S LOG AVALABLE;	LIOS AVAILABLE DAILLER'S		DRILLER'S LOG AVALABLE, FLOMING WELLS AF THIS SITE	WELL WAS BEING DATLED AT TIME OF INSPECTION AND WAS REPORTED TO BE COOLING MITH DEFTH	
378 PLIOCHN BASALT	121 PLIOCENE ENSALT	4920 PLIOCENE AND PLEISTOCENE SEDIMENTS	PLIOCENE ALD PLEISTOCENE SEDIMENTS		579 PLIDCENE BASALT	18 RUCENE SILICIC VOLCANIC	9465 PLIDCENE JOINTED BASALT	6056	PLIOGENE JOINTED BASALT	0257	
00-16P CATHE 000 HELL 1 75 6E 40401	00,498 04∏LE 00,46L 2 75 65 40001	REN MELL	Gerge Turner well 75 ge 7aact	ROY DAVIS WELL #3 75 6E 70001	COLVEN CATTLE CO. WELL 3 75 66 98AD1	R.L. ONEN MELL #1 75 65 150AA1	R 0₩64 ₩6LL #2 75 66 160001	ROY DAVIS WELL #4 75 GE 188881	HCT SPRINGS RANDH MELL 75 65 210801	tu, omen weil #3 75 6E 220ANI	
					-3	15-					

4 1 1

, i

•	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	esent Use and Potential Use of Thermal Springs and Wells in Idaho (continued).
		Location, Geologic Environment, 1
		Basic Data Table 4. I

									1975			
	Reference		R055, 1971	YOUNG, 1973		1973, 1973	,	LD5, 1956	YOUNG AND NHITEMEAD, 1975	·		
	Lafitude Å Longitude		42,7997 115,7267	* 42,8067 115,7170	42.8067 115.7166	YES 42.7975 115.7083	42,7965	42.7962	YES 42.7876 115.7006	42, 7920 115, 7084	42.7915 115.7060	42,7882
	Chem/ Trace Anai.	i.		YES		YES			YES			
	Potential Use Based on Best Estimate of Subsurface Tempereture***						·					
	Potential Use Eased on Surface Temperature**		BALNEOLOGICAL BATH	SEEDLING ONLIFERS		SHIMMING POOLS	SKALA-MAR DRYING	SNINGON TIOS	HTTPROPONI LCS	33401 HOVNOV	FERENTAT ION	BLODERADAT ION
	Aqui- ier (°C)											
-	Weil Surf Depth Temp. (m) (°C)	÷	47	4 53 4 2	245 41	396 44	45	313 40	304 38	ŝ	*	35
	Present Use	aty (cont'd	FRIGATION	IRRIGATION	IPRIGATION	FREI GAT I ON	10K	IR4 JGAT ION	IPRI GATION	IRRIGATION	IRRIGATION	IPRIGATION
	Sill- bon- s ceous ates	Owyhee County (cont'd.)										
	Cas		·	AVA1LABLE;				DRILLER'S LOG				
	Remarks	·		FLOWING WELL FLOWING WELL		FLOWING WELL	FLOWING WELL	FLOWING WELL, DRILLER'S LOC AVAILABLE	FLOWING WELL			FLOWING WELL
	Geologic · Structure					•				·		
	d Rock Type		C VOLCANIC	C VOLCANIC	IC AFOCANIC	IC VOLCANIC		LT (3)	IC VOLCANIC	IC VOLCANIC	IC VOLCANIC	PLI LOCENE
	Aquiter Age and Rock Type		PLIOCENE"SILICIC VOLCANIC ROCKS (1)	PLIOCENE SILICIC VOLCANIC	PLIOCENE SILICIC VLOCANIC ROCKS (1)	ROCKS SILICIC VALONIC		PLICE AND BYSYLL ()	PLIOCENE SILICIC VOLCANIC POCKS AND BASALT (?)	BOOKS (1)	BOCKS (3)	TERTIARY SILICIC VOLCANIC ROCKS (7) NO PLIOCENE BASALT (7)
	Cis- charge ((/min) A		378 PL	1570 PI	13248 PI	405 24 26	12	9 17 3 8 9	4920 P	20 £ 30 £	6 0	0 %
	Spring/Well Identitication Number & Name		BAT HOT SPRINGS 75 66 220881S	R. L. OKEN NELL #4 75 66 239881	R, L, OMEN MELL #5 7S 6E 238802	75 66 25CAD1	75 65 2300A1	ANGEL BILBOA HELL 75 6E 250081	R.L. DMEN WELL #7 75 GE 26ADAI	75 6E 268AA1	75 66 208AA2	R.L. ONEN WELL \$10 75 65 2680A1
ļ	- 1		BAT 75	R.L.	a ²	111	R.L	ANG MELG 75	R.L 75	R.L 77	R.1 74	R.1

-316-

	e te or Venter, manaret every en mane, possare en secondo al de la de la carte de la de la dada de la dada de				
75 GE 268081 #11	FLOWING WELL	DOMESTIC	X	DE-I LING ROOMYS	42.7698
BLOCKHOO H S 757 UNTERNARY ALLUVUN 75 & 2600015	FOUR SPRIME VENTS	ดรรณฑา	÷.	GREEMIOUSE	42.7804 RDSS, 1971 115,7142
JEAN LONGHURST MELL 2095 PLIOCENE BASALT 75 6E 27AACI		NOI LYSI 1941	106 t 5	SACC HEATING	42,7906 R055, 1971 15,7216
JAMES PRESOUT MELL PLIOCENE BASALT 75 66 27A081	FLOWING WELL	HRIGATION	121 43	HOROPONI CS ,	YES 42,7889 YOUNG, 1973 115,7222
JEAN PRESONT H S 1703 PLIOCENE JOINTED BASALT 75 6E 3400315	LOCATED IN BRUNEAU CANTON, NUMEROUS SPRING VENTS	YES UNUSED	*	Sola warman solar	YES 42,7675 miltene.c., 1973 115,7289
R.L. OMEN WELL #12 7570 PLIOGENE SILLEIC VOLCANIC 75 6E 3400A1	DRILLER'S LOG WAILABLE; FLOWING WELL	HRRIGATION	91 35	FERMENTATION	42.7680 LOS, 1977 115.7184
PRESOTT W S 75 GE 3588415	NOT FIELD CHECKED	UNUSED	9	30 KULTURE	TES 42.777
LOWER INDIAN BATHTUB 567 TUFF CONTACT WITH TERITARY 85 66 3A0BIS BUSALT 845ALT	NUMEROUS SPRING VENTS; TRAFERATING RANGE 30-42 DEGREES C	CHUSED	24	STOCK WATERING	42,7539 YOUNG, 1972
INDIAN BATHTUBH S TUFF CONTACT WITH TERTIARY BS 66 360015 BASALT	NUMEROUS SPRING VENTS	YES RECREATION	52	HYDROPONICS	42.7617 YOUNG, 1972 115.7384
ULS. COPPS ENGINEERS 906 PLIOCENE NO PLEISTOCENE 95 SE 430AI SEDIMENTS		UNU: SED	762 52	SUN GROW GROWING	42,6159 SWNYSON, 1977 115,8747 SWNYSON, 1977
TOM MEELER MELL #1 1396 PLIOCENE SILICIC VOLCANIC 95 12E 28CABI	DRILLER'S LOG WAILABLE	IRP. IGAT ION	2% 2	DE-ICINS HIGHMAYS	42.6137 1.05, 1969 115.0625
TOM MEELER MELL #2 1703 PLIOCENE SILICIC VOLCANIC 95 126 2803001 #2 1703 ROCKS	DRILLER'S LOG WAILABLE	LIRGIGATION	246 246	CATFISH FROMING	42,6084 L00, 1966 115,0568

-317-

.

tinued)
cont
l daho (
ìn Id
115
ц Ке
é ané
s fuit
Spr
Thermal Sp:
of
Use .
e]
tenti
d Po
an
: 056
sent
Pre
ment,
í ron
Env
gic
eolo
ں د
Location
Loci
4.
Table
≜ Ta
Dat.
Basic D
Ba

Spring/Well Spring/Well Identificetion Number & Name	Dis- charge (1/min) Aquiter Age and Rock Type	Geologic Structure	Bepus Ammarks 6es seous	tion Cont Don- Ztes Present Jse	ме] Surf. ⁴ qui ме] Surf. ^{fer} Овртл Темр. (ж) (⁹ С) (¹ С)	Potential Use Based on Surface Temperature**	Portential Use Based on Chem/ Best Estimate of Trace Subsurface Tempersturgess Anal.	n/ Latitude ea Longitude Reierence Longitude Reierence
·			OW O	<u>Owyhee</u> <u>County</u> (cont'd.)				
J. ₩HEELER WELL #) 95 12E 2008C1	PLIOCENE SILICIC VOLCANIC			1 R91 G A7 1 OM	248 35	SUR SUR SUR		42,6125 115,052
J. WELL #2 95 12E 29AA3	113 PLIOCENE SILICIC VOLCANIC ROCKS	DRILLER'S 1	DRILLER'S LOS AVALLABLE	RRIGATION	177 22	FISH FARMERING		- 4 2 .6210 LOS, 1977 115,0659
J. MEELER NELL #3 95 12E 29ADC1	5327 PLOCENE SILICIC VOLCANIC	סאוררפאי 2 ר	DRILLER'S LOG AVAILABLE	I PRIGATION	161 30	CATFISH FARMING		42.6158 LOS, 1967 115,0688
J, WHEELER WELL #4 95 12E 298881	PLIOCENE SILICIC VOLCANIC			LRR1GATION	147 28	TROPICAL FISH FARMING		42.6215 115,0815
J. MHEELER MELL #5 95 12E 2908A1	6964 PLIOCENE SILICIC VOLCANIC	סאוררפאי ר	DRILLER'S LOS AVAILABLE	IRREGAT FON	170 30	CATFJ SH FARMING		42.6146 LOC, 1966 115.0694 LOC, 1966
J. MHEELER NELL #6 95 126 290801	4542 PLIOCENE SILICIE VOLCANIC POCS	Delitieris L	DRILIER'S LOS AVAILABLE	IRRIGATION	15 061	FERENTATION		42,6138 LOG, 1971 115,0696
1 125 7E 33C 15	TERTIARY BASALT AND SILICIC VOLCANIC ROOKS	NOT FIELD CHECKED	нескер		71 93	REFRIGERATION (LONER TEMPERATURE RANGE)	drying mgi curing of light Nggreeate	42,3333 RDS5, 1971 115,6500
A. KRAMER MELL 125 10E 120DC1	5677 PLIOGENE SILICIO VOLCANIC POCKS	Delitier's L	DRILLER'S LOS AVAILABLE	IRRIGATION	152 24	HEAT PURP ODDLING MITH		42,5650 L05, 1963
милент н 5 165 9E 2488915	PLICERE BASALT AND SILICIC VOLCANIC ROCKS	THO SPRING VENTS	VENTS	IFRIGATION	52 88	SNINDED WOODIST	BURLEY MALTING PROCESS	YES 42.0314 R055, 1971 115.3658
CLARANCE NYE WELL	TIS PLICENE BUSKIT NO SILICIC VOLONIC ROOS	n s,xannad	DRILLER'S LOG AVAILABLE	DOESTIC	31 25	HEATING AND COOLING KITH HEATING AND COOLING KITH		42.0312 LQC, 1973 115.3655

-318-

IANANCK WFI

0.02700000		nanožiteli do želo do na	Х. Б. Лакор, на обставля на боли ставите на обставляние на обставляние на обставляние на обставляние на обставл Х. Б. Лакор, на обставляние на обставляние на обставляние на обставляние на обставляние на обставляние на обста		PUBLIC SUPPLY	50 23	CATFISH FARMING	42.0310 115.3657	
	JANACEK WELL 165 9E 24CAA1							119,2027	
					Г				
					Pagette County				
	A.L. DHRISTENSON	PLICCENE AND PL	EISTOCENE	ORILLER'S LOG AVAILABLE	IRRIGATION	143 23	CATFISH FARMING	43.8775 116.8900	SAVAGE, 1973
	WELL 6N 5W 128801	SEDIMENTS	•						
						108 22	CATELSH FARMING	43.8568	SAVAGE, 1973
	NELSON-DEPPE WELL 6N 5W 13C881	PLICENE AND PL SEDIMENTS	EISTOCENE	DRILLER'S LOG AVAILABLE	. DOMESTIC			116.8923	
								×	
	6N 5W 248801	PLIOCENE AND PL SEDIMENTS	LEISTOCENE		IRRIGATION	24	DE-ICING ROADWAYS	43.6495 116.8883	SAVAGE, 1973
		12112 PLIOCENE AND PL	LEISTOCENE	DRILLER'S LOG AVAILABLE	IRRIGATION	107 20	I HEAT PUMP FOR HEATING AND COOLING	43.9 153 116 .8 819	SAVAGE, 1973
	JAMES LIBBY WELL 7N 5W 2508B1	SEDIMENTS			٠				
						60 20) CATEISH FARMING	43,9090	SAVAGE, 1973
-319	MIKE NCKAGUE WELL 7N 5W 33AAB1	PLICCENE AND P SEDIMENTS	REISTOCENE		DOMESTIC	50 20	,	116.9373	
9 -									
	JAMES MOSTER WELL 8N 4W 70001	52 PLICCENE AND P SEDIMENTS	PLEISTOCENE	DRILLER'S LOG AVAILABLE	DOMESTIC	35 20	D FISH FARMING AND HATCHING	44.0402 116.8681	SAYAGE, 1973
	04 48 /0001								
		PLICCENE_AND F			STOCK WATERING	29	9 FERMENTATION	116.7310	SAVAGE, 1973
	WALTER SMITH WELL 9N 3W 1900A1	SEDIMENTS							
		·			IRRIGATION	112 2	5 HEATING AND COOLING WITH	44.1032 116.7050	SAVAGE, 1973
	ALBERT COATES WELL 9N 3W 21BDC1	1514 PLIQCENE AND SEDMENTS	PLEISTOCENE	DRILLER'S LOG AVAILABLE; . FLOWING WELL			HEAT PUMP	10,000	
								44.0700	SAV AGE , 1975
	LEE REED WELL 9N 5W 3500B1	75 PLIOCENE AND SEDIMENTS	PLEISTOCENE	DRILLER'S LOG AVAILABLE	DOMESTIC	99 2	20 CATELSH FARMING	116,9094	56102,
		·.			Power County				
		5110 PLEISTOCENE .	AJILIV 1114 (?)	NOT FIELD CHECKED	UNUSED	76 3	26 HEATING AND COOLING WITH HEAT PUMP -	42.8294 112.7947	200, 1954
	FALLS (RRIGATION DIST.	DITO PERIDIOCENCI					ACRE TOPE -		

In the second second

5110 PLEISTOCENE ALLUVIUM (?) FALLS FREIGATION DIST. 75 STE TIACAT

and the second
Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

ş

Spring/Well Identification Number & Name	Dis- charge (!/min)	Aquifer Age and Rock Type	Geologic Structure	Remarks.	Deposition Car- Sili- Bas caous ates	Present Us	Well Surf. Depth Temp. e (m) (°C)	Aqui- fer* Temp. Potestial Use Based of (°C) Surface Temperature*)	Potential Use Based on Best Estimate of Subsurface Temperature**	Chem/ Latitude Trace & Anal, Longitude	Reference
					<u>Power</u> <u>Co</u>	unty (cont	(d.)				
IDAHO POWER CU, WELL 75 31E 31ADA1	. 7759	PLIESTOCENE ALLUIVIUM (?)		USED ONLY IN THE WINTER; DRILLER'S LOG AVAILABLE		INDUSTRIÁL	182 24	DE-ICING ROADWAYS		42,77 <u>2</u> 3 112,8696	LOG, 1957
EMIL MAYER WELL BS 30E 24ACA1	4239			DRILLER'S LOG AVAILABLE		IRRIGATION	187 22	HEATING AND QOOLING WIT HEAT PUMP	н	≉ 42,7160 112,9903	LOG, 1959
MAX MAYER WELL 85 316 17ABA1		PALEOZOIC LIMESTONE		DRILLER'S LOG AVAILABLE		IRRIGATION	117 25	CATFISH FARMING		42.7331 112.8563	TRIMBLE AND CARR, 1976
FRED MAYER WELL 8531E 1780B1	5677	PALEOZOIC LIMESTONE		DRILLER'S LOG AVAILABLE		IRRIGATION	164 26	FISH FARMING AND HATCH	NG	42.7288 112.8563	TRIMBLE AND CARF, 1976
INDIAN SPRINGS BS 31E 180AB15		PALEOZOIC LIMESTONE	- NORTHWEST TRENDING FAULT	SEVEN SPRING VENTS	YES	RECREATION	32	71 BIODEGRADATION	an mail husbandry	YES 42.7254 112.8722	STEARNS AND OTHERS, 1936
INDIAN W S BS 31E 18DACIS		PALEOZOIC LIMESTONE			YES	IRRIGATION	34	AQUACULTURE	• •	42.7 256 112.8712	ROSS, 1971
D.M. THORNHILL WELL BS 31E IBDACI	1135	PALEOZOIC LIMESTONE	NORTHWEST TRENDING FAULT	FLOWING WELL		IRREGATION	33	FERMENTATION		42,723 9 112 , 8725	ROSS, 1971
LAKE WALCOTT N S 9S 29E 19ACD15				NOT FIELD CHECKED SUBMERGED IN LAKE WALCOT	τ	UNUSED	21			42.6246 113.1069	
ROCKLAND ¥ S 105 30E 13CDC15		PALEOZOIC LIMESTONE		NOT FIELD CHECKED; SEVE SPRINGS VENTS; TEMPERATI RANGE 34-38 DEGREES C	rai. Ure		. 38	72 AQUAQULTURE	APPLE DENYORATION	YES 42-5465 112-8987	ROSS, 1971
UPPER ROOMANC & S	1892	OUATERNARY ALLUVIUM ABOVE PRE-TERTIARY LIMESTONE		NOT FIELD CHECKED, REPOR BY ROSS, 1971	RTED		38	SOFE WARNING		42.5436 112.902	ADSS, 1971

and the second second second

NOT FIELD DEEXEL, REPORTED BT ROSS, 1971 1892 GLATERNART ALLES UN ABOVE PRE-TENTIART LINESTONE CC_ANC # 5 ł 42.5311 LDG, 1975 112.8948 DRILLER'S LOG AVAILABLE REIGATION 184 38 HYDROPONICS 3677 PALEOZOIC LINESTONE ADSCO WESTON WELL 105 30E 240CC1 Teton County 946 TREASSIC MARINE SEDIMENTS NEAR THRUST FAULT 43.6066 MITCHELL, 1978 111.8980 TAYLOR SPRINGS 3N 45E 7BAA15 IRRIGATION FISH FARMING 20 NOT FIELD CHECKED; TEMPERATURE RANGE 52-49 DEGREES C; DRILLER'S LOG AVAILABLE TRIASSIC SEDIMENTS BENEATH GENOZOIC BASALTS (?) 43.8937 LOG,1969 111.3223 IRRIGATION 353 49 GRAIN-HAY DRYING O, NEELY WELL 7N 43E 36AAC1 is.

Twin Falls County

	BILL SLIGER WELL 85 14E 30ACB1	378 QUATERNARY AND TERTIARY SEDIMENTS	WELL WAS DRILLED NEXT TO AN EXISTING HOT SPRING	RECREATION	121 63 ARTMAL HUSBANDRY		42,7060 9055, 1973 114,8572
ι ω	SALMON FALLS H S 85 14E 30ACO1S	94 QUATERNARY AND TERTLARY SEDIMENTS	YES	(?) RECREATION	67 APPLE DENYDRATION		42,7040 ROSS, 1971 114_8565
21-	FENTON CONNOLLY WELL 85.14E 3006A1 -	QUATERNARY AND TERTLARY SEDIMENTS		DOMESTIC	65 GREENHOUSE		42,7016 VON LINDERN, 1978 114.8557 (SITE INSPECTION)
	MIRACLE H S 85 14E 31ACB15	1059 QUATERNARY ALLUVUIM NEAR PLICCENE BASALT AND OLDER SILICIC VOLCANIC ROOKS	ALSO KNOWN AS HOT SULPHUR YES SPRINGS	YES RECREATION	55 87 BALNEOLOGICAL BATH	PASTEURIZATION	YES 42.6920 MALDE ANU OTHERS, 114.8592 1972
	HARRY HUTTANUS WELL #1 85 14E 33B001	PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALT (?)		YES RECREATION	82 49 SEEDLING CONTFERS		42,6890 STEARS ANC 114.8258 OTHERS, 1936
	BANBURY H S 85 14E 33CBA15	QUATERNARY AND TERTIARY SEDIMENTS	OMMERCIALLY DEVELOPED	YES RECREATION	59 KUSHROOM GROWING		42,6880 R055, 1971 114,8256
	HARRY HUTTANUS	PLIOCENE AND PLEISTOCENE SENIMENTS AND BASALT (2)		YES RECREATION	74 57 106 LAUNDRY USES	CANNING AND PRESERVING	YES 42,6884 STEARNS MC

HARRY HUTTANUS WELL #2 BS 14E 33CBA1 PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALT (?) YES 42.6884 STEARNS AND 114.8257 OTHERS, 1935 ١. SPACE HEATING

HARRY HUTTANUS WELL #3 85 14E 330BA2

PLIOCENE AND PLEISTOCENE SEDIMENTS AND BASALT (7)

YES HEATING OF POOL 64 57 AND HOUSE

42.6881 STEAPONS AND 114.8262 OTHERS, 1936

ELL 208 WATERWAY ALLUVIA ADCS VERLING PLIOCIC ADDS VERLING PLIOCIC ADDS VERLING PLIOCIC ADDS VERLING SCIMATERWAY ADD SCIMATERWAY VERTINGY ADD VERTINGY VERTINGY ADD SCIMATERWAY VERTINGY ADD VERTINGY VERTINGY ADD VERTINGY VERTINGY	بر ک ا	SPACE HEATING SPACE HEATING HRPIGATION	164 44 161 64 44 224 53 23 45	MUSHACOM (ACMING) SEEULING JONIFENS FERENTASION CATFISH FLAVING	42.6869 J.C. 1975 14.6362 J.C. 1975 42.6866 5724015 A.C. 114.6369 5724015 A.C. 114.6362 255, 1.E. 114.63651 255, 1.E. 115.0261 J.C. 76 -
WELL 1324 PLIOCHE NO SEDIMENTS (1) 345ALT NO SEDIMENTS (1) 567 QUATERNARY NUD TERTIARY 345ALT NO SEDIMENTS 345ALT NO SEDIMENTS 3406 PLIODENE BASALT NE OLDER		÷		SEEDLING OOMFENS FERVENTASION CATFISH FAWING	ст
567 DIATERNARY AND FERTIARY BASALT AND SEDIMENTS 3406 PLIODENE BASALT AND OLDER 31LICIC VOLCANIC ROOKS				FERENTAS I ON CATFI SH F4241 45	έχ Υ
3406 PLIDGENE BASALT AND OLDER SILICIC VOLGMIC ROCKS		•		OTFISH FROMING	4
2011 10 2011 2011 2011 2011 2011 2011 2	NOT FIELD CHECKED, REPORTED AS END WARK, SEVERAL STRING VENTS RANGING 1ATTO SECTION 25		0		2,5376 514_8917
PHIL RANCY WELL	924 T	FRIGHTICN	268 Z3 .	BLODEGRAD AT ION.	42.6492 114.9722
JACK KINYON WELL 8607 PLIDENE SILICIC VOLCANIC DRILLERIS LOS AVAILABLE 95 13E 310C01 PROCKS AND SEDIMENTS		IRRIGATION	187 26	HEAT PLAPP CODLEVE WITH HEAT PLAPP	42,5952
EU JARWELNIK 5110 PLIOCENE SILICIC VOLCANIC MELL #1 95 13E 3386231 95 13E 3386231		IRRIGATION	262 31	HDRPONICS	42.6017 _JG, 15:2- 114.9446
ED JARANELNIK 6813 PLIOCENÉ SILICIC VOLOMIC MELL #2 95 13E JJOAR		15641104	₩¢ 31	FERENLATION	್ಷಾಕಿ ,೩೩ - 9999 :14,9417
ALLA AM MELINIA - 5564 PLIODENS SILICIE YOLGANIC MILLA VIII: 11-4	άν μhaE	S e la secondada	ร ณ	5677.2.1.1.058	41,4405 - 78. 14,8445 - 78.

-322-

42.6744 _00. --

ORAIN-HAY DRY INS 114 46

ORILIEP'S TOG ALA LAGLE; PLOWING WELL

DIVESTIC

1135 PLIDOENE BASALT AND SEDIMENTS

DICA KASTER WELL

Contraction of the second second

95 14E 480CT

-323-

1135 PLICENE GASALT SEDIMENTS	-	DRILLER'S LOG MAILMELE; FLOWING WELL	A REAL PROPERTY AND A REAL	114 46
			•	

42.5744 LOG, 1975 114.8244

GRAIN-HAT DRYING

	LEO RAY WELL #1 95 14: 40001	11355	PLIOCENE BASALT IND SEDIMENTS	DRILLERIS LOG AVAILABLE; FLOWING WELL	CATFISH FARMING	230	34	HTD ROPON I CS		42-6682 114_8239	L06, 19	973
	1.E0 RAY ₩ELL #2 9S 14E 4CD01	5677	PLIOCENE BASALT AND SEDIMENTS	DRILLER'S LOG AVAILABLE	CATFISH FARMING	167	57	Fish Farming	•	42,6670 114,6221	L0G, 19	73
	ED KERPA WELL 95 14E 9ADD1	11355	PLIOCENE SEDIMENTS , BASALT AND SILICIC VOLCANIC ROOKS	DRILLER'S LOG AVAILABLE; FLOWING WELL	STOCK WATERING	Z 2 8	33 7	× 8 SOIL MARMING	PASTEURIZED MILK PROCESS Y	ES 42,5602 11430114	LOG, 19	73
	KENNETH HARBAST WELL 95 14E 9ADD2	2271	PLIOCENE SEDIMENTS AND BASALT	DRILLER'S LOG AVAILABLE; FLOWING WELL	BOMESTIC	161	33	QUACULTURE	• •	42-6606 114-8126	LOG, 19 [.]	71
د	ROBERT LUNTEY WELL 95 14£ 9ADD3	1514	PLIOCENE BASALT AND SILICIC VOLCANIC ROCKS	DRILLER'S LOG AVAILABLE; FLOWING WELL; OWNER HAS 35 PONDS IN OPERATION	TROPICAL FISH TEST PROJECT	259	32	SHRIMP FARMING		42. 6597 114.8124	106, 197	74
ں	WESLEY REYNOLDS WELL 95 14E 108001	3785	PLIOCENE SEDIMENTARY ROCKS	DRILLER'S LOG AVAILABLE FLOWING WELL	FISH FARMING	184	33	FERMENTATION		42.6595 14.8099	LOG, 197	ï
	WRIGHT FUEL CO. MELL 95 14E 24BCA1	56	QUATERNARY AND TERTIARY BASALT AND SEDIMENTS	DRILLER'S LOG AVILABLE; FLOWING WELL	DOMESTIC	42	24	HEATING AND COOLING WITH MEAT PUMP		42=6333 (114=7688	.0G, 197	7
	BUHL CITY WELL #1 95 14E 36DAC1		PLIOCENE BASALT AND SILIGIC VOLCANIC ROCKS (?)		PUBLIC SUPPLY	274	30	CATFISH FARMING		42,5988 114,7560		
	GREEN GLANT CANNING 95 15E 31C081	4186	QUATERNARY AND TERTLARY BASALT AND SEDIMENTS	DRILLER'S LOG AVAILABLE	COMMERICAL CANNING	196	20	HEATING AND COOLING WITH HEAT PUMP		42-5006 Li 114-7497	Х, 1960	
	BUHL CITY WELL #2 95 15E 310081	2876	PLIOCENE BASALT AND OLDER SILICIC VOLCANIC ROCKS (7)	DRILLER'S LOG AVAILABLE	PUBLIC SUPPLY	322	32	BIODEGRADATION		42,5962 L(114,7508	KG, 1961	
	CHESTER MOCLAIN WELL #1 105 12E - 1andi	4542 (QUATERWARY AND TERTIARY BASALT AND SEDIMENTS (?)		IRRIGATION	152	26	FISH FARMING AND HATCHING		42. 5901 114.9874		

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

.

•

Spring/Welt Identification Number & Name	Dis- charge (1/min) Aquiter Age and Rock Type	Geologic Structure	Romarks	Deposition Sitt- Cor- Gas cocus ates Present Use	Well Surt Depth Temp- (m) (°C)	Aqui- fert Potential Use Based on Tamp. Potential Use Based on (PC) Surface Tamperaturet* S	Potential Use Based on Chenv L Best Estimate of Trace Subsurface Tempersture*** Anal. L	Latitude Longitude Reference
				Twin Falls County (cont'd.)	'cont'd.)			·
CHESTER MICLAIN WELL #2 105 12E 1ACB1	6813 QUATERNARY AND TERTLARY BASALT AND SEDIMENTS (?)			HBRIGATION	152 28	FISH FURNING		42.5896 114,9938
CHESTER MOCLAIN NELL #5 105 12E 10081	2649 QUATERNARY NO TERTLARY BASALT NO SEDLABART (1)			IPR:GATION	152 æ	HEATING AND COOLING NITH HEAT PUNP		62.5810 114,9938
CHESTER MCCLAIN WELL #4 105 12E 100C1	1022 QUATERNARY MUD TERFIARY BASALT MUD SEDINEARS		נאורואיני נוסט אאוראפונ	IREIGATION	2 20	HEATING AND COOLING NITH HEAT PLAP	-	42.5796 LOC, 1955 114 4.9 933
DICK KIRES WELL #1 105 12E ZCCAI				IRIGATION	152 🛎 .	FISH FARMING	-	42,5813
DICK KIRBS MELL #2 105 12E 200A2				IRRIGATION	152 25	STOCK WATERLING		115,0199
CHESTER MCCLAIN WELL 75 105 12E 20361	7570			IRAIGATION	152 28	HEATING AND COOLING WITH HEAT PLUP		42-5612 115.0188
010X KIRBS WELL #3 105 12E 110C81	2081 PLIDCENE SILICIC VOLCANIC		DRILLER'S LOG MAILABLE	HRUGATION	147 23	FISH FAMING		42,5667 L06, 1961 115,0136
FILER CITY MELL 105 16E 800A1	946 PLIOCENE EMSALT AND SEDIMENTS		ORIGINALLY USED BY FILER SCHOOL WHICH HAS BEEN DEMOLISHED	RECREATION	21 ZI	JERENTATION	*=	42.5675 LOC, 1963 114.6055
TMIN FALLS CA. 00864. 108 176 1433. 1				I RELIGATION	82 82	BIODECRADATION	۹	42.5487 114.4581
en de Stringen ennengelog v	Part - Alakan and Analysis - Anal		المراجع	DOMESTIC	13. 13.	Medica and cooling alth Medication	4 <u>-</u>	42.5128 - 100, 1964 114_3771

-324-

「「「「「「「」」」

And the second

IRRIGATION 67 34 AQUACULTURE	ADDITIONAL 15 10000000000000000000000000000000000	THEODORE STREFILL NEELLE IIS 20E JACCTI	5 C		т. <u>Б</u>	HH	11 12 12 12 12 12 12 12 12 12 12 12 12 1	IPPE IGATION IPPE IGATION IPPE IGATION IPPE IGATION IPPE IGATION IPPE IGATION IPPE IGATION		 FLICERE SILLEL VOLCHIE PLIOEERE SILLELE VOLCHIE 	FRAME BROTHERS FILL THE FRAME BROTHERS FILL THE FRAME BROTHERS FILL THE FRAME BROTHERS FRAME BROTHERS FRA
		IRRIGATION 67 34									-
NOT FIELD DECKED 32 51 AQUACUTURE GAVIN-MAY DRYING YES	NOT FIELD DECXED 32 51 AQUACUTURE GRAIN-MAY DRYING		1175 ADSS, 1971	42.41	TDHING	fish farming and h	8. ,	I RR JGAT 1 ON		QUATERNARY ALLIVIUM ABOVE TERTIARY SILICIC VOLCHVIC ROOCS	RAY STANGER & SONS WELL 115 19E 550001
BRIGATION ALUVINA ABOVE TERTIARY SILFICIC VOLUNIC ROOS NOT FIELO VECKED NOT FIELO DECKED NOT FIELO DECKED NOT FIELO DECKED S2 51 AUAOLITURE GAM-HAVI DRYING YES	CUTERARY ALLIFIER ABOVE FISH FARMING AND WITCHING TERTIARY SILLICE VALUATION TERT	QUATERNARY ALLIVIUM AROVE TERTIARY SILICIC VOLONIC ROOCS	1176 ROSS, 1971 2289		REFRIGERATION (LONE TEMPERATURE LIMIT)	69		PRE LGAT LON			10005 361 STI Dav Hejih Wes
7305 MUTERWAY ALLUY UM ABOYE TERTIARY SILLICLO VOLANICE ROOS IRRIGATION IBS J3 69 SHEUPE FAMILIES IEPEGATURE LIJULIS TEPETARY TERTIARY SILLICLO VOLANICE ROOS MUTERWAY ALLUY UM ABOYE ROOS INVISION 28 FISH FAMILIES ADO MUTCHINE IEPEGATURE LIJULIS TEPETARY TERTIARY SILLICLO VOLANICE IBS J3 69 SHEUPE FAMILIES LIJULIS TEPETARY TEPETARY TERTIARY SILLICLO VOLANICE IBS J3 69 SHEUPE FAMILIES LIJULIS TEPETARY TEPETARY TEPETARY IBS J4 SHEUPE FAMILIES TEPETARY TEPETARY TEPEGATURE LIJULIS TEPETARY TEPETARY TEPEGATURE LIJULIS TEPETARY TEPEGATURE LIJULIS TEPETARY TEPEGATURE LIJULIS TEPETARY TEPEGATURE LIJULIS TEPEGATURE LIJULIS TEPEGATURE TEPEGATURE LIJULIS TEPEGATURE TEPEGATURE LIJULIS TEPEGATURE TEPEGATURE LIJULIS TEPEGATURE TEPEGATURE TEPEGATURE TEPEGATURE	7303 DATESNARY ALLUY UN ABOVE TERTIARY SILLICIC VOLONIC ROCK TERIARY SILLICIC VOLONIC ROCK TERIARY SILLICIC VOLONIC ROCK TERIARY ALLIVI MADY TERTIARY SILLICIC VOLONIC ROCK TERIARY ALLIVI MADY TERTIARY SILLICIC VOLONIC RELIGATION 168 31 63 61 FER FAMILY ROL MUTUR TERTIARY TERTIARY SILLICIC VOLONIC ALLIVI MADY ROCK NOT FIELD DECKED 188.164710H 28 FISH FAMILY ROL MUTUR TERTIARY SILLICIC VOLONIC 188.164710H 28 FISH FAMILY ROL MUTUR TERTIARY SILLICIC VOLONIC ALLIARY SILLICIC VOLONIC NOT FIELD DECKED 188.164710H 28 FISH FAMILY ROL MUTUR TERTIARY SILLICIC VOLONIC 51 AUNOLUTIR	7305 DATEBARY ALLIVIUM ABOVE TERTIARY SILLICE VOLONIC IPRIGATION IPRIG	176 L06, 1955 1985 L06, 1955	42,41 114,23			312_31	RELEATION		PLIODONE SILICIC VOLOWIC	
List cooler detail Prodose d	Lincome determ Uncome sulton vocavity Biologe sulton vocavity Biologe sulton vocavity Biologe sulton vocavity 15.16 ± 35001 300 Martine vocavity 300 Biologe sulton vocavity Biologe sulton vocavity Biologe sulton vocavity Sins sulton 300 Martine vocavity 300 Biologe sulton Biologe sulton Biologe sulton Biologe sulton Sins sulton 300 Martine vocavity Biologe sulton Biologe sulton Biologe sulton Biologe sulton Biologe sulton Sins sulton Martine vocavity Martine vocavity Biologe sulton Biologe sulton Biologe sulton Biologe sulton Biologe sulton Martine vocavity Martine vocavity Martine vocavity Biologe sulton Biologe sulton Biologe sulton Biologe sulton Martine vocavity Martine vocavity Biologe sulton Biologe sulton Biologe sulton Biologe sulton Biologe sulton Martine vocavity Martine vocavity Biologe sulton Biologe sulton Biologe sulton Biologe sulton Biologe sulton Martine vocavity Martine vocavity Biologe sulton Biologe sulton Biologe sulton Biologe sulton Biologe sulton	J. WOOSN DEED PLIODER SILICIC VOLUNIC DRILLEN'S LOS MAILUBLE IRRIGATION 312 31 BIOGGRUDATION MELL 115 95 5005 8005 816/47 816	249 R055, 197	42.42 114. 2 6		CATFISH FACHING	8	NOTANI		BUCKE STUCIC KOTCMIC	
We weekeded: Incorrection Control Marked Static Froution Beliektion 28 Ontil Fis Froution Justice Static Froution Boost Static Froution Brouter's Lee MAN LMAIL Beliektion 21 2	We were were in the production of theproduction of theproduction of theproduction of the production of	Funderset Funderset Enderties Belefities 28 Offisie Foolies Lacodose deel Funderset Funderset Belefities 312 31 BroteseoAttion Lacodose deel Funderset Belefities BroteseoAttion 312 31 BroteseoAttion Lacodose deel Funderset BroteseoAttion BroteseoAttion BroteseoAttion BroteseoAttion Statistics 330 Matemater Matemater BroteseoAttion 18 32 31 BroteseoAttion Statistics 330 Matemater BroteseoAttion 18 18 32 31 BroteseoAttion Statistics 3300 Matemater BroteseoAttion 18 32 31 BroteseoAttion Statistics 3300 Matemater BroteseoAttion 18 32 35 56 56 Statistics Statistics Statistics BroteseoAttion 18 35 59 56 56 Statistics BroteseoAttion BroteseoAttion 18 18 18 56 56 56 Statistics BroteseoAttion BroteseoAttion 18 18 18 56 56 Statistics	177 HOSS, 1971 678	42,41) 114.26		HTDROPONICS		HRR IGATION	••••	QUATERNARY ALLUVION ABOVE TERTIARY SILLEUC VOLCANIC ROCKS	DEAN KIDD NELL //2 115 595 310001
Note that is a service out out and it is a service out	With the state of the state	With States With States With States With States Issues Issues Issues Issues Issues Issues Issues Issues Fight States Models Models Models Models Models Models Models Fight States Models Models Models Models Models Models Models Fight States Models Models Models Models Models Models Models Fight States Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models Models	776 R055, 1971	ر 114.217 114.217		BI ODEGRADATI ON		JRRIGATION			THERMAN WILLIS WELL
House Hulls Boundary Hulls </td <td>Instant Undentication Undentication Instant Undentication</td> <td>Termer ULIS for Wirdstrand Bissens LLICUC UD, MACH Bissens LL</td> <td>276 LOC, 1977 762</td> <td>42.427 114.276</td> <td></td> <td>HYDROPONI CS</td> <td></td> <td>1981 GAT I ON</td> <td>DRILLER'S</td> <td>1992 PLICOENE SILICIC VOLCANIC NOCCS</td> <td>DEAN KIOD WELL 11 115 19E 3120A1</td>	Instant Undentication Undentication Instant Undentication	Termer ULIS for Wirdstrand Bissens LLICUC UD, MACH Bissens LL	276 LOC, 1977 762	42.427 114.276		HYDROPONI CS		1981 GAT I ON	DRILLER'S	1992 PLICOENE SILICIC VOLCANIC NOCCS	DEAN KIOD WELL 11 115 19E 3120A1
Open up de situit Image situit Duille Good Duille Good Duille Good Duille Good Up que que la situit Que que situit Que que situit Que que situit Duille Good Duille Good Duille Good Up que que la situit Que que situit Que que que situit Que que que que situit Duille Good Duille Good Duille Good Up que que que situit Que situit Que q	Bit were were serviced Bit work with the mediane serviced work work with the mediane serviced work with the mediane serviced work work with the mediane serviced work work with the mediane serviced work work work work work work work work	gov word girls, in initial government, worder Boulding government, worder How worder government, worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder government, worder government, worder How worder government, worder government, worder government, worder	88 007	42.458 114200	HITA	HEATING AND COLING HEAT PUNP		IRRIGATION		5110 PLIODENE SILIFICIO VOLOMIC BOCKS (7)	STANGER BROTHERS WELLIGE 24ACH
group meridi 10 Magnetig studied oncload 10, 10, 10, 2005 (1) 10 Magnetig studied oncload 10, 10, 10, 2005 (1) 10 Magnetig studied oncload 10, 10, 10, 2005 (1) 10 Magnetig studied oncload 10, 10, 10, 2005 (1) 10 Magnetig studied oncload 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Under derived (1), u. a. a. a. (2) 0.1 Under derived (2) 23 2 0.4 COL 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	Weiter Berrick In Berricht I	822	42.453		PERMENTATION	8 8 997 997 997 997 997 997 997 997 997 99	1381 GAT FOR			10012 XX1 511
Weather and the second of t	Montania Montania Montania Montania Montania Montania 10 Montania 10 Montania 10 Montania Montania 10 Montania 10 Montania 10 Montania 10 Montania Montania 10 Montania 10 Montania 10 10 Montania 10 Montania Montania 10 Montania 10 Montania 10	Value Value Value Value Value Value Value Value 3.3 Value 3.1 Value	~		<u>=</u>	HEATING MOLING	8 E	DRESTIC	COLLEG'S LES ANVIALE		Į,

-325-

Dis- tai	Dis- charge (l/ain) Aquiter Age and Rock Type Structure	gic Brenorks ure	Ceevas 1 -111-5 Gas ceous	Fich Car- bon- Present Use	Well Surf Aqui- Well Surf Far Depth Temp. Temp. (9C) ((9C)	i⊷ p. Potential Use Based on p. Surface Temperatura**	Potential Use Based on Best Estimate of Subsurface Temperature***	Chem/ Latitude Trace & Anal. Longitude	de Reference
			<u>Twin</u> Fal	<u>Twin</u> Falls County (cont'd.)	đ. j	·		· •	·
113	QATERNARY ALLUVIUM NEAR TERTIARY SILICIC VOLCANIC ROCKS			YES RECREATION	e X	81 BLODEGRADATION	PRIME DEHTORATION	YES 42,5374 114,5087	74 ORDSTHWALTE, 1969 87
		NOT FLELD ONECKED			38 6	65 SOLL WARMING	APPLE DEHYORATION	YES 42.4160 114.2996	960
946		FOUR NELLS ARE LOCATED IN THIS INNEDIATE AREA	ATED JN		52 35	DE-LOING ROADWAYS		42.5161	65 18 19
3785	PALEOZOIC METANORPHOSED SEDIMENTS (1)	טאוריאדב רפי אאוריאדב	LABLE	IRRIGATION	. 93 - 551	SOIL WARMING		42.3218 114.4643	18 LOG, 1954 45
5110	PALEZOIC SEDIMENTARY ROCKS (1)	DRILLER'S LOG AVAILABLE	LABLE	RRIGATION	167 39	FERMENTATION		42,325) 114,5114	5) LDC, 1966
13248	PLIOGENE SILICIC VOLCANICS AND PALEDZOIC METAMORHOSEO SEDIMENTS (1)	DAILLER'S LOG AVALLABLE	LABLE	IRR/GATION	182 59	STOCK MATERING		42.5325	25 LOC, 1934
NO.	PALEOZOIC SEDIMENTARY ROCKS (?)	דוסאואפ אברי איראפרבי דוסאואפ אברי	LABLE;	DOMESTIC	131 34	SOIL WARMING		YES 42.3167	57 LOG, 1967 85
0/1	HUTTERNARY ALLUVIUN, PLIOSCHE SECHENTS AND SILICIC VOLCANIC ROCKS (?)	PRILIER'S ING WALABLE.	LAGLE;	RECREATION	73 45	GRAIN-HAY DRYING		42.0131	37 1.06, 1965
	PLIOÒRNE SILICIC VOLCANIC	FOUR SPRING VENTS; SLIGHT SULFUR (2008	ΥES	YES RECREATION	- 1 3 - 43	66 SEEDLING CONFERS	REFRIGERATION (LONER TEMPERATURE LINIT)	YES 42.0129 114.5038	29 RDSS, 1571 38
35 30	189 DR.FACEOUS GRAVITIC ROOM	TWC SPRING VENTS; TWC SPRING VENTS; Statestory, And And Statestory, And Andress Housents, Statestory,	9.	<u>Valley County</u> 5 YES UNUSED	5	SPACE HEATING		44.2 5	44.2528 R325, 157
				·					

-326-

	44.3999 RoSs 1971	44.2819 . 115.8411 . 115.8411	115, 8336 8055, 1971	¥ES 44.3643 MARING, 1965 115.8360	YES 44.3297 ROSS, 1971 115.8021	44.4648 BEARD, 1978 (SITE 116.0368 NGPECTION)	YES 44.4160 NEWCOME, 1976 116,0313	44.4300 ROSS, 1971	44.4451 RDSS, 1971	44.5829 116.1124	YES 44.5110 NEWCONE, 1970	YES 44.5676 WARING, 1965 115.6950
				BARLEY WALTING PROCESS	REFRIGERATION (LOWER TEMPERATURE LINIT)		R. MCHING				SUIN MANING	REET SIGAR PROCESSING
		26 MINUL INSURATION	38 HYDROPONI CS	65 89 PASTEURIZATION	39 74 SOIL MARNING	44 SPACE HEATING	71 99 REFRIGERATION (LONER TENEERINGE LINIT)	ō			2 46 SEEDLING CONTFERS	B6 147 BLANCHING
	Jesu GAT I DA	YES IRRIGATION	THUR SED	YES YES TES INRIGATION	HARIGATION	RECREATION	YES เหน่ร้ยม		GESTINA		YES PUBLIC SUPPLY 15 42	YES YES RECREATION B
ica con transmission Broates co transmartis Indiortes con cultific	errificado escorado savera. Secues descrato ar R Secues 1971/15; Reported er R 005, 1971/15; Reported er R	several gprime vents and Numerolus seeps, teaperature Range 28-59 degrees c	NT FIELD CHECKED; SEVERAL SPRING VENTS	TEMPERATURE RANGE 80-96 YES YE DERGRESS C. MARCROUS SPRING VENTS: X-RAY OF FERALTION ANALYSIS. HOUGHTED SMULL MOUNT OF CAUCITE	MT FIELD ONEXCED; FIGHT SPRING VONTS REPORTED; REPORTED BY ROSS, 1971	, tes	THREE GRUNG YEATS AND YES NUMBEROUS SEEPS, TERPERATURE RANGE 56-71 DEGREES C	NOT FIELD OFEOCED; SEVERAL SPRING VENTS; REPORTED BY ROSS, 1971	kot Field Overked; reported BY ROSS, 1971	NOT FIELD CREACED; Remerced In CASCADE Reservoir		slicht sulfur coor, Naerous spring that; Naerouter Raage ga-bt Defers C, X-Ray Malysis Available
				NORTHEAST TRENDING FAULT			NORTHNEST TRENDJNG FAULT				NORTHWEST TRENDING FAULT	
antina 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977	OFFICEORS DAMINIC ROOM	DRETACEDUS (RAWETTIC ROCK	DRETACEOUS CRAVITTIC ROOM	624 ORETACEOUS ORMUTTIC NOOX	CRETACEOUS CRAWITIC ROCK	HELLANTE XAMASING 46	227 CRETIACEOUS GRANITTIC POCK	ORETACEOUS GRAVITTIC ROCK	ORET ACEOUS GRANTIC ROCK		Quaternary allumum near Greakedus granittic rock	2271 CRETACEOUS GRANITIC ROCK
51.00 50.00 50 50 50 50 50 50 50 50 50 50 50 50 5	Bont H S BACIS	BASH GREEK # 5 124 SE 1000015	0500400 +006 N S 12N 5E 118801S	BOILING SPRINGS H S 12N SE 2208C15	silver creek plunge 1.2n Se 3608A15	BELVIDERE H S 13N SE 13AADIS	CABARTON H S 13N 4E 31CAB1S	BULL DREEK H S	BEAR VALLEY H S 13N 10E 220AB1S	CASCADE RESERVOIR H S 14N 3E 5A 1S	CASCADE CITY MELL	VULCAN H S 14N 6E 11BOAIS

-327-

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)

Image: Second	, have been a second se		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Surf. ter-	-	Cheev Let
Mathematic (control-1) off (0.10) officito, k00013 1 0 52.00010 1		Renarks	Sill- bon- Present Use ceous ates	(C) (C)	based on Best Estimate of erature** Subsurface Temporature**	Trace & Anel, Longitude
Weils, 1970 Media, 1970 Media, 1970 Media, 1970 Media, 1970 Registion Media, 2010 Respective Media 13 12 2 20140 14,450 Sulf and Deletion 13 15 10 10 14,450 Sulf and Deletion 13 10 10 10 14,450 Sulf and Deletion 13 10 10 10 10,450 Sulf and Deletion 13 10 10 10 10,450 Sulf and Deletion 13 10 10 10 10,450 Sulf and			Vailey County (cont'd.)			
Berning in Reservoir in the Reservoir in	TAGEOUS BRANTFIC ROCK	NOT FIELD DEECKED; REPORTED BY RDSS, 1971		o		
Support TS TS PREDUCTION PR	DRETACEOUS CRANITIC ROCK	REPORTED BY ROSS-JANGLE TO CONFIGHT TENEDATURE RANGE 37-43 DEBRES C			22	
YES TES NUSCI NUSCI NUSCI NUNCLIVE Seperencini in wrwe Lwicci WUSCI WUSCI WUSCI POST POST THEE Service Sweet Second WUSCI WUSCI WUSCI POST POST THEE Service Sweet Second WUSCI WUSCI POST POST POST THEE Service Sweet Second WUSCI WUSCI POST POST POST THEE Service Sweet Second WUSCI WUSCI POST POST POST THEE Service Sweet Second WUSCI WUSCI POST POST POST THEE Service Second WUSCI WUSCI POST POST POST THEE Second MUSCI POST POST POST POST THE DIFF MUSCI POST POST POST POST THE DIFF MUSCI POST POST POST POST THE DIFF MUSCI POST POST POST POST	quaternary alluvium near Miocore basalt and dretaceous granitic rock	SULFUR COOR		62	alongsta Timini	
Specificabil in work LOCE, There service MISE MISE MISE MISE There service WISE (1) RECORTION MISE PARE Service MISE There service WISE (1) RECORTION YS (1) RECORTION PARE SIGN There service WISE (2) Service YS (1) RECORTION PARE SIGN REPORTION REPORTINGE, MISE WISE (2) REPORTINGE, MISE YS (1) RECORTION PARE SIGN REPORTION REPORTINGE, MORT YS (1) RECORDING PARE SIGN PARE SIGN MILL MILL MORT REPORT MILL MORT YS (1) RECORDING PARE SIGN MILL MILL MORT MILL MORT MILL MORT PARE SIGN YS (1) PARE SIGN MILL MILL MORT MILL MORT MILL MORT PARE SIGN PARE SIGN PARE SIGN MILL MORT	CRETAJEOUS GRANITIC ROOK		YES			44.6209 R055, 1971
Tevelenning avec 52-99 biologies C, Scredul Sanie YES (1) RECRETION PSE IRD INTORRY PATEURIZED INTO RECORD REDORDE ENFERANCE; NOT REDORDE ENFERANCE; NOT YES (2) REDORDING; NUL PSE IRD INTORRY PNIL INSMORT REDORDE ENFERANCE; NOT YES (2) REDORDING; NUL YES (2) REDORDING; NUL YES (2) REDORDING; NUL INSMORT NULL INSMORT REDORDED REDORDED YES (2) REDORDED YES (2) REDORDING; NUL INSMORT NULL INSMORT REDORDED REDORDED YES (2) REDORDED YES (2) REDORDED PSE INDORDED REDORDED VES (2) REDORDED VES (2) REDORDED PSE INDORDED NULL INSMORT REDORDED YES (2) REDORDED YES (2) REDORDED PSE INDORDED NULL INSTANCE		SURANERGED IN WARAN LAKE; THREE SPRING VENTS REPORTED		G		
REPORTED TEMERANTURE; ADT FLELD DECOED NOT FLELD DECOED NUMBER	265 DEFACEDUS GRAVITIC ROCK	temeranture range 52-59 degrees C, several Spring Vents	YES (3) RECREATION	38		
TES REOPERTION 50 GRAIN-MAY DRYING 44.6353 NOT FIELD DEDGED UNUSED 0 115.1062 NOT FIELD DEDGED UNUSED 0 104.6328 NOT FIELD DEDGED SERVICES 104.635 10 105.6451		reported temerature; ant Field dreaded		62		YES 44.6315 115.6967
NOT FIELD OFECKED UNUSED D (44.6278) Science of the control of the	227 OVETADEOUS CRANITIC ROCK					44.6263 9055, 1971
A-AN' DIFFEACTION ANALYSIS YES REOPEATION 53 SEENLING CONFERS AMALMELE			UNUSED	a		44-6278 115-1968
	one l'aceons gavair l'ic Mock-pressi attu	21-943 DIFFRACTION ANALYSIS AFALUMALE		÷	r	44.6756 FOCS, 1971 115.9427

-328-

DOLLAR OREK N S 18 DRETAGEOUS GRAWITIC ROOK 164 6E 140001S

44,7173 85440, 1978 (5176 115 7033 MIRPEOTONIO

FISH FARMING

R

UNUSED

44.7175 BEARD, 1978 (SITE 115.7033 HMSPECTION)

	-									
	UPPER PISTOL CREEK H S TON TOE 14CDA15	CRETACEOUS GRANITIC ROCK	NOT FIELD CHECKED	UNUSED	0				44.7109 115.2097	ROSS, 1971
	LITTLE PISTOL CREEK 16N 10E 1408A1S	ORETACEOUS GRANITIC ROCK	NOT FIELD CHECKED	UNUSED	0			•	44.7229 115.2054	ROSS, 1973
,	PISTOL CREEK H S TGN JOE 14DBC15	ORETACEQUS GRANITIC ROCK WITH TERTIARY DIKES	NOT FIELD CHECKED; REPORTED TEMPERATURE	UNUSED	4 6	. 63	SOLL WARKING	- An IMAL, HUSBANDRY	YES 44.7207 115.2072	CARTER AND OTHERS
	SUNFLOWER FLAT, H S 16N 12E 1588815	CRETACEOUS GRANETIC ROCK	NOT FIELD CHECKED; REPORTED TEMPERATURE	UNUSED	65	Π	APPLE DEHYDRATION	PASTEURIZED WILK PROCESS	YES 44.7295 114.9928	CARTER NO OTHERS 1973
I W	RIVERSIDE H S 16N 12E 16CBB1S	QUATERNARY ALLUVIUM NEAR ORETACEOUS GRANITIC ROCK	NOT FIELD CHECKED, REPORTED TEMPERATURE	UNUSED	59	80	GAME BIRD HATCHERY	PRINE DEHYDRATION	YES 44,7214 115.0132	CARTER AND OTHERS 1973 -
29-	HOLDOVER H S 37 17N 6E 28AA1S	CRETACEOUS GRANITIC ROCK		RECREATION	47		Mushroom growing		YES 44.8467 115.6961	8055, 1971
	BILLY H S 17N 7E 318CB15		NOT FIELD OHECKED	UNUSED .	0				44,7702 115,6627	
	KWISKNIS H S 17N IDE TIBBAIS	CRETACEOUS GRANITIC ROCK	NOT "FIELD OHECKED; REPORTED BY ROSS, 1971	UNUSED	69	9 5	an i mal husbandry	BLANCHING	YES 44.0312 115.2151	ROSS, 1971
	MID FK INDIAN DREEK 17N 11E 16ACB1S	ORETACEOUS GRANITIC ROCK	NOT FIELD CHECKED; REPORTED INFORMATION	UNUSED	72	142	APPLE DEHYDRATION	FREEZE DRYING	YES 44,6129 115,1229	ROSS, 1971
	INDIAN CREEK H S 17N 11E 218 25		NOT FIELD CHECKED; REPORTED INFORMATION	Unused	88	142	BARLEY MALTING PROCESS	POTATOE DEHYDRATION	YE5 44.7988 115.1289	
	DOX H S 17N 13E 27AAC15	TERTIARY GRANITIC ROCK	NOT FIELD CHECKED; REPORTED BY ROSS, 1971	UNUSED	55	73	GRAIN-HAY DRYING	BLANCHING	YES 44.7850 114.8551	RDSS, 1971

22

Basic Data Tabl	Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (continued)	ronment, Presen	nt Use and Potential Use o	E Thermal Springs and	Wells in Idaho (continued)		
Spring/we-! laentification kumber 6 Yamu	Dis- charge ((/min) Aquiter Age and Rock Type	Geolog.c Structure	Remar ts	Deposition Gart Sill- bon- Fresent úse	weil Surf Aqui- bern Temp. Potential Use Eased on (m) (PC) (PC) Surface Teacerature*	Potenhia/Use Basec on Best Estimate of Subsurface Temperature ***	Chen/ Lafifude Trace Anai. Longfude Reterat
				<u>Valley County</u> (cont'd.)			
HOSPITAL MS 17N 14E KOBCIS	TEATLARY GUANITIC ROOK		NOT FIELD ONEOKEU; REPORTED BY ROSS, 1971	UNUSED	46 69 SEEDLING CONFEES	RERVICERATION (LOWER TEMPERATURE LIMIT)	YES 44.8361 POSS, 1971 114.7304
TEAPOT H S 181 6E 9ADG1S	56 DEFACEOUS GRANITIC RODY		SULFUR 000R	- RECREATION	61 ANIMAL HISEAUCE		YEE 44.917 BEAR , 1976 (SITE INGREGELIZE
HOT CREEK W S 18W BE 178UA1S	37 ORETACEOUS GRAVITIC ROOK			YES RECREATION	36 79 DE-ICINS	PASTEURIZEO MILK PROCESS	YES 44,8996 ROSS, 1977
LICK CREEK # 5 20N 5E 150A61S	15 CRETACEOUS GRAVITIC ROCK			UNISED	33 AQUACULTURE		45,0697 : 8055, 1971 115,8258
SHEEP ORER H S ZON 7E 55A 1S	378 QUATERNARY ALUVIUM NEAR CRETACEOUS GRANITIC ROCK		reported of poss-unvele to Canfing. Temperature range 32-59 degrees c	•	58 BALNEDLOGICAL 547-45		45.0353 ROSS, 1971
SECESH H S 21N 5E 110 15	378 DREFACEOUS GRANITIC ROCK		REPORTED BY ROSS-UNAGLE TO ODAFTRM		o		45.1699 Ross, 1971
				Rashington County			
COVE CREEK H 5 10N 3W 9CCC15	2681			ผสรกพา	55 172 HOTBED HEATING	VISCOSE RAYON	YES 44.2112 116.7100
ELVIN CRAIG WELL 11N 2W 16AABI	10977 MICOGNE BASALT			1484 G AT 1 DN	134 21 83 FISH HATOHING	PASTEURI ZAT10N	YES 44,247 YOUNG AL CT-3-3, 16,5762 1977
PHIL SOULEN WELL	757 - QUATERNARY NUR TERTIARY SEUIMENTS		DRILLER'S LOG MAL_A⊒LE	1984 IGAT LOK	150 25 DE-ICING		44.26.26 YOUNG M.J. WT4245, 116.5546 1977
	ter a director de construction de la construction de la construction de la construction de la construction	черотник ст Тесте Тесте Коло	and so the state of the state o	. 12.5 - Muise	14 172 APPLE NEWSLAW 24	ORY INS OF FISH KEY.	רב מגדערים היינייני. וורי זכים
MILLIAM GRUUMARTT MEEL · · · · · · · · · · · · · · · ·	I 946 DUATERNARY AND TEATIARY SEDIMENTS	- NORTH TRENDING FAULT	 FLOWING WELL, DRILLER'S 106 MARLAGLE, MOT FIELD DHEORED 		424 38 AUKOLTURE	·	. 55, '50'T, 3797'70 116,8169

-330-

44.2448 L06,1967	1964 رتدا 1972 44.214 116.9624	YES 44,3177 117,0412	YES 44,3143 "20% AKD 07HENS,	х. YES 44.3065 YOUND AND OTHENS, 117.64.20 1977	YE5 44.2089 '€nONG, 1970 117.0495	L) YES 44.2005 KENCOR, 1570	44.2994 Héwane, 1970 117.0435	44.2657	 44.3313 YOUNG AND OTHERS, 116.9422 1570	44.2525 112.0715	لال 1962 متريقي 1964 116,7319 متريقي 1964
	AUGNOBSCH TYN I NY	SEEDLING OWIFENS	APLE DEPTDRAFION	HURDPORT CS	POTATCE DEMONANTION	ONRY ONCOTS (SYRUP, CIL)	BEET SJOAR PROCESS				WASHING MU DRYING OF WOOL YES 44.47319
A 36 AQUAQUITURE	2 21 61 CATFISH FROMING	2 'Zz 45	5 28 68 FERMENTATION	22 42 FISH FARMING	I 70 140 REFRIGERATION LLONER TENEGRATURE LINIT)	NO 145 APPLE DEHICRATION	76 156 AN IMAL HUSEANDRY	30 AQUACULTARE	24 BLOCERROATION	PISH FARMING	ରୋଜନୁହାର ଜନ୍ମ
424	STOCK WATERING 59		66 UNAJSED		RECREATION 121	RECREATION 31	RECKENTICK. 27	115R16AT1.0% 92	1 RRIGATION 42	6 UNUSED	PUBLIC SUPPLY 293
RLOWING WELL, DRILLER'S LOC MAILABLE, MOT FIELD GIEXED	DRILLER'S AVAILABLE	NUT FIELD DRECKED		MAINLY SEPACE	, Rioming Welly, Sulfor 0057, Reliters Lug, Mallages, Also known as Metser H. S Wells	FLOWING WELL' SULFUC CONTROL	גרסאואס אברר: מחברע מסבר	DRILLER'S LOG MALLABLE. FLOWING WELL: SULFUR 0009	DRITLER'S LOG WALAGLE	·	PRIMER'S LOS AVAILAGLE; FLOWING MELL
NORTH TRENDING			<i>د</i>								
946 SEDIMENTS MO TERTIARY	113 PLIOGENE MC PLEISTOGENE SEDIMENTS		199 PLIOZENE AND PLEISTOGENE SEDIMENTS, MIOXENE BASALT (?)	THARME BHOODIN (STUBMIGS	5677 MIOCENE BASALT	75 MIOCENE BASALT	37 MIOCENE BASALT	1249 PLIOCENE MO PLEISTOCENE SEDINENIS	1514 QUATERNARY AND TERTLARY SEDIMENTS		7570 MIOGNE BASALT, QUATERNARY AND TEATLARY SEDIMENTS
LLIAM (RRUNNETT LL AN 330BA1	111 SA 20001	114 6W 30881	GLENN HILL WELL TIN 6M 30CB1	MEISER H S 11k 6W 10ACE1S	GEOSOLAR GROWERS WELL #1 11N 6W 1000AF	GEOSOLAR GROWERS MELL #2 11% 6m 1000A2	GEOSOLAR GROMERS MELL #3 11N 6M 1000A3	NAKAMURA BROTHERS Well 11 6W 1500 A1	FRAMK CHANDLER MELL 12N 5M 330801	OLD HOMESTEAD W S 12N 6M 28888815	NIDVALE CITY WELL
					-3:	31-		<u>.</u>			

١

Basic Data Table 4. Location, Geologic Environment, Present Use and Potential Use of Thermal Springs and Wells in Idaho (Continued;

Ū.		0 5150C,	1970		197 0	0/61	
Rêt ê rence		MALKER AND 51500, 1964	NEWCOME, 1970	L06, 1977	NE KONE, 1970	NEMCONE, 1970	1977
Latitude \$ Long(tude)		44_46 60 116,7655	44.5860 116.6554	44,5738 116,6218	44 .57.28 116.6778	44.5313 116.7535	49_6477 116_6829
Chem/ Trace Anal.		YES	LSS YES		tes	YES	
Potential Use Based on Best Estimate of Subsurface Temperaturete		GRAIN-HAY DAYING	PASTEURIZEU MILK PROCESS			NOILYYYCHHO JINH	
- Potential Use Eased on Surface Tenger aturet*		FISH FARKING	APPLE DEHYDRATION	FISH FARMING		BALNEOLOGI CAL BATHS	FISH HATOHING
Surf. fer Temp. Temp. (9C) (9C)		8 5 2	70 78	59 79	ж К	52 63	12 16
kell Jepth Jse (m)	(jut	A 16	2	ŭ	لر کھ		ъ.
Present üse	<u> Washington County</u> (cont'á.)	(RetGATLON	SPACE HEATING	IRRIGATION	PUBLIC SUPPLY	i) S	DOMESTIC
Siti-	ington Co	-	YES	_	۵.	YES UNUSED	D
De Sàs	Hash		C ES		ସ		
Renarks		FLOWING MELL	MINERAJIS GPRING VENTS; TENPERATING 63-70 DEGREES C SULFUR (DOR	טאינובנאי 5 נספ אי אווראשרב	FLOMING MELL; ORILLER'S LOS AVAILABLE		DRILLER'S LOG AVAILABLE
Geologic Structure							
öls- carge ((/min) Aquiter Åge and fock Type		151 MIOCENE BASALT	378 QUATERNARY ALLUVIUM NEAR MIJJENE BASALT	1135 PLIOCENE MO PLEISTOCENE SUINENTS	1514 MIODENE BASALT	378 JUATERNARY ALLIVIUM NEAR	151 PLLIOCENE MED PLEISTUCENE SEDIMENTS E BASALT
Spring/#ell Gentification Rumber & Name		FAIROHLUP LUHBER CU ISN 44 15BACI	LANEY H S 14N 2M GBBAIS	SALUBRIA CEMETERY Well 14N 2W 6DOBI	CAMBRIDGE CLTY MELL 14N 3W 5DUCI	FAIROHLUH 5 14M 3M 19CB015	KERMIT WIGGINS WELL

-332-

PRELIMINARY ENVIRONMENTAL ASSESSMENT

IDAHO GEOTHERMAL RESOURCE AREAS

by

S.G. Spencer

and

J. F. Sullivan

EG&G Idaho, Inc. Idaho Falls, Idaho

TABLE OF CONTENTS

Page

_		
I.	Introduction	7
II.	Description of Potential Activity	9
III.	Description of Existing Environment 34	
τ τ .		
	A. Council-Cambridge 34	
	3. Boise-Weiser 34	7
	C. Bruneau-Grandview	9
). Mountain Home	
	Blue Gulch, Twin Falls, and Artesian City 37	
	P. Pocatello	8
	G. Hailey	6
IV.	Potential Environmental Impacts	2
	A. Air Quality	2
	B. Noise	2
· ·	C. Soils	2
	D. Water Resources 39	2
	E. Seismicity	3
	Subsidence	3
	G. Flora	
	I. Fauna	4
	Socioeconomics	4
	J. Archaeological and Historical	
	References	
		-

-335-

I. INTRODUCTION

This preliminary environmental assessment was prepared to address the major environmental concerns in nine areas in Idaho (figure I-1) with significant geothermal resource potential. This assessment is brief and is not intended to provide a comprehensive environmental analysis of each area; instead, it has been compiled to provide preliminary environmental information as a companion to resource data for these areas. The nine areas addressed are:

A. COUNCIL-CAMBRIDGE

An area encompassing approximately 96,000 ha (hectares) in the Weiser River drainage of western central Idaho.

B. BOISE-WEISER

An area approximately encompassing 460,000 ha in western Idaho, including parts of Washington, Payette, Gem, Canyon and Ada counties.

C. BRUNEAU-GRAND VIEW

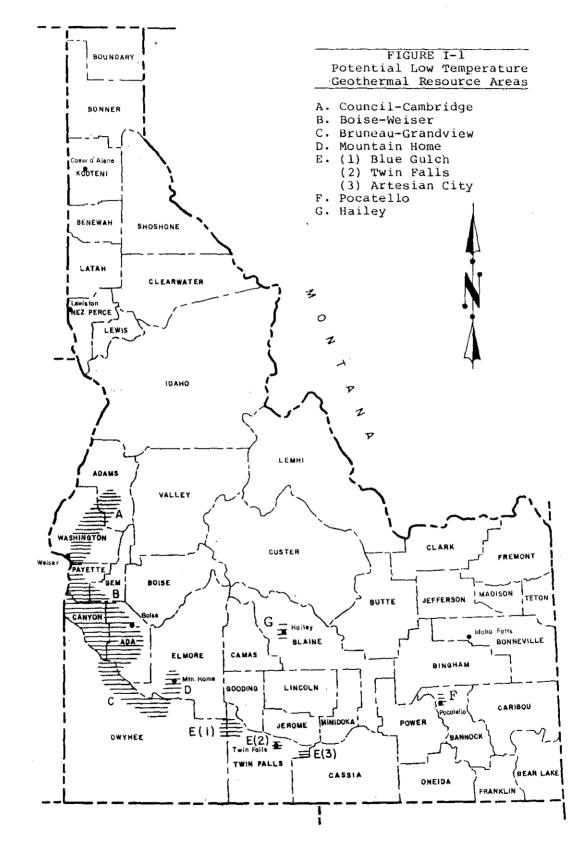
An area of approximately 186,000 ha just south of the Snake River in Owyhee County in southwest Idaho.

D. MOUNTAIN HOME

Approximately 54,000 ha surrounding the city of Mountain Home in southwest Idaho.

E. BLUE GULCH, TWIN FALLS, AND ARTESIAN CITY

Three areas encompassing 38,000, 13,000, and 10,000 ha, respectively, south of the Snake River in southcentral Idaho.


F. POCATELLO

An area of approximately 11,000 ha north and west of the city of Pocatello in southeastern Idaho.

G. HAILEY

An area encompassing 16,000 ha in Blaine County in central Idaho.

STATE OF IDAHO

II. DESCRIPTION OF POTENTIAL ACTIVITY

Geothermal developments currently underway include expansion of the space heating system in Boise and the drilling of wells in Twin Falls for space heating at the College of Southern Idaho. Development in the other areas under consideration is limited; however, enough interest has been expressed in developing the resources in these areas that it can be assumed that geothermal activity will increase.

Nearly all resources identified in the areas under consideration are low to moderate temperature resources below $50^{\circ}C$ (Celsius). These can be developed for a variety of direct uses, including greenhouses, space heating and cooling, pasteurization, food processing, aquaculture, and animal rearing. In each of these processes, the geothermal fluid replaces the water-boiler systems or the heating systems and thus no major change in system design is required.

Wells drilled to provide geothermal fluids for direct use processes will generally range from less than 100 m (meters) in depth to over 1200 m deep, depending on the location and temperature of the resource. State regulations require that such wells be drilled by a licensed driller under a permit and that they be cased and cemented to preclude contamination of shallow groundwater supplies. Where higher temperatures may be encountered, blowout prevention equipment is required.

Less than 0.5 ha of land is generally cleared and graded for a drilling pad. Small reserve pits may be excavated to contain fluids encountered during drilling. When mud is used to drill the wells, mud tanks or lined mud pits are generally used as reservoirs for the mud circulation system. Access roads to move drilling equipment to the drill site are usually one-lane, ditched for drainage, and gravelled.

In addition to the drill rig, office trailers, equipment storage sheds, pipe racks, generators, and fuel tanks may be moved onto the site. All of these facilities are portable and are on location only during drilling and testing of the well. Portable sanitary facilities and water supply may also be provided.

Upon completion of the well, a wellhead is installed and connected to a supply pipeline or ditch. Geothermal pipelines are generally insulated and buried to prevent large heat losses during transport. Disposal of the geothermal fluids downstream of the processes will vary. Currently used methods of disposal include injection, discharge to a surface water source (including irrigation canals) and cycling through other uses (including domestic water supply). The disposal method chosen depends on the quality of the geothermal fluids, local regulations, the type of process, and economic considerations.

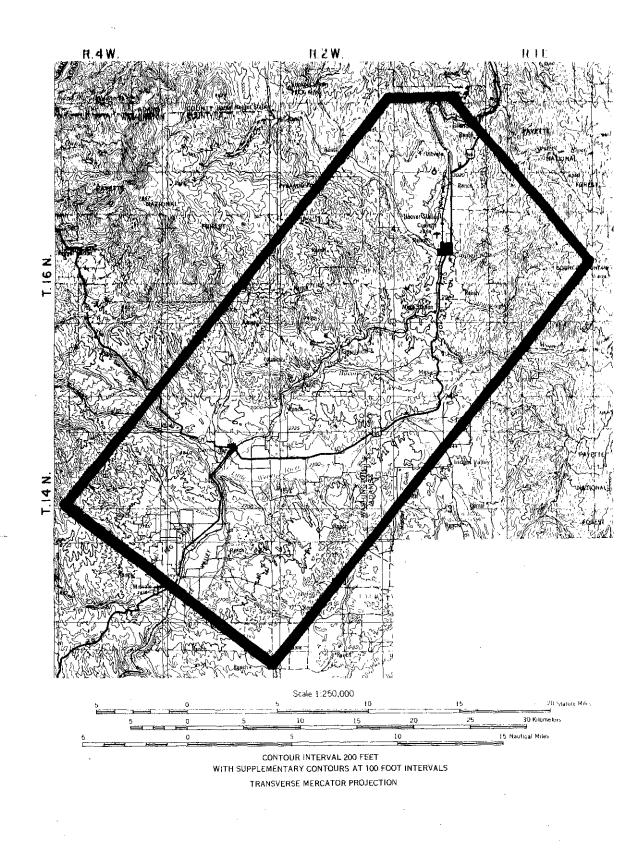
III. DESCRIPTION OF EXISTING ENVIRONMENT

A. COUNCIL-CAMBRIDGE

1. Physical Environment

a. Climate

The climatic conditions of the Council-Cambridge area are generally influenced by predominant lows in the winter and highs in the summer. As a result, heavy winter snows and spring rains are usual, while summers are hot and Precipitation ranges from 64 cm (centimeter) at dry. Council in the Weiser Valley to over 115 cm in the Eight percent of the precipitation surrounding mountains. falls primarily as snow in the period from October through Frequent chinook storms in December and January April. result in rapid melting of the snowpack and subsequent ero-Temperatures at Council range from -32 to 43°C sion damage. with the annual temperature averaging 4°C. There are approximately 138 frost-free days annually in the valleys of the Weiser basin (USFS, 1975).


b. Air Quality

In general, the air quality in the area is good, with the average background level of particulates estimated at less than 15 μ g/m³ (micrograms per cubic meter). Sources of pollution include sawmills at Council, slash burning, road dust, vehicle emissions on Highway 95, rock-crushing, and campfires. In general, pollutants are readily dissipated. However, frequent inversions in the fall during slash burning combine to hold smoke in the upper valleys.

c. Land Resources

(1) Topography

The Council-Cambridge area is located in the Wallowa-Seven Devils section of the Columbia Plateau physiographic province. North-south trending block mountains and structurally-controlled landscapes are typical. The Weiser basin is very irregular with rolling profiles in the valleys. The main feature in the area of interest is the valley of the Weiser River, which trends south from the Seven Devils Mountains to the river's confluence with the Snake River at Weiser. The valley is bounded on the east by the West Mountain block. On the west, the Cuddy Mountains separate the valley from the canyon of the Snake River. Elevations range from 820 m at Midvale in the south to 2480 m on Council Mountain in the northeast corner of the area.

A. Council-Cambridge Study Area

-342-

(2) Geology

Plateau basalt flows of the Columbia River formation are the most extensive rock type in the area. These basalts are usually weakly weathered and moderately to well-fractured. Granitics of the Idaho Batholith occur in scattered exposures in the area. In the valleys of the Weiser River and its tributaries, the basalts are overlain by colluvium, fanglomerates, stream and lake deposits, and alluvium. A significant area of glaciation and associated glacial debris is located on Council Mountain in the northeast corner of the area. Primary faulting in the area occurs perpendicular to the Weiser Valley.

(3) Soils

The primary parent material of soils in the Council-Cambridge area is the Columbia River basalts. These soils are generally fine to medium-textured loams and silt loams ranging in depth from 76 cm to 127 cm. Productivity is relatively high and erosion hazards are moderate to low. Soils overlying the granitics are much less extensive, coarse-textured loams and sandy loams with moderately low productivity. The erosion potential in these latter soils is moderate to high, while the basaltic soils are generally stable. Mineral fertility is high in most soils. Caliche and relatively high salinity occur in the soils overlying the lacustrine deposits on foothill slopes.

d. Water Resources

(1) Surface Water

The primary stream in the area of interest the Weiser River, which drains 1567 km^2 (square is kilometer) above the gaging station at Cambridge. The discharge at this station averages 19 m^3/s (cubic meter per second) and ranged from a maximum of 286 m^3/s on 12/22/55 to a minimum of $0.23 \text{ m}^3/\text{s}$ on 11/16/58. The source of water in the basin is snowmelt. Because of the irregularity of the basin, more than 60 percent of the annual runoff is contributed by tributaries on the east-side of the basin. Warm temperatures and rainstorms produce significant runoff in the winter and spring. In the 1974-1975 water year, 80 percent of the total flow of the river occurred in the period from March through June, with an average discharge during May of nearly 80 m^3/s . Total suspended solids during the same period ranged from 22 mg/l (milligram per liter) to 229 mg/1. Measurements of daily sediment discharge were 247 metric tons in February, 1316 metric tons in May, and 21 metric tons in July. The average quality of the river near Cambridge in 1974 and 1975 is shown in table A-1.

• •	QUALITY C	ABLE A-1 DF WEISER RIVER mg/l)	
Ca	°• 9.9	HCO3	56
К	1.5	SOT	4.3
Mg	3.5	TDS	82
Nā	6.4	рH	8.0
C1 ·	1.7	Specific	100
		Conductance	
F	0.1		

Flow in the river is regulated to some extent by the Lost Valley Reservoir, 92 km upstream from the mouth, and by other smaller reservoirs. Diversions above Cambridge are used to irrigate about 5000 ha. Downstream, water is used for irrigation in the lower Weiser Valley and for power production on the Snake River (USFS, 1975).

(2) Groundwater

Groundwater in the upper Weiser basin occurs primarly in the Columbia River basalts under both water table and artesian conditions. Some water occurs in the thin layers of sand and gravel sediments in the valley bottoms around Cambridge. Depth to water in irrigation and domestic wells in the area ranges from 0.06 m to 34 m. The average quality of water produced from these wells is shown in table A-2. Domestic and stock water supplies are generally derived from individual wells and springs. Industrial water use is limited to the timber industry and primarily obtained from surface water is with some supplemental groundwater.

	GROUNDW	BLE A-2 ATER QUALITY mg/l)	
Ca K Mg Na_ C <u>1</u> F	16 7.7 6 29 2.8 0.4	HCO3 SO4 TDS PH	143 17 210 7.6

2. Natural Environment

a. Flora

The vegetation in the Council-Cambridge area can be divided into two basic types, based on elevation. At lower elevations there are scattered stands of ponderosa pine (Pinus ponderosa), with bluegrasses (Poa secunda), bluebunch wheatgrass (Agropyron spicatum), and Idaho fescue (Festuca sp.). Big sage (Artemisia tridentata) is common and primary forbs include phlox (phlox sp.), asters (Aster sp.), and western yarrow (Achillea sp.). Some rocky areas support only sparse grasses and forbs. At higher elevations in the mountains east of Council, ponderosa pine predom-The understory is much heavier and is composed of inates. species such as snowberry (Symphoricarpos albus), chokeberry (Pontentialla virginiana), and ninebark (Physocarpus sp.). Forbs includes asters, horsemint (Monarda sp.), geranium (Geranium sp.), and buckwheat (Fagopyrum sp.). Douglas fir (Pseudotsuga taxifolia) is common and becomes dominant above Western larch (Larix occidentalis) is scattered 1500 m. amongst the douqlas fir and Engelmann spruce (Picea engelmannii) occurs along creek bottoms in the mountains. A few whitebark pine (Pinus sp.) grow on top of Council Mountain (USFS, 1975).

b. Fauna

Although detailed inventories have not been taken, surveys of fauna in the area have identified 81 species of birds, 32 species of mammals, and 15 species of reptiles and amphibians. This diversity is primarily due to the variety of cover types and the range of elevations. game is not Although big abundant, some mule deer (Odocoileus hemionus), elk (Cervus canadensis), and numerous black bear (Ursua americanus) inhabit the mountain area. In one season, 53 black bear were tagged on the Middle Fork of Council Mountain is the most important mule the Weiser. deer habitat in the area. Coyote (Canis latrans), red fox (Vulpes fulva), muskrat (Ondatra zibethica), badger (Taxidea taxus) raccon (Procyon lotor), and skunk (Mephitis mephitis) are common. Small mammals include Columbian ground squirrel columbianus), golden-mantled ground (Citellus squirrel (Citellus (Eutamias lateralis), yellowpine chipmunk amoenus), and snowshoe hare (Lepus americanus). Common reptiles and amphibians are western rattlesnake (Cortalus viridis), leopard frog (Rana pipiens), and bullfrog (Rana catesbeiana). In addition to a large variety of passerines, several species of hawks (Buteo sp.), golden eagles (Aquila chrysaetos), and bald eagles (Halliaeetus leucocephalus) are found throughout the area. Blue grouse (Dendragapus obscurus) and ruffed grouse (Bonasa umbellus) are abundant (USFS, 1975).

c. Aquatics

The Idaho Department of Fish and Game classes the streams in the area as good to excellent. There is a fair trout fishery in the three forks of the Weiser River and these streams are stocked several times a year. Game fish include rainbow (Salmo gairdneri), brook trout (Salvelinus fontinalis), a few cutthroat (Salmo clarki), and Dolly Varden (Salvelinus malma). A significant number of nongame fish are found in the lower Weiser River.

3. Cultural Environment

a. Land Use

Nearly all land in the area of interest is privately owned. Approximately 9500 ha in the northeast corner of the area are controlled by the U.S. Forest Service, and parcels of land under the jurisdiction of the state and BLM are scattered through the area. Primary land uses include farming along the Weiser River, timber harvest, range, and recreation. The area was seriously overgrazed in the late 1800's, but careful range management and range restoration have resulted in much of the land being considered an important range resource. At one time, Council was the center of extensive apple orchards, but water shortages, low prices and increased costs have resulted in a decline.

b. Socioeconomics and Demography

The area of interest includes parts of both Washington and Adams counties. The combined population of these counties is 11,800 (1976). The population density of Adams County is 0.9 people/km², less than half the density of Washington County. The larger communities in the area and their 1970 populations are Council (899), Cambridge (383), and Midvale (176). The unemployment rate in Adams County in 1976 averaged 13.6 percent and that in Washington County averaged 8.6 percent. Primary contributors to the total employment in each county include farm proprietors, manufacturing, state and local, and trade. Per capita income in the area is 90 percent of the state average and 74 percent of the national average.

c. Archaeologic and Historical

Council Valley was an important meeting place for the NezPerce and Shoshone tribes, the valleys providing a winter retreat and the mountains excellent hunting. Little is known of early occupation of the area, although the potential for prehistoric occupation in the valley areas is good. Both Council and Cambridge were settled in the 1870's. Council grew rapidly as a result of mining activity in the Seven Devils. Cattle and sheep grazing were well established by 1880, and the subsequent overgrazing of the area resulted in heavy soil loss in the lowlands in the early 1900's.

d. Aesthetic Values

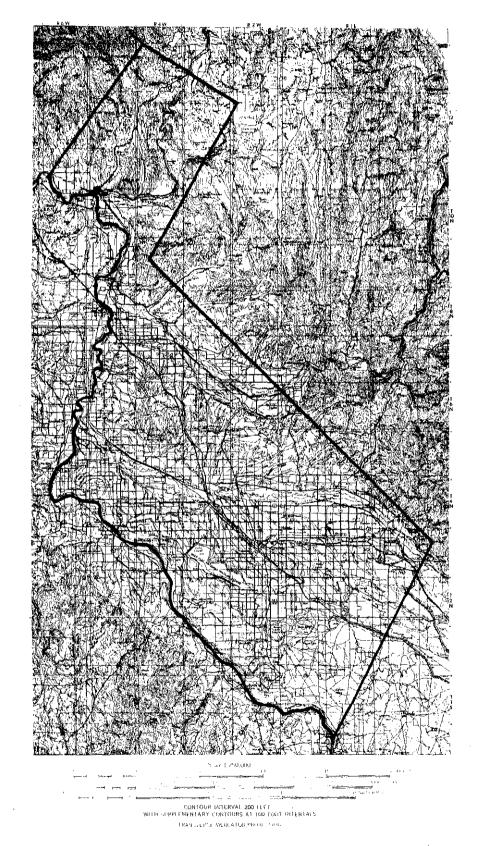
The study area is composed of both mountains and valleys. The mountainous regions are utilized for recreational purposes such as backpacking, hunting, and fishing, while the valleys are fairly well developed. Two national forests are touched by the area: Boise and Payette, both of great recreational value.

B. BOISE-WEISER

1. Physical Environment

a. Climate

Limited climatological data are available for selected sampling locations within the Weiser-Boise study area (National Oceanic Atmospheric Administration, 1977). These are summarized as follows:


(1) Weiser - located in the uppermost part of the study region in Washington County. The average annual temperature is 10.6° C, with January and July averaging -2.5 and 23.3°C, respectively. Rainfall averages 29 cm/yr with July and January averaging 0.28 and 4.39 cm, respectively. Relative humidity peaks at 40-50 percent in summer and 70-80 percent in winter.

(2) Payette - located in the northwest of the study region in Payette County. The average annual temperature is 10.8°C, with January and July averaging -2.2 and 23.6°C, respectively. Rainfall averages 28.3 cm/yr with July and January averaging 0.33 and 3.96 cm, respectively.

(3) Caldwell - located in Canyon County in the middle of the study area. Average annual temperature is 10.7°C with January and July averaging -1.5 and 23.2°C, respectively. Rainfall averages 28.3 cm/yr with July and January averaging 0.33 and 3.96 cm, respectively.

(4) Boise - located in Ada County in the eastern portion of the study area. Average annual temperature is 10.6°C with January and July averaging -1.5 and 23.3°C, respectively. Rainfall averages 29.2 cm/yr with July and January averaging 0.38 and 3.73 cm, respectively.

The climate is therefore characterized by hot dry summers. Snowfall is a major contributor to the total precipitation,

B. Boise-Weiser Study Area

-348-

notably at the higher elevations. The dry grassland climate provides well-defined seasonal characteristics.

b. Air Quality

Air masses from the Pacific reach the study area but are considerably modified over that distance point. Their influence contributes mildly to periods of cloudy or stormy winter weather. Air pollution is not a major problem in the area as a whole, however, the Boise region experiences intermittent temperature inversions which effectively trap particulates and gasses at low levels, thus creating stagnant air masses. The Metropolitan Boise Intrastate Region (including Boise, Nampa, and Caldwell) violates secondary air quality standards for particulate matter (U.S. EPA, 1972). Sources are fuel combustion and industrial process losses, primarily asphalt and ready-mix concrete operations. Additionally, dust from agricultural lands contributes to the particulate load during certain seasons.

The Boise area is the only portion of Idaho to experience significant emissions from aircraft or automobiles. Reduced visibility is a consequence of such air quality degradation during severe temperature inversions (Ada Council of Government).

c. Land Resources

(1) Topography

The Boise-Weiser study area is located on the western border of the state and includes portions of Ada, Canyon, Gem, Payette, and Washington counties. The Boise Mountains border the east side of the region while Oregon borders the west side. The Snake River forms the southern boundary and the Council-Cambridge study area is adjacent on the northern border. Elevations in Ada County range from 822 m on the valley floor to 1890 m on the ridge crest.

The Boise-Caldwell area is of lower elevation than the eastern portion of the Snake River Plain. The topography is generally flat with thick lake and stream sediments interbedded with basalt flows. The lower Boise and Payette River basins are included in the area (BLM, 1976).

(2) Geology

Geological information is primarily limited to Ada County, which is mainly composed of the Idaho Batholith and the Idaho Group. The Idaho Batholith is of granitic origin and is found along the steep face and crest of the Boise Ridge while the Idaho Group represents the valley fill materials, composed of gravel, sand, silt, and clay (Ada Council of Governments, 1973).

The general geology of the area is summarized as follows. Cenozoic flows include: 1) the Basalt flows of the Idaho and Snake River groups in the Boise area; 2) alluvial, glacial, and lake deposits in Canyon, Payette, and Gem counties; 3) sedimentary rocks of the Idaho Group, including lake and stream deposits of the Chalk Hills formation in upper Canyon and lower Payette counties; 4) sedimentary rocks associated with the Columbia River Basalt in Payette and Gem counties; and 5) Columbia River Basalt in Gem, Payette, and Washington counties. Mesozoic rocks include granite rocks of the Idaho Batholith in Ada County (BLM, 1976).

(3) Soils

Available soil data for the entire study area are inadequate for a precise description. Soils in Ada and Canyon counties are moderately to very deep with silty subsoils on gentle to strong slopes. The frost-free season ranges from 120-160 days. Crops, including cereals, potatoes, sugar beets, beans, and hay, require irrigation. Rangeland soils include both coarse-silty and fine-silty Crops, including cereals, Parent materials are alluvium on the terraces and soils. loess on the uplands. The profile depth ranges from 51-152 cm with moderate permeability. The major soil problems appear to be erosion, alkaline conditions and droughtiness. These are being mitigated by residue management, crop sequencing, irrigation, and rangeland management and crossslope operations (BLM, 1976). Land in the Weiser area is subhumid grassland and semiarid grazing land; some is irrigated.

d. Water Resources

(1) Surface

Surface water features in the study area include the Snake River, Payette River, Weiser River, Boise River, Arrowrock and Lucky Peak reservoirs (on the middle fork of the Boise River). Spangler Reservoir in Washington County, Lowell Lake in Canyon County, and Black Canyon Reservoir on the Payette River in Gem County. Additionally, irrigation canals and drainage ditches have been constructed throughout principal irrigation areas.

Swan Falls Dam, constructed in 1901 on the Snake River south of Boise, creates a slack water pool for approximately 19 km. Otherwise, the Snake River is free flowing. The Snake River receives pollutants from agricultural practices, industrial processing plants (primarily potato and sugar refining), untreated domestic sewage, and irrigation returns. Water quality of the river is degraded by input from the Owyhee, Payette, and Boise rivers (BLM, 1976).

The Boise River flows in an east to west direction through Ada County and drains about 6993 km^2 of mountainous terrain north and east of Ada County. Since this river receives a large part of its water from seasonal runoff and snowmelt, it is characterized by high flows in spring through early summer and low flows from late summer through winter.

Water quality data for the region is summarized in Table B-1 (USGS, 1976). Lake Lowell near Caldwell is formed by two earth embankments. Storage began in 1908, with the capacity 218 hm³ (cubic hectometer). The lake receives water from the Boise River and local drainage; water is used primarily for irrigation. The maximum observed content (221 hm³) was recorded on 4/27/22 and the minimum (6.7 hm³) was observed on 10/22/24.

Lucky Peak Reservoir near Boise is formed by an earth-fill dam. Storage began in 1954. Water (capacity 378.6 hm^3) is stored for flood control and irrigation of Boise valley lands. The maximum observed content (376 hm^3) was recorded on 6/25/55 and the minimum (35.5 hm^3) was observed 12/21/61.

Arrowrock Reservoir on the Boise River is formed by a gravity-section concrete-arch dam which was completed in 1915 and raised 1.5 m in 1937. Water (current capacity 353 hm³) is used for irrigation in Boise valley; silt deposition has decreased the storage capacity over time. The maximum content (371 hm³) was recorded 5/29/48and the minimum occurred during several years when the gates were open and natural river flow passed through the reservoir.

The Boise River is clean as it leaves Lucky Peak Reservoir; however, the quality is degraded as the river leaves Boise. The most severe degradation occurs after the water flows by Eagle Island where the combined effluent from Meridian, Nampa, and Caldwell enter the river along with wastewater returns from vast areas of irrigated farmland (Bureau of Reclamation, 1977). The major pollutants are nitrogen, phosphorus, bacteria, and sediment.

(2) Groundwater

Detailed groundwater data is lacking for the entire study area. However, groundwater data are

						9/76, exp SGS, 1976]		
			Boise River		Payette River		Weiser Riv∈r	
Sampling Station			at Lucky Peak Lake Outlet		2.9 km south of Payette		near Weiser	
		<u> </u>						
Drainage area (km ²) Average discharge Extremes for period		-	6,940		8,390		3,780	_
Average discharge		-	85.6	m ³ /s	89.2	m ³ /s	33.1	m^3/s
Extremes for period	i –	-	1,010 6,	/14/1896	875	12/14/64	564	12/23 55
of record (m ³ /s	5)		(No flow	when	5.1	10/13/35	0.4	8/07, 11
			gates a	re closed	.)			
Conductivity	478	(52)	74.5	(8.5)	131	(61.4)	119	(26.0)
(µmhos/cm)								
pH (units)		(0.23)		(0.14)		(0.57)	7.9	
Temperature (^O C)		(7.1	9.5	(6.1)	12.5	(8.6)	11.3	(8.0
Ca (mg/l)	46.8	(3.1)	8.5	(2.1)	12.6	(6.2)	12.4	(1.8
Na $(mg/1)$	28	(5.6)	3.0	(1.3)	12.4	(7.9)	7.0	(1.4
HCO_3 (mg/l)	163	(57)	39	(7.1)	67	(38.2)	75	(14.0)
TDS (mg/l)	-291	(32)	49	(7)	89	(42)	97	(12)
K (mg/l)	4.4	(0.7)	0.7	(0.1)	1.6	(1.1)	1.9	(0.3
Mg (mg/l)	17.8	(2.2)	1.2	(0.5)	2.3	(1.6)	4.7	(0.5
$Cl^{(mg/l)}$	23.3	(4.9)	0.7	(0.3)	3.1	(0.7)	2.1	(0.8
F(mg/l)		-	0.25	(0.07)	0.35	(0.07)	0.10	(0.02)
$SO_{\overline{4}} (mg/l)$	47.5	(6.8)	3.8	(1.1)	7.9	(1.2)	4.3	(1.2

TABLE B-1 SURFACE WATER DATA FOR THE BOISE-WEISER STUDY AREA

-352-

available for Ada County, where ample water is available for domestic, industrial, and irrigation purposes. Water within Ada County is primarily available from deep permeable sediments of the Glenns Ferry Formation, shallow alluvial or stream deposits, and Snake River Basalt lava flows (Ada Council of Governments). The Glenns Ferry Formation provides the deep aquifer with both clay and sand strata. Clay beds produce 0.32 - 1.6 lps (liter per second) while sand and gravel beds produce up to 102 lps. Well yields from shallow alluvial or stream terrace deposits range from 32 to 64 lps. The Snake River basalt formation is responsible only for shallow, domestic water resources. Ada County groundwaters are mainly calcium-magnesium bicarbonate type. Total dissolved solids (TDS), however, often exceed the U.S.P.H.S. drinking water standard of 200 mg/1. Water quality problems are associated with excessive hardness, dissolved iron, and magnesium levels.

The Boise River Valley has wells that are utilized mainly for domestic purposes. Of 60 major wells monitored by CH_2M Hill, 15 percent were contaminated by coliform bacteria, gram negative, nonsporulating, rod-shaped bacteria that are natural flora to the gastro-intestinal tract of warm-blooded animals.

The Boise Front is the major deep groundwater recharge system for the area, while irrigation seepage and surface water seepage and precipitation recharge the shallow aquifers.

Available information indicates that a decline in groundwater levels is not occurring and that recharge is balancing water removal from the aquifer.

The Weiser River basin drains approximately 4100 km². The principal use of water is for irrigation, with surface waters meeting the bulk of the demand. Groundwater is supplied by two main aquifers: 1) in the basalt of the Columbia River Basalt Group and 2) in overlying Tertiary and Quaternary sedimentary rocks. Individual wells and springs supply domestic and stock supplies. Municipal water for the towns of Council, Cambridge, and Midvale are derived from seven wells open to the Columbia River Basalt Group. Weiser obtains its water from three wells open to the sedimentary-rock aquifer (Young, Harenberg, and Seitz, 1977).

Groundwater in the Weiser River basin is recharged mainly from precipitation falling within the basin. The basalt aquifers are recharged via precipitation on the surrounding uplands and mountains, with snowmelt the greatest contributor. The sedimentary rock aquifers are recharged primarily during snowmelt runoff and the irrigation season, with water infiltration from streams, canals, ditches, and irrigated fields. Water levels in the various aquifers vary with snowmelt conditions.

Groundwater supplies are affected by the thermal waters known to occur in the region. Wells in the Midvale area discharge water in the 28°C range. Municipal wells at Weiser, which draw water from the shallower sedimentary rocks, have TDS concentrations in the 393-514 mg/l range, considerably harder than from the deeper basalt aquifer.

2. Natural Environment

a. Flora

Species expected to occur in the valleys of Payette, Gem, Washington, and upper Canyon counties include those that are found in the Payette Forest. Examples are ponderosa pine, bluebunch wheatgrass, Idaho fescue, big sage, and western yarrow.

Adjacent to the Snake River lies a salt desert shrub plant community which boasts common stands of white sage or winterfat (Eurotia lanata), once common throughout the intermountain area. The sagebrush-grassland community found throughout Ada and Canyon counties has species such as sagebrush, low big sagebrush (Artemesia arbuscula), bluebunch wheatgrass, Idaho fescue, Indian ricegrass (Oryzopsis hymenoides) cheatgrass and brome (Bromus Repeated fires, overgrazing, and agricultural tectorum). conversion has altered this once diverse and abundant plant cover to little more than a sagebrush and/or annual grass community.

A forest community is found along the northeastern border of Ada County, comprised of yellow pine (Pinus ponderosa) and Douglas fir (Pseudotsuga menziesii) with an associated shurb understory.

b. Fauna

Animal species which inhabit the study region include:

(1) Mammals

Large mammals are limited by cover, forage, and water availability. Limited numbers of mule deer are found along the Snake River Canyon with a few migrants from the Boise drainage basin. Predator species include the coyote, bobcat (Lynx rufus), skunk, and short-tailed weasel (Mustela erminea). Rodents include the yellow-bellied marmot (Marmota flaviventris), muskrat, Townsend's ground squirrel (Citellus townsendi), and Columbian ground squirrel.

(2) 'Birds

Birds associated with the area total 110 species, including 40 waterfowl or aquatic species, 4 upland game birds, 22 raptors, and 44 other smaller species (Ada Council of Governments, No. 9). The birds of prey are discussed in the Bruneau-Grand View section of this report. Game species include pheasant (Phasianus colchicus), ruffed grouse, chuker (Alectaris graeca), Hungarian partridge (Perdix perdix), and quail (Oreortyx pictus). Duck species include mallard (Anas platyrhynchos), pintail (Anas acuta), blue wing teal (Anas discors), ruddy (Oxyrua jamaicensis) and cinnamon teal (Anas cyanoptera).

(3) Reptiles/Amphibians

Reptiles/amphibians occur in rocky canyons and desert lowlands where the prey base is good. Representative species are: leopard lizard (Cortaphytas wislizenii), western skunk (Eumeces skiltonianus), Great Basin gopher snake (Pituophis melanoleucus), and western rattlesnake.

c. Aquatics

The Boise Front tributaries are sediment-laden from ground disturbances and contribute to an excessive sediment load in the Boise River which adversely impacts the ecosystem and has eliminated the fisheries in some portions. The only trout habitat is between Barber Dam to Middleton, a distance of 35 km. The 13 km length of the Boise River between Discovery State Park and Barber Dam is severely silted and does not support a fish community. Fish species in the river include Rocky Mountain whitefish (Coregonus sp.), (family Catistomidae), carp (Cyprinus carpio), suckers sculpin (Cottus sp.), shiners (Notropis sp.), and squawfish (Ptychocheilus oregonensis). Gamefish and invertebrate populations are severely impacted by the 7-14 day annual shutdown of Lucky Peak Dam for inspection purposes. This results in a 1:1 ratio of sewage effluent: river water below the Boise sewage treatment plant, with residual chlorine at levels toxic to trout and whitefish. Additionally insect larvae are wiped out with the drastic flow decrease and It is felt that the trout fishery excessive siltation. could be reestablished in the Boise River in both Ada and Canyon counties. (A second tunnel has been authorized by Congress and is expected to be under construction within the next two years. This will eliminate the annual shutdown of Lucky Peak flows.)

Healthy fish populations are found in the Snake River below Swan Falls Dam, including channel catfish (Icatlurus punctatus), largemouth bass (Micropterus salmoides), smallmouth bass (M. dolomieu), and crappie (Poxomis sp.).

The Weiser River supports a trout fishery with supplemental stocking from the Idaho Department of Fish and Game. Game species include brook trout, rainbow trout, cutthroat trout, and Dolly Varden. Additionally, nongame species are also in the Weiser River.

3. Cultural Environment

a. Land Use

Land ownership and use in the five counties within the Boise-Weiser study area are listed in table B-2.

<u></u>	<u>, = : =</u>	TABLE B-	2		
LAND	OWNERSHIP	AND USE IN	BOISE-WEIS	ER AREA	
	_				
-	Ada	Canyon	Payette	Gem	Washington
% Federal Land	46.2	4.3	25,9	37.9	37.0
% State Land	6.7	0.6	3.5	6.6	6.8
% Private Land	45.9	94.9	69.8	55.0	55.9
Total Land (ha)	270,223	149,784	104,095	143,827	378,773
% Urban or					
built-up	4.5	2.9	1.1	0.5	0.4
<pre>% Agricultural</pre>	25.6	84.4	33.7	18.5	13.8
% Rangeland	69.0	7.7	64.0	66.3	74.6
% Forest	0.3	3.0	0.0	13.9	9.9
% Water	0.6	2.0	1.2	0.8	1.3

b. Socioeconomics and Demography

The study area is varied and diverse in that it includes the densest county (Ada) in the state as well as sparsely populated counties (Washington and Gem). The socioeconomic data for the area are summarized in table B-3.

Employment data are summarized in table B-4.

		TABL	Е В-З		···		
SOC	IOECONOMIC	DATA FO	R THE BOIS	E-WEISER	AREA		
	U.S. Average	Idaho Average	Ada County	Canyon County	-		Wash- - ington County
Population as Percent of 1976 State Total			16.81	8.83	1.80	1.28	1.02
1975 Birth Rate	14.8	19.8	17.1	18.5	17.4	16.9	18.9
1975 Fertility Rate	6.6.7	92.0	76.0	87.5	91.3	84.2	100.6
1976 Percent of Unemployment		~	4.4	6.0	6.0	10.3	8.6
1976 Median Family Income	2	Ş	14,375 \$1	.1,375 Ş	10,375 \$	11,625 \$	10,250
Number of Hospitals			4	3	0	1	0
Number of Persons per M.D.		969	627	969	4,800	2,140	2,100
Total 1976 Crimes			8,380	3,691	645	314	259
% Murder			0.12	0.16	0	0	0
% Larceny			66.	67.	56.	68.	71.
% Burglary	-		22.	24.	31.	27.	20.
% Rape			0.64	0.41	0.4	0	0
1975 Suicide Rate (per 1,000 persons)	<u> </u>	16.4	23.3	15.1	13.9	9.3	16.4
1975 Marriage Rate (per 1,000 persons)		15.5	10.9	9.3	14.2	10.0	15.5
1975 Divorce Rate (per 1,000 persons)		6.3	8.9	6.9	8.3	8,5	6.3

-357-

f

	TABL	Е В-4			
1975 EMPLOYMEN	r data foi	R THE BOIS	E-WEISER	AREA	
· · · · · · · · · · · · · · · · · · ·					Washing-
•	Ada	Canyon	Payette	Gem	ton
% of Females in Labor	44.4	41.2	38.9	29.1	34.1
Force (1970)					
Total Employment	68,744	31,464	4,431	4,007	3,352
Farm Proprietors	1,664	2,619	734	637	598
Nonfarm Proprietors	5,481	2,853	667	370	455
Federal Civilian Employ- ment	3,208	191	38	59	50
State and Local Employment	10,866	3,480	631	510	501
Manufacturing Employment	6,014	6,250	597	733	382
Trade Employment	16,143	5,581	536	498	574
Services Employment	11,062	4,563	319	377	190
Construction Employment	5,089	1,035	132	30	95
Farm Employment	511	2,581	390	644	339

c. Archaeological and Historical

The Oregon Trail passes through Ada and Canyon counties; additionally the Kelton Road is located in the northeast corner of Ada County. The site of the 1834 Fort Boise is located in northwestern Canyon County. Archaeological surveys in Idaho are limited; however, it is felt that the western Snake River Plain has the potential to yield data of major scientific significance (BLM, 1976). It is hypothesized that the western Snake Plain contained extensive cultural diversity during the late prehistoric and early historic periods. The valleys of the Boise, Payette, and Weiser rivers were important grounds for several distinct Indian groups, including the Northern Paiute, Nez Perce, Cayuse, Shoshoni, and Bannock tribes.

d. Aesthetic Values

The several large rivers and mountainous regions in the study area are utilized extensively for recreational purposes. State parks include Discovery and Lucky Peak in Ada County, Black Canyon in Gem County, Ontario in Payette County, and Mann Creek in Washington County. Several of these parks offer camping services and are therefore a valuable resource. In general, aesthetic resources in the area require preservation, since Idaho boasts some of the most pristine areas left in the country. The Birds of Prey Natural Area lies along the Snake River on the southern border of Ada County. For details see the Bruneau-Grand View section of this report.

C. BRUNEAU-GRAND VIEW

1. Physical Environment

a. Climate

The climate of Owyhee County is moderate, ranging from 0°C in January to 27°C in July. Extremes of -33 to 46°C have been recorded for Grand View. Rainfall averages 20 to 25 cm per year along the Snake River, with May and June the heaviest precipitation months. Relative humidity is characteristically low, with moderate winds frequent. The growing season in the study approximates 140 days.

b. Air Quality

Prevailing wind currents are from the westnorthwest and follow the Bruneau River and Snake River valleys. Wind speeds average 8-32 km/hr with infrequent gusts up to 96 km/hr. The air quality is considered very good, with agriculture the main contributor to particulate matter. Range fires also contribute smoke and ash to the particulate load during the dry season; however, air pollution on the whole is minimal. Concentration levels of CO, NO_X, SO_X, and hydrocarbons are unknown but are thought to be low since no major point sources exist in the study area.

c. Land Resources

(1) Topography

The Bruneau-Grand View area lies in the western part of the Snake River Plain east of the Owyhee Mountains. The area includes: 1) the Snake River valley ranging in altitude from 700 to 999 m; 2) the plateau ranging from 900 to 2130 m; and the 3) eastern portion of the Owyhee uplift with altitudes from 900 to 2560 m (Rightmire and others, 1976). Both the Bruneau and Snake River valleys are bordered by flat-topped bench plateaus, some of which have been dissected by steep walled canyons and ravines, thus forming buttes. Slopes range from less than 2 percent to vertical (EAR No. 11-010-5-77).

(2) Geology

The lithology of the area includes Cretaceous age granite rocks, Miocene age rhyolitic rocks, Pliocene age volcanic rocks, and the Idaho Group of Pliocene and Pleistocene age. The mountainous region is composed of granite core overlain by younger igneous and sedimentary rocks. Mineralized rhyolitic core, overlain by a similar sequence of rocks, characterizes the rolling upland areas. Foothill and lowland areas consist of poorly consolidated sedimentary formations interspersed with basaltic lava. Bruneau-Grandview Study Area ale 1:2 . : WITH SUP

(3) Soils

11月1日日の日本の日本の日本の日本の日本の11月1日日 11月1日日 1月1日日 1月1

Contraction of the second

and a straight of the second
The soils in the area of the Bruneau KGRA (known geothermal resource area) are primarily developing in mixed alluvium and lacustrine sediments on stream bottoms, alluvial fans and terrace escarpments. These soils are deep, with few areas that are shallow. Surface textures are dominated by siltloam and loam with minor areas of fine sandy loam, cobbly sandy loam, and silty clay loam. The soils of the area are nearly level to gently sloping, with few steep slopes. Mean soil temperature is approximately 9-11°C with the frost-free period greater than 120 days (BLM, 1977).

d. Water Resources

(1) Surface

The study area lies primarily in the drainage basin which rises in Nevada's Bruneau River Jarbidge Mountains and flows in a northerly direction to the Snake River in Idaho. The main water sources for agricultural purposes are groundwater and water taken from the Snake River and C.J. Strike Reservoir. Additionally, inter-mittent feeder streams are used for irrigation and agri-The Snake River comprises the entire cultural purposes. northern border of the Bruneau-Grand View study area. The Bruneau River drainage area above Hot Spring, Idaho, measures approximately 6810 km² with a mean altitude of 1710 m.

The Bruneau River gaging station near Hot Spring yields an average discharge over 38 years of 11.3 m^3/s with extremes of 0.71 m^3/s and 184 m^3/s for 1964 and 1910, respectively. Water quality for 1975-1976 sampling season are as follows: 1) mean conductivity 198 µmhos/cm (standard deviation [s.d.] = 97); 2) mean pH 7.5 (s.d. = 1.3); 3) mean hardness 45 mg/l; 4) mean dissolved solids 121 mg/l (average of 2 sampling periods only); and 5) alkalinity 64 mg/l CaCO₃. The Bruneau River is under consideration by Congress for addition to the National Wild and Scenic Rivers System, created to assure a heritage of protected waterways.

The Snake River gaging station located near Murphy in the northwestern portion of the study region yielded an average discharge over 63 years of 314.4 m³/s with extremes of 110 m³/s and 1340 m³/s recorded for 1949 and 1918, respectively. Mean water quality data for the 1975-1976 sampling season are as follows: 1) conductivity 460 μ mhos/cm (s.d. = 53); 2) pH 6.4 (one sample only); 3) hardness 175 mg/l (2 samples only); 4) dissolved solids 281 mg/l (2 samples only); and 5) alkalinity 161 mg/l CaCO₃ (2 samples only).

(2) Groundwater

Groundwater resources in the Murphy area have not been developed on a major scale, while both shallow and deep aquifers have been developed in the Grand View area. However, the major development has occurred in the Bruneau region where the deep aquifer has been extensively developed by irrigation wells.

The source of groundwater in the Murphy area is thought to be precipitation on the Owyhee Mountains, with local precipitation making only a small contribution to groundwater recharge. Aquifers in the Murphy area include the Poison Creek Formation, Banbury Basalt, Glenns Ferry Formation, and Bruneau Basalt. Water level decline or well interference have not been reported in the area. The temperature of the groundwater ranges from 21 to 32°C. Water quality ranges from poor from the sediments to good from basalt (Ralston and Chapman, 1969).

The groundwater resources in the Grand View area have been developed for both domestic and irrigation usage. The three aquifer systems of importance in the area are: 1) a hot artesian system in the Tertiary Silicic Volcanics; 2) a warm artesian system in the sediments of the Idaho Formation; and 3) a cold water table system in the alluvium and upper portion of the Idaho Formation. The source of groundwater to the deep aquifers is primarily Owyhee Mountains precipitation while some water is recharged from streams flowing over fractured outcrops of the Banbury Recharge to the shallow aquifer is directly from Basalt. precipitation, canal seepage, and sewage and irrigation effluent (Ralston and Chapman, 1969). Wells in the Grand View area include shallow domestic, irrigation, and unused flowing wells. Shallow domestic wells along the Snake River are characteristically less than 15 m deep. It is thought that some of these wells located near Grand View may experience degradation of water quality due to sewage disposal methods. Irrigation well depth varies from 30 to 1097 m, with 50 percent of the wells penetrating the hot (52 to 66^oC) artesian groundwater system. Unused flowing wells range in temperature from 27 to 38°C. Declines in water levels in wells of less than 152 m have been reported, indicating that groundwater recharge is not keeping pace with consumption of the resource. Water quality in the area varies, with TDS (total dissolved solids) content ranging from 190-334 mg/1.

The source of groundwater in the Bruneau area is thought to be recharge from the Owyhee Mountains and Owyhee Uplift. The geologic formations important as aquifers include: 1) Tertiary Silicic Volcanics; 2) Banbury Basalt; and 3) the Glenns Ferry Formation. Irrigation well depths vary from 213 to 640 m and exhibit discharges from 6 to 158 lps. Domestic well depths are less than 152 m with their prime water source the Glenns Ferry Formation. Annual water level declines have been recorded from 1966 to the present in Little Valley but not in Bruneau Valley. Total dissolved solids for the area range from 200 to 400 mg/1. The thermal groundwater has excessive concentrations of fluorides (Ralston and Chapman, 1969).

In general, groundwater in the Bruneau-Grand View area is derived from Owyhee Mountains rainfall, with a portion being heated at great depths. Due to this thermal effect, higher than normal salinities render the water only fair for irrigation purposes. Soils in the area tend to be fine grained; thus leaching of salts from the soil is limited.

2. Natural Environment

a. Flora

The five vegetative communities in the area include: 1) streamside; 2) sagebrush-grass; 3) shadscale-grass; 4) annual grass and 5) crested wheatgrass seedlings. It is felt that overgrazing disrupted natural sagebrushgrass ecosystems, with resultant invasion by less productive annual grasses such as cheatgrass. The ecosystem is now overstory of big dominated by an sagebrush with an understory of cheatgrass brome (Bromus tectorum). Other species include Indian ricegrass (Oryzopsis sp.), bottlebrush squirreltail (Sitanion sp.) and Sandberg bluegrass (Poa secunda). The shadscale-grass ecosystem is dominated by shadscale (Atriplex confertifolia) with an understory of cheatgrass. The annual grass system exists as a function of fire-altered shrub-grass ecosystems. Characteristic species cheatgrass - and tumble mustard (Sisymbrium include altissimum). Crested wheatgrass (Agropyron desertorum) has been introduced following overgrazing and range fires to prevent erosion and promote livestock grazing. The streamside vegetation includes willows (Salix sp.), cottonwood (Populus sp.), wild rose (Rosa woodsii), golden gooseberry (Ribes grossularia), chokecherry, poison ivy (Roxicodendron radicans), elderberries (Sambucus coerulea), currants (Ribes satiuum), honeysuckle (Lonicera sp.), yellow foxtail (Alopecurus sp.), sagebrush, grasses, and yarrow.

b. Fauna

A large variety of wildlife inhabits the area, including ruminants, large predators, song birds, raptors, reptiles, and waterfowl and upland game birds. Mammal species include (but are not limited to) the mule deer, pronghorn antelope (Antilocarpa americana), yellow bellied marmot, coyotes, bobcats, jackrabbits (Lepus townsendii), ground squirrels, and mice (Perognathus sp., Reithrodontomys sp., and Peromyscus sp.). Numerous passeritormes are found in the area. Raptors include (but are not limited to) the bald eagle, golden eagle, prairie falcon (Falco mexicanus), red-tailed hawk (Buteo jamaicensis), and great horned owl (Buteo virginianus). Waterfowl include Canadian geese (Branta canadensis) and Mallard ducks, Representative game species are chukars, Hungarian partridge, and pheasant. Reptiles include numerous snakes, frogs, and lizards; rattlesnakes are very common.

Little is known of energy flow through the food web; however, the diversity and abundance of plant and animal species indicate a complex, rather stable ecosystem with all major ecological compartments well represented.

c. Aquatics

Abundant plant and animal species occur within streams of the study area. Trout and whitefish are found in the Bruneau River. Additionally, area streams support warm water fish populations, of which largemouth bass, bluegill (Lepomis macrochirus), yellow perch (Perca flavescens) and channel catfish are representative. Insect species include caddisflies (Trichoptera), mayflies (Ephemeroptera), stone flies (Plecoptera), and snails (scientific taxa not known). Aquatic flora are abundant, including several algal species, cattail (Typha sp.), duckweed (Lemna sp.), and spike rush (Eleocharis sp.).

3. Cultural Environment

a. Land Use

The land in the area is owned primarily by the Bureau of Land Management (BLM) which administers 77 percent of Owyhee County's 1,975,256 ha, 7 percent is state owned, and 16 percent is owned privately. Irrigated land in the area is very limited (approximately 18,650 ha) and is adjacent to the Snake River, Bruneau River, or Little Valley Creek with the major crops being potatoes, alfalfa, sugar beets, corn, and small grains. Little arable land exists in the Bruneau-Grand View area and is found only along the Snake River, Little Valley Creek, and Bruneau River. Approximately 37,300 ha east and west of Bruneau have been identified as a proposed area for new irrigation development between 1974 and 2020 (BLM, 1976). Ninety-three point five percent of Owyhee County is utilized for rangeland, 2.1 percent is forest land, and 3.9 percent is agricultural land.

b. Socioeconomics and Demography

7900 persons Owyhee County, with in 1976, comprises less than one percent of the state's total population. Both the birth and fertility rates exceed those for the state and nation. In 1976, 5.5 percent of the labor force was unemployed. Employment data report that 2,512 people were employed in 1975. The greatest number of people are employed as farm labor, followed by state and local government, trade, and services. Median family income in 1976 was \$7,875. A total of 235 criminal offenses was reported for 1976, 74 percent of which were attributable to larceny. Suicide rates were quite high in 1975: 165 percent of the state rate. Marriage and divorce rates are both low, and 19 percent of only 37 percent state values, respectively.

c. Archaeological and Historical

The Oregon Trail runs through the study area south of the Snake River, with wagon wheel ruts still evident in many areas. Silver mining in the 1860's in Owyhee County was responsible for the first large-scale permanent settlement in the state, with farming, banking, and commerce responding to the population growth (BLM, 1976).

d. Aesthetic Values

The C.J. Strike Recreation Area lies within the study region; however, no wilderness or Rare II regions have been designated. The Bruneau Dunes State Park is also located within the study area and is used for recreational purposes.

A significant feature in the study area is the Snake River Birds of Prey Natural Area (BPNA), established by the Secretary of the Interior in 1971 to protect eagles, hawks, owls, falcons, vultures, and ospreys. The BPNA encompasses 12,546 ha, 10,522 ha of which is federally owned. The excellent raptor habitat is provided by the rugged river canyon and is utilized as a recreational resource by large numbers of visitors. For the 14 species of raptors sighted at the BPNA, the BLM protects vital habitat and nesting grounds.

D. MOUNTAIN HOME

1. Physical Environment

a. Climate

Mountain Home is located in Elmore County in southwestern Idaho in a semiarid region characterized by hot

D. Mountain Home Study Area

-366-

summers and cool winters. The average annual temperature is approximately 10° C with the mean annual precipitation estimated as 24 cm. Extreme recorded temperatures are -37 and 43° C.

b. Air Quality

Prevailing wind currents are from the northwest, east, or southeast. Wind speeds average less than 9.6 km/hr (kilometer per hour) 39 percent of time and 11-24 km/hr 41 percent of the time (Longyear and others, 1978). Air quality is considered very good, with agricultural particulates contributing to the ambient air load during certain seasons. No significant point sources exist for NO_X , SO_X hydrocarbons or CO; thus preservation of air quality is an important consideration in the area.

c. Land Resources

(1) Topography

The Mountain Home area lies north of the Snake River in the western part of the Snake River Plain. Geographic features in the area include: 1) the Mt. Bennett Hills, 2) the Mountain Home Plateau, and 3) the Snake River Canyon. The Mt. Bennett Hills are a high relief mountain range north of the city of Mountain Home, with an average elevation of 1828 m. The Plateau ranges from 1219 m adjacent to the Mt. Bennett Hills to 914 m near the Snake River. The Snake River Canyon drops 91-152 m below the plateau to the Snake River.

(2) Geology

The study area is located between the central Idaho Tertiary and Cretaceous granitics and the Tertiary and Quaternary rocks of the Snake River Plain to Mountain Home lies on the northwest-southeast the west. trending fault that marks the relatively abrupt transition zone northwest of the KGRA near Boise. The major hot springs in the area are controlled by faulting. The lithologic types found in the Mountain Home area are Pliocene and Pleistocene sediments, Pleistocene Basalts, and Tertiary silicic volcanics overlying Cretaceous granite. The silicic volcanics are Miocene Rhyolites. The Idavada volcanics underlying the Idaho group are considered to be the most important aquifer and the source of hot water. The Idavada volcanics are lower silicic volcanics, and generally the water produced from the complex are at significantly higher temperatures than those at nearby wells from overlying units.

approximately 10°C with the mean annual precipitation estimated as 24 cm. Extreme recorded temperatures are $17 \text{ and} 43^{\circ}\text{C}$.

b. Air Quality

Prevailing wind currents are from the northwest, east, or southeast. Wind speeds average less than 9.6 km/hr (kilometer per hour) 39 percent of time and 11-24 km/hr 41 percent of the time (Longyear and others, 1978). Air quality is considered very good, with agricultural particulates contributing to the ambient air load during certain seasons. No significant point sources exist for NO_X , SO_X hydrocarbons or CO; thus preservation of air quality is an important consideration in the area.

c. Land Resources

(1) Topography

The Mountain Home area lies north of the Snake River in the western part of the Snake River Plain. Geographic features in the area include: 1) the Mt. Bennett Hills, 2) the Mountain Home Plateau, and 3) the Snake River Canyon. The Mt. Bennett Hills are a high relief mountain range north of the city of Mountain Home, with an average elevation of 1828 m. The Plateau ranges from 1219 m adjacent to the Mt. Bennett Hills to 914 m near the Snake River. The Snake River Canyon drops 91-152 m below the plateau to the Snake River.

(2) Geology

The study area is located between the central Idaho Tertiary and Cretaceous granitics and the Tertiary and Quaternary rocks of the Snake River Plain to the west. Mountain Home lies on the northwest-southeast trending fault that marks the relatively abrupt transition zone northwest of the KGRA near Boise. The major hot springs in the area are controlled by faulting. The lithologic types found in the Mountain Home area are Pliocene and Pleistocene sediments, Pleistocene Basalts, and Tertiary silicic volcanics overlying Cretaceous granite. The silicic volcanics are Miocene Rhyolites. The Idavada volcanics underlying the Idaho group are considered to be the most important aquifer and the source of hot water. The Idavada volcanics are lower silicic volcanics, and generally the water produced from the complex are at significantly higher temperatures than those at nearby wells from overlying units.

(3) Soils

Only limited, generalized soil data are available (BLM, 1976) to assess soil types and characteristics. The frost free season is approximately 120-140 Agricultural products include cereals, alfalfa, and days. potatoes, with 70 percent of such crops irrigated. Surface soils are primarily silt loam on clay or silt loam with profile depths ranging from 3 to 18 m. Parent materials include loess, a basic igneous rock (35 percent), and alluvium (45 percent). Water retention capabilities range from low on the surface to good at greater depths. Major soil problems associated with drought, erosion, soil are alkalinity, and inability of roots and water to penetrate clay subsoils. Rangeland management is currently employed to minimize problems associated with erosion.

d. Water Resources

(1) Surface Water

The Snake River comprises the entire southern boundary of the study area. An important surface water feature is Canyon Creek, which flows southwesterly from Long Tom Reservoir to the Snake River; however, no water quality data are available for either the reservoir or Surface runoff from the Mt. Bennett Hills is ultiriver. mately to Canyon Creek and is regulated by Long Tom Irrigation waters are drawn from the Mountain Reservoir. Home Feeder Canal, Canyon Creek, Rattlesnake Creek, Bennett Creek, Cold Springs Creek and King Hill Creek. Data for the Murphy gaging station on the Snake River are included in the Bruneau-Grand View section of this report.

(2) Groundwater

Groundwater resources have been developed for both domestic and irrigation purposes. Ralston and Chapman (1968) studied the hydrology of the Mountain Home area and subdivided the region into five areas based on water levels, well yield, water temperature, water quality, geologic character of the aquifer. The subdivisions are summarized as follows: 1) the Mt. Bennett Hills subarea, 2) Hot Springs, 3) Mountain Home, 4) Air Base, and 5) Glenns Ferry.

The Mt. Bennett Hills region is the primary area for recharge to the Mountain Home plateau aquifers.

The Hot Springs region runs along the Mt. Bennett Hills and includes a hot artesian groundwater system. Hot Springs has an estimated natural discharge of 35 lps with a mean temperature of 66° C. Groundwater recharge is thought to be from precipitation, irrigation seepage and streamflow; however, little of the recharge enters the warm water system. Hot water (38-71°C) has been reported at three locations at three water level elevations, indicating a series of subparallel northwest trending faults. The faults are believed to allow the downward flow of cold recharge water and the upward flow of heated water and steam. The cold groundwater system is limited in the region.

The Mountain Home area surrounds the city of Mountain Home with both domestic and irrigation water derived from the aquifer. Sources of recharge include precipitation, streamflow, irrigation seepage, and sewage effluent. The aquifer has been well developed for both irrigation and domestic purposes, with wells ranging in depth from 1.8-183 m.

The Air Base area (adjacent on the west side of the Mountain Home area) includes the groundwater system south and west of Mountain Home as well as the deep wells developed in the city of Mountain Home. Recharge to the area is limited as a function of low precipitation and the deep static water level. An estimate of well development puts the number of wells for irrigation, municipal, and domestic use at 50, ranging in depth from 122-274 m. Water temperatures are generally uniform, in the 21-24°C Range.

The Glenns Ferry area (adjacent on the east side of the Mountain Home area) is north of the Snake River and surrounds the towns of Hammett and Glenns Ferry. Groundwater recharge within the area is minimal, with streamflow, irrigation seepage, and precipitation as sources. Groundwater resources have not been extensively developed, with most wells located along the Snake River, ranging in depth from 3-439 m. Shallow wells tap the cold aquifer while deeper wells penetrate the warm water Indications are that a deep (70-100^OF) aquiter system. groundwater gradient towards the Snake River exists, with aquifers discharging into the river.

In summary, the main sources of groundwater are the Bruneau and Glenns Ferry Formations with their basalts and fine-grained sediments, respectively. Available records do not indicate declines in groundwater levels; however, data are limited.

2. Natural Environment

a. Flora

The study region is characterized by modified sagebrush-grass communities, typically found along unculti-

vated portions of the Snake River Plain. Annual grasses found with sagebrush include Western cheatgrass, filagree (Erodium cicutarium), balsamroot (Balsamorhiza hookere). Shadscale is found on saline or heavier soils. Crested wheatgrass is common. Information indicates that three plants on the endangered or threatened list have been found western portion of the Snake River Plain: in the Henderson's desert parsley (Lomatium hendersonnii), loco weed (Astrogalus comptopus) and pepper grass (Lepidium montanum), however, it is not known if these species are in the Mountain Home study area. Juniper (Juniperus sp.) trees are found within the Snake River canyon. Greasewood and rabbitbrush are found adjacent to streams, ponds, and river.

b. Fauna

Examples of animal species that inhabit the sagebrush-grass communities include Richardson's ground squirrel (Citellus richardsonii), kangaroo rat (Dipodomys sp.), sagebrush vole (Lagurus curtatus), jackrabbit, mule deer, pronghorn antelope, golden eagle, Swainson's hawk (Buteo swainsoni), and sparrow hawk (Falco sparverius). Game birds include sage grouse (Centrocercus urophasianus), chukar, pheasant, and mourning dove (Zenaidura macroura). Reptiles include sagebrush lizard (Sceloporus graciosus) and striped whipsnake (Masticophis taeniatus).

c. Aquatics

The variety in habitat types renders the area suitable to diverse and abundant aquatic communities. Both native and introduced fish species are found in the Snake River. Native species include rainbow trout, cutthroat trout, and mountain whitefish. Introduced species include brown trout (Salmo trutta), largemouth bass, bluegill, channel catfish, carp, and suckers. Freshwater clams and molluscs are expected to occur in the Snake River since a diverse variety of habitats are available. Insect species include mayflies, midges (Piptera), caddisflies, and beetles (Coleoptera).

3. Cultural Environment

a. Land Use

Land in the Mountain Home study area comprises approximately 55,944 ha, of which 18,648 ha is federally owned (BLM), 9,324 ha is state owned, and 27,972 ha is under private ownership. The area was heavily grazed by sheep prior to the advent of high lift pump irrigation practices which rendered such ventures profitable. Land use within Elmore County in 1976 was as follows: 66 percent rangeland, 26 percent forest land, 7 percent agricultural land, 1 percent water, and 0.6 percent urban or built-up.

b. Socioeconomics and Demography

The Mountain Home study area is located entirely within Elmore County, with socioeconomic data available only on a county-wide basis. The population of Elmore County was 19,500 people in 1976, or 2.34 percent of Idaho's total. The population density increased from 5.7 km² in 1950 to 16.6/km² in 1976. The birth rate for the county was 28.0 in 1975, as compared with a state rate of 19.8. The fertility rate is quite high, 127.9 in 1975 as compared to Idaho and U.S. rates of 92.0 and 66.7, respectively.

Unemployment is steadily rising; the 1970 average was 3.9 percent and rose to 7.4 percent in 1976. Wage and salary employment indicate the greatest number of people are employed by the military (Mountain Home Air Force Base employed 3,935 people in 1975); followed by federal civilians (1,027); trade (808); state and local government (786); farm (636) and services (389); trade, commerce and public utilities (276); and finance, insurance and real estate (203). The 1976 HUD (Housing and Urban Development) estimate for the median family income was \$10,125.

Health care in the county is comparatively poor. The average number of persons per medical doctor was 4,950 in Elmore County for 1975, as compared to 969 for the state average. Two hospitals are located in the county with 77 acute care beds.

Criminal offenses rose from 464 in 1973 to 555 in 1976. In both years, larceny was the prime offense and rose from 63 to 71 percent of the total offenses. No murders were reported in 1973 with two committed in 1976. The suicide rate of 15.2/100,000 persons in 1975 was very close to the state rate of 16.4/100,000.

c. Archaeological and Historical

Both the Oregon Trail and Kelton Road are historical markers of importance in the Mountain Home study area and run through the northeast portion of the region. There is no archaeological survey recorded; however, the probability of archaeological sites is very high and likely cover a time span ranging from prehistoric times to the present.

d. Aesthetic Values

A rural and open space atmosphere predominates in the study area. Mountains to the north and the Snake River Plain to the south and east comprise the scenery. Island Crossing State Park is located within the region and has facilities for overnight camping. No wilderness or Rare II lands are found within the Mountain Home area of concern.

E. BLUE GULCH, TWIN FALLS, AND ARTESIAN CITY

1. Physical Environment

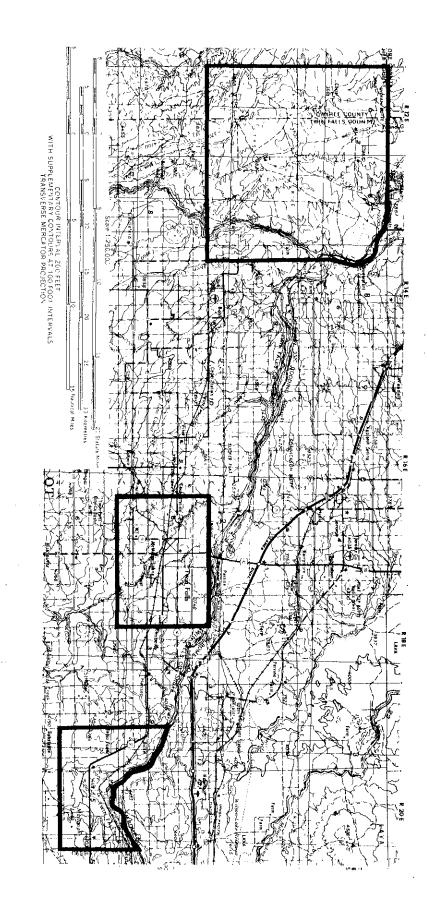
a. Climate

Normal annual precipitation ranges from 20 cm in the Blue Gulch area to 30 cm near Artesian City. With only 20 cm of precipitation, the Blue Gulch area is one of the driest parts of the Snake River Plain. Most of the precipitation in the area falls as snow during the winter months. The source of this precipitation is storms originating off the Pacific Coast; as a result, rain and snowfall patterns are erratic. Summers are generally warm and dry, with mean temperatures of 21° C and ranges of -6 to 36° C. Although local wind patterns are affected by topography, winter winds are generally southeast winds, while summer winds generally trend from the northwest.

b. Air Quality

Air quality in this part of the Snake River Plain is good, although particulates are sometimes high in a general area north and east of Blue Gulch. There are no large point sources of significant air pollution in the area, even near Twin Falls. The annual geometric mean particulate level at two stations in Twin Falls in the period from 1971 to 1974 averaged 94 μ g/m³ during the same period.

c. Land Resources


(1) Topography

The three areas under consideration lie on the southern edge of the Snake River Plain and are bounded on the north by the canyon of the Snake River. Elevations range from 880 m at the mouth of Salmon Falls Creek to 1275 m at Artesian City. The Blue Gulch and Twin Falls areas are relatively flat with gradients of approximately 12 m/km. Artesian City lies at the base of the foothills of the Rock Creek Hills. Monument Peak, 32 km south of Artesian City, has an elevation of 2400 m.

(2) Geology

Blue Gulch, Twin Falls, and Artesian City lie in the eastern Snake River Plain geomorphic province. This area is geologically unique, characterized by horizontal flows of basalt. The surface of the plain is a youthful lava plateau partially covered with loess. Basalt flows on the plain can be classified in two age groups: older Miocene-Pliocene and younger Pliocene-Recent. Surface flows Blue Gulch, Twin Falls, and Artesian City Study Areas

۲

Southern and the second se

through most of the area consist of lower Pleistocene to Pliocene basalts and associated tuffs. A small area of Pliocene olivine basalts occurs along the canyon of the Snake River from Twin Falls to the mouth of Salmon Falls Creek. Some Pleistocene and Pliocene colluvium, fanglomerate, and stream and lake deposits overlie the basalts northwest of the lower portion of Salmon Falls Creek. Major faults occur in two locations: parallel to the Snake River across the Salmon Falls Creek Canyon and trending north and northwest along the northern edge of the Rock Creek Hills.

(3) Soils

Soils throughout the area consist primarily of loess of varying depths over basalts. Mineral fertility is generally high but organic content is low. Along stream valleys, alluvial deposits overlie alluvial outwash from mountains to the south. Siltloams, ranging in depth from 25 cm to 150 cm, overlie bedrock on gentle to moderate slopes in both the Blue Gulch and Twin Falls areas. Forty percent of soils in the Artesian City area are a fine-loamy mixed soil while 20 percent are a fine montmorillontic soil. These soils range in depth from 40 cm to 100 cm. Permeabilities in all soils range from slow to moderate and the most significant soil problem is erosion.

d. Water Resources

(1) Surface Water

Primary streams in the areas under consideration include: Snake River, Salmon Falls Creek, Rock Creek, and Dry Creek. Salmon Falls Creek flows through the Blue Gulch area to the Snake River and drains an estimated 5490 km² of Idaho and Nevada. Flow in the creek is regulated at the Salmon Creek Reservoir 71 km upstream from the mouth. Except for significant leakage all of the water supply above this dam is diverted for irrigation. Diversions below the dam are used to irrigate land outside the drainage basin. Average discharge at the mouth of Salmon Falls Creek is $4.87 \text{ m}^3/\text{s}$ and extremes at this point are $0.34 \text{ m}^3/\text{s}$ and $38.5 \text{ m}^3/\text{s}$.

Rock Creek drains an estimated 483 km² and discharges to the Snake River 10 km northwest of Twin Falls. Flow in the creek is partially regulated by a fish hatchery and irrigation waste flow and many irrigation diversions exist upstream. The mean discharge for the creek during the period of record (1 year) is $6.6 \text{ m}^3/\text{s}$, and the extremes during this period were 2.6 m³/s and 13.5 m³/s. Monthly flows in the creek during that year differed from the mean by less than 50 percent.

During low flow years, all flow is topped in the Snake River at Milner Dam, 19 km northeast of Artesian City. The largest inflow below the dam is Thousand Springs which contributes an estimated $184 \text{ m}^3/\text{s}$ to the river as inflow from the Snake River Plain aquifer. The water quality of the Snake River declines gradually as it flows west through the area receiving pollutants from agricultural industrial processing plants, and untreated activity, domestic water return. Twin Falls has been listed by the EPA as needing improved waste treatment facilities. Nitrate and phosphate in the river from natural and manmade sources contribute to periodic excessive algal and weed growth. The only lake occurring in the area is Murtaugh Lake in the Artesian City area. This manmade lake is on Dry Creek and has a surface area of approximately 250 ha. Surface water quality for streams in the area is shown in Table E-1.

	TABLE E-1		
SU	JRFACE WATER Q	UALITY	
	<u>(mg/l)</u>		
	Salmon Falls	Snake River	Snake River
	Creek	(Kimberly)	(King_Hill)
Ca	70	45	47
K	7.8	5.2	4.5
Mg	23	19	18
Na	53	31	27
	41	24	23
F	0.9	0.5	0.7
HCO3	239	200	187
SO4	111	47	45
TDŜ	480	289	298
TSS (Total Suspended Solids)	103		27
рн	8.6	8.7	8.5
Specific Conductance	766	468	434

(2) Groundwater

Groundwater occurs in the basalts and alluvial deposits throughout the area. Depths to water range from 24 m in the Rock Creek Basin to 40 m at Artesian City, to 50 m near Kimberly, and as much as 240 m in the Blue The few functioning irrigation wells in the Gulch area. Salmon Falls Creek basin are near the Salmon Falls Reservoir. Groundwater outflow at Thousand Springs provides water from one of the world's most extensive aquaculture Water from the springs has significantly better programs. quality than surface water or groundwater on the south side of the Snake River.

Because of limited water supply and extensive use of groundwater for irrigation, three areas have been designated critical groundwater areas by the Idaho Department of Water Resources. This designation effectively closes these areas to further applications to appropriate groundwater. The three areas included are:

Artesian City - 14,500 ha (est.) including land in T. 11 and 12 S., R. 19 and 20 E., B.M. Nearly all land included in the geothermal area of interest is included in the critical groundwater designation.

<u>Cottonwood</u> - 16,000 ha (est.) adjacent to the Artesian City area on the south.

Blue Gulch - 76,000 ha (est.) on the west side of Salmon Falls Creek. All but approximately 2000 ha of the Blue Gulch geothermal area is included in this designation.

2. Natural Environment

a. Flora

Native vegetation in undisturbed areas is classified in the sagebrush association. Primary species found in the area are big sagebrush and cheatgrass. Early records indicate that much of the area was once covered with bunchgrasses and some sagebrush. Heavy use of the area by livestock led to the establishment of the present native species. A small stand of pinion-juniper is located just southeast of Artesian City. Where native vegetation has been disturbed, areas have been reseeded with crested wheatgrass. Much of the land in the areas of interest is currently cultivated.

b. Fauna

Major habitat areas that have been identified include: deer habitat along the lower 10 km of Salmon Falls Creek, birds of prey habitat along the canyon of the Snake River, a curlew habitat area southwest of Twin Falls, and a high density of rough-legged hawks and chukar partridge in the Salmon Falls Creek Canyon. Animals well adapted to the sagebrush habitat include the Richardson ground squirrel, Great Basin kangaroo rat, sage grouse, vesper sparrow, and sagebrush lizard. Year-round residents of the area include the coyote, ground squirrel, blacktail jackrabbit, golden eagle, sparrow hawk, pheasant, house finch, and horned lark. Snakes, particularly the western rattlesnake, the pygmy rabbit and the Ord kangaroo rat are declining as native habitats are converted to cropland.

c. Aquatics

Aquatic plants, including duckweed, cattail, sedge (Carex), and a common reed (Phargmites), are common in streams throughout the area. The Snake River has annual extensive algal blooms. Construction of dams on the Snake river has replaced free-flowing habitat preferred by coldwater game fish with lake-like situations. Small numbers of rainbow and cutthroat trout are native in this stretch of Suckers and squawfish thrive in the reservoirs. the river. Sixteen species of fish have been identified by the Idaho Fish and Game Department in the Snake River below Shoshone Falls and eleven species have been identified above. Trout occur in both sections, while coho salmon (Oncorhynchus kisutch) occur only in the upper section. Sunfish (Lepomis sp.), catfish, and sucker are common in the lower section.

3. Cultural Environment

a. Land Use

Arable land occurs on both sides of the Snake River and along its tributaries. The Salmon Falls Creek drainage contains an estimated 82,000 ha of arable land. Cultivation of these lands is limited by availability of water. Approximately 80 percent of the croplands in the area are irrigated. Most of the Artesian City area, acreage south of Twin Falls, and the western part of the Blue Gulch area are included in proposed areas for new irrigation development in the next 30 years.

Most of the land being considered is privately owned and used for grazing and crop production. Intermittent areas of private ownership are generally associated with the livestock industry, mining, and recreation. Approximately 37,300 ha of BLM land, 1550 ha of state land (school endowment), and 4150 ha of private land occur in the Blue Gulch area. No nonprivate land occurs in either the Artesian City or the Twin Falls area. The metropolitan area of Twin Falls includes about 1500 ha.

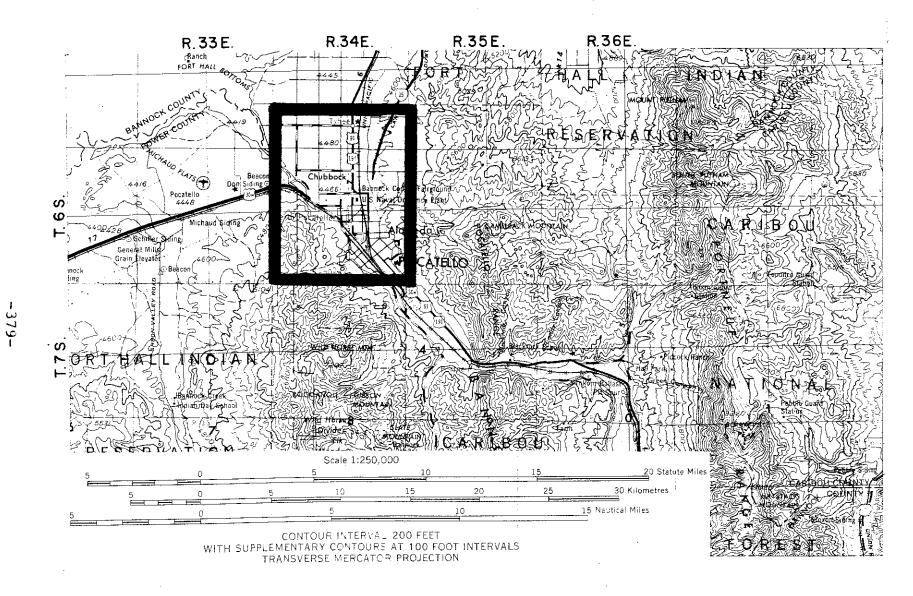
b. Socioeconomics and Demography

The three areas under consideration are in Twin Falls County, which has a population of 47,300 (1976). Towns included in these areas are Twin Falls (1970 population 21,194), Kimberly (1970 population 1,557), and Murtaugh (1970 population 124). The population density of the area is nine people/km². The birthrate and fertility rate for the county are 20.6 and 98.8, respectively, and compare to values of 19.8 and 92.0 for the state and 14.8 and 66.7 for the United States. The number of new housing units authorized annually increased from 85 in 1971 to 221 in 1976 in Twin Falls and from 1 to 23 in Kimberly during the same period. The unemployment in the county in 1976 was 6.2 percent, an increase of 1.6 percent over the 1970 value. The main employers in the county are trade, services, nonfarm proprietors, and manufacturing. Larceny and burglary accounted for 84 percent of all crimes in 1976.

c. Archaeological and Historical

This area of Idaho contained great cultural diversity during the late prehistoric and early historic periods. Several distinct Indian groups inhabited the Snake River Plain in the recent past. Although only limited archaeological surveys have been conducted in the area, indications are that the western Snake River Plain is exceptional in its potential to yield archaeological data of major scientific significance.

Fur trappers were the first white people in the area in any number. Immigration in the 1840's, 1850's, and 1860's brought thousands of people through the area, however, permanent settlements were slow in developing. Farming began in the late 19th century. Historical areas are generally associated with the immigrant trails, and a segment of the Oregon Trail at the mouth of Salmon Falls Creek is being considered for historical status. The only other historic or natural area in this region is the Hagerman Fossil Natural Area established by the BLM in the Blue Gulch area.


d. Aesthetic Values

Recreational and/or aesthetic sites in the three study regions are diverse. Balance Rock is a scenic anomaly located on Salmon Falls Creek Canyon near Blue Gulch and is quite unusual and picturesque. The Snake River Canyon through Twin Falls plunges with sheer cliffs and dropoffs and is quite magnificant. Murtaugh Lake located near Artesian City is utilized for recreational purposes. As is true for most of Idaho, the open, rolling land and clean, fast rivers afford the viewer a sense of solitude and freedom in an area not yet overpopulated with resultant industrial development and environmental degradation.

- F. POCATELLO
 - 1. Physical Environment

a. Climate

Pocatello is located in the southeast corner of the Snake River Plain where the climate is a middle-latitude steppe type. Spring months are the wettest and windlest,

F. Pocatello Study Area

while cool nights and warm days predominate during the summer. Percent of possible sunshine averages over 80 percent in July, August, and September. General snowcover begins in December and freezing temperatures occur until Mean monthly temperatures range from -4° C in January May. to 23°C in July. Maximum and minimum recorded temperatures are 40 and -34° C. Wind directions reflect the orientation of nearby mountain ranges, with over 50 percent of the winds orginating in the southwest quadrant. Thirty percent of wind speeds are less than 2 m/s, while 5 percent occur within the 2 m/s to 6 m/s range. Relative humidity exceeds 30 percent only a third of the time during July and only a half of the time in January. Average potential evapotranspiration exceeds the average precipitation all months except November, December, January, and February (USFS, 1977).

b. Air Quality

The primary sources for air pollution in the Pocatello area are the phosphate and elemental phosphorus plants west of the city. Air quality measurements that have been taken have been directed at characterizing the effluents from these plants. The annual geometric mean of suspended particulates from four Pocatello stations ranged from 41 to 145 μ g/m³ during the period from 1971 to 1974. The primary and secondary standards for suspended particulates are exceeded at 1 km from the plants. During a ten-month period in 1972 and 1973, the 24-hour standard for sulfates was exceeded 14 times.

c. Land Resources

(1) Topography

Elevations in the area of interest range from 1700 m in the southwest to 1340 m along the lower Portneuf River near its confluence with American Falls Reservoir. The city of Pocatello has an elevation of 1360 m. Here the canyon of the Portneuf River meets the southeast boundary of the Snake River Plain. The foothills of the Bannock Range are southwest of the city and the Pocatello Range is to the east.

(2) Geology

Pocatello lies within the margin of the middle Rocky Mountain Province typified by complexly folded and faulted ranges of the extreme southeastern Snake River Plain of the Columbia Intermountain Province.

Beginning in the Precambrian, the area surrounding Pocatello lay within a geosyncline into which vast amounts of sand, shale, and limestone were deposited.

metamorphism These sediments underwent to produce quartzites, argillites, and marbles now exposed in the ranges southeast of Pocatello. During early Paleozoic era a reappeared collecting sand geosyncline shales and The relative coarseness of these sediments limestones. exposed suggest that the Paleo shoreline was very near the Pocatello area.

Beginning in late Cretaceous, major folding and faulting (including thrust faulting) warped and broke great thicknesses of sediments in southeastern Idaho, moving rock units from west to east. The most noticeable in the area is the Bannock Overthrust extending from Idaho Falls southward near Pocatello to the Idaho-Utah border. Subsequently, basin and range structures developed, related to those of the Great Basin in Utah and Nevada.

time, At the same the introduction of felsic and basaltic lava began on the Snake River Plain. The tunnel of the newly forming Snake River Plain cut across the northwest trending landforms developed from Laramide and Basin and Range Structures and is now the most prominent physiographic element in the area. By late Pliocene, pediment fans began to encroach on the newly developed basins. Concurrently, tension faults allowed lava to again spread The most notable in the area are across the countryside. those flows now exposed at Ross Park in Pocatello. The distribution of these flows with the forthcoming glacial activity prompted damming of the major drainages including the Snake River and the outlet of Pluvial Lake Bonneville. Numerous lake bed deposits are identified northwest of Pocatello in the area where American Falls Reservoir is now To the south, Lake Bonneville was filling due to located. the increased precipitation and decreased evaporation until the water level overlapped Red Rock Pass. Enormous volumes of water swept down Marsh Creek and the Portneuf River to the Snake River. As the flood waters entered the Snake River Plain, their energy decreased leaving large boulder and gravel deposits which now skirt the foothills and mountains flanking Pocatello.

(3) Soils

Soils in the Pocatello area are generally loess deposited on bedrock of Snake River Basalt and the Salt Lake Formation. Slopes of the foothills are moderately stable and depth to bedrock usually exceeds 3 m throughout the area. Surface soils are primarily silt loams and subsoils range from silty clay loams to heavy silt loams. Natural vegetation occurring on these soils include sagebrush, grasses, and mountain brush. Soils near the processing plants west of Pocatello show increased concentrations of trace elements.

d. Water Resources

(1) Surface Water

. The Portneuf River is the primary stream in the area, draining approximately 3300 km^2 . It rises on the Ft. Hall Indian Reservation approximately 38 km northeast of Pocatello and flows south to Lava Hot Springs. Here, it turns west through a gap in the Portneuf Range, then flows north for 18 km. At its confluence with Marsh Creek, the main tributary of the Portneuf, the river turns to the northwest and empties into the American Falls Reservoir. Flows in the river are regulated by the Portneuf Reservoir and the Chesterfield Reservoir. Diversions from the river are used to irrigate an estimated 17,000 ha upstream from Pocatello. The average flow of the Portneuf at Pocatello is 7.6 m^3/s and the extremes during the 63-year period of record are 84.7 and 0.01 m^3/s . In the 1976 water year, 42 percent of the total flow of the river occurred in April and Streams draining the Pocatello Range flow into the May. Fort Hall Main Canal, from which a series of laterals run to the west across the area of interest. Uses of surface water include municipal, industrial, irrigation, domestic use, stock watering, recreational use and power generation. Patterns of streamflow are affected by regulation of supply for these uses.

Quality of the Portneuf River in the area of interest is shown in table F-1. Sources of inflow in this section of the river include an oil separation plant, elemental phosphorus and fertilizer plant effluent, sewage treatment plant, springs, and a fish hatchery. The estimated flow from these sources is $0.5 \text{ m}^3/\text{s}$.

	TABLE F-1		
	WATER QUALITY OF POR	RTNEUF RIVER	
	(3 locations -	mg/l)	·····
Fe ·	0.02	0.01	0.03
К	7.4	11	7.4
Na	37	43	33
c1_	8.0	10	6.0
£ -	0.4	0.1	0.6
HCO3	281	232	283
NO3	0.8	0.5	5.6
POĂ	0.28	0.19	0.86
rdš	480	412	440
Specific Conductance (µmhos)	610	512	590
рН	6.2	8.2	8.1
r (°C)	15.5	15.5	14.0
DO	13	13	·

(2) Groundwater

Groundwater in the Pocatello area occurs in alluvium and alluvial-fan deposits and in the underlying volcanics which range in depth from 30 m to 120 m. Wells in the alluvium north and northwest of Pocatello have yields ranging from 0.06 to 0.19 m³/s with less than 30 m of drawdown. Recharge in the flatlands northwest of the city comes from precipitation and underflow from the surrounding hills. There is significant groundwater outflow to the Portneuf River in the Pocatello area. The combined discharge of these springs is approximately 9 m³/s.

Uses of groundwater include municipal, industrial, irrigation, private residence, and stock supplies. Municipal uses account for withdrawals of about 0.4 m^3/s , while withdrawals for the phosphorus and phosphate plants average 0.5 m^3/s . Groundwater quality from three wells in the Pocatello area is shown in table F-2. The source of the nitrate in the city wells is unclear, since these wells are several kilometers upstream from the processing plants. In many wells, the total dissolved solids content is higher than the drinking water standard of 500 mg/l.

	1	ABLE F-	-2			
	GROUNE	WATER (QUALITY	Z		
		(mg/l)				·
		Dis-		Ni-	Phos-	
		solved		trate	phate,	
Well	Date	Solids	icum	as NO ₃	as PO_4	ride
<u></u>						
80 Acres No. 1	4-27-65	360	104	6.6		0.05
Do	5-20-66	750	90	38		0.32
Pocatello No. 3	1-04-61	. 320	58	5.3	0.02	0.22
Do	8-31-66	440	72	27	0.00	0.53
Pocatello No. 23	10-21-64	700	75	58		0.35
Do	8-31-66	750	123	345	0.12	0.44

2. Natural Environment

a. Flora

And the second
Regional flora is transitional between the Great Basin vegetation to the south and the Rocky Mountain vegetation on the north. Two primary native cover classifications have been identified in the area:

<u>Mountain/brush</u> - dominated by species such as bitterbrush (Purshia tridentata), serviceberry (Amalanchier

-383-

alnifolia), and juniper. Sagebrush is almost always present.

<u>Sagebrush/grass</u> - dominated by sagebrush, bitterbrush, bluegrass, and Indian ricegrass.

The mountain-brush association occurs on all aspects at lower elevations, but is generally confined to south and west slopes at higher elevations. The sagebrush-grass association occurs at lower elevations on less productive soils. No plant species included on the 1974 Smithsonian Institute plant list are known to occur in the area.

b. Fauna

Elk and mule deer winter in the mountains south of Pocatello. Other game species which occur in the area include sage/grouse, sharptailed grouse (Pedioecetes phasianellus), Hungarian partridge, and chukar partridge. Small mammals which are found in all cover types include whitetail jackrabbit (Lepus townsendi), cottontail (Sylvilagus nuttalli), and pygmy.

Mourning doves are found in the area in the are associated with the sagebrush-grass, summer and mountain-brush, and agricultural cover types. The area is located in the Pacific waterfowl flyway and a large number of ducks and geese concentrate at the American Falls The most common insec-Reservoir before moving south. tivorous birds in the area include the western meadowlark neglecta), swallows (Hirundinidae), and (Sturnella nighthawks (Chordeiles minor). Several species of reptiles and amphibians inhabit the area, including western toad (Bufo boreas), leopard frog, gopher snake, and western rattlesnake.

c. Aquatics

Rainbow trout are stocked in the Portneuf River; other species found in the river include brook trout and brown trout. The upper Portneuf and its tributary, Marsh Creek, are classed as Class IV streams by the Idaho - Department of Fish and Game, and fishing pressure is moderate to intense in some areas.

3. Cultural Environment

a. Land Use

All land in the area of interest is privately owned. The Fort Hall Indian Reservation, which was established in 1868, borders the area on the west and north, and Caribou National Forest lands lie to the south. Approximately 3880 ha of land is included with the metropolitan area of Pocatello. Additional land uses include grazing, dry and irrigated farming, and phosphate processing. The Simplot plant, a completely integrated fertilizer complex, was established in 1945 and processes about 750,000 tons of phosphate rock annually. The FMC elemental phosphorus plant, established in 1949, has an annual production capacity of 127,000 metric tons.

b. Socioeconomics and Demography

1.10000

The population (1970) of Pocatello is 40,000, about 77 percent of the population of Bannock County. The population has steadily increased and forecasts (some controversial) indicate that the population of the city may increase by 30,000 by 1980. The projected increase is primarily based on growth of the Bucyrus-Erie plant. The birth rate and fertility rate for the county in 1975 were 23.3 and 101.5, respectively. They compare to respective values of 19.1 and 92.0 for Idaho and 14.8 and 66.7 for the United States as a whole. Eighty-three new housing units were authorized in Pocatello in 1970; in 1976, 1104 were authorized. Primary employers in the county in 1975 were trade (5,065), state and local (4,547), services (3,437), transportation and utilities (2,859), and manufacturing (2,653). The percent of the labor force unemployed in 1970 was 5.7 percent; in 1976 it had dropped to 4.9 percent. Ten percent of families were below the poverty level in 1969, and an average of 1,400 persons utilized welfare in 1975. Larceny offenses accounted for 66 percent of all crime in the county in 1976, while murder accounted for less than 0.1 percent.

c. Archaeological and Historical

The Pocatello area was an area of extensive travel by fur traders and immigrants in the early 1800's. The Oregon Trail, its south alternate, and the Lander Road all entered Idaho east of Pocatello. The latter two trails met the Oregon Trail on what is now the Fort Hall Indian Reservation, 40 km northeast of Pocatello. They continued west to the Snake River, then followed its course to the southwest. The California Trail took off from the Oregon Trail at Soda Springs and traversed the area south of Pocatello. By 1860, permanent settlements were underway.

Southeast Idaho is part of the Great Basin ethnographic culture area. The natives were hunters and gatherers. Because of their seasonal treks, there is no large accumulation of artifacts in any one area.

d. Aesthetic Values

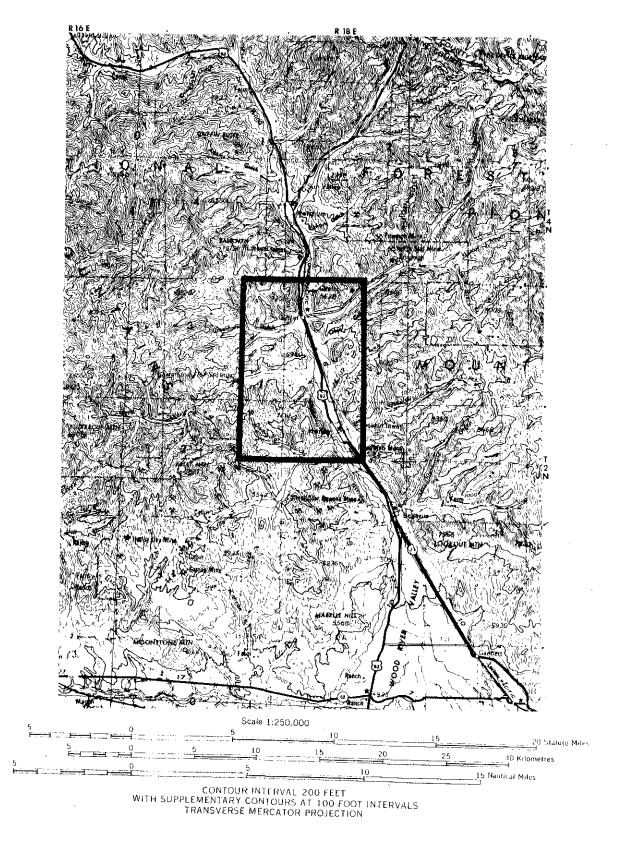
Poor air quality is a major problem in the Pocatello area and impacts the recreational value of the region. The main recreational asset of the area is American Falls Reservoir, which lies outside the Pocatello study area. Pocatello is located at the foot of rather picturesque mountains, which affords some aesthetic value to the local residents.

G. HAILEY

1. Physical Environment

a. Climate

The Hailey area is characterized by long, cold winters and short, dry summers. Average monthly temperatures range from -7° C in January to 20° C in July. The normal annual precipitation ranges from 38 cm at Hailey in the Wood River valley to over 48 cm in the nearby foothills. Nearly 50 percent of the annual precipitation falls as snow from December through February. The snow depth peaks in March at 113 cm (1890 m elevation). The maximum snow depth recorded at this station is 183 cm. Wind patterns are determined almost entirely by topography and vary significantly over the area.


b. Air Quality

The are no major air-polluting industries in the central Idaho region; as a result, the air quality of the Hailey area is extremely good. There are two air quality stations in the region, one 110 km south on the southern Snake River Plain and one at Craters of the Moon National Monument, 80 km to the east. The normal suspended particulate concentrations at these two stations are $40 \text{ }\mu\text{g/m}^3$ and less than $10 \text{ }\mu\text{g/m}^3$, respectively. Estimates of the particulate levels around Hailey indicate that normal concentrations at Craters of the Moon.

c. Land Resources

(1) Topography

The general topography of the area is steep and rough and exhibits the effects of both extensive glaciation and stream erosion. Elevations in the area of interest range from 1630 m at Hailey to 2700 m on Kelly Mountain, Elevations in the main Sawtooth Mountains to the northwest exceed 3150 m. The valley of the Wood River, which forms the eastern boundary of the area, opens onto the Snake River Plain 24 km south of Hailey. East-west trending

「「「「「「」」」を見ていていた。

G. Hailey Study Area

-387-

ridges and valleys dissect the area, resulting in the steep slopes and high relief characteristic of the region.

(2) Geology

The geology of the Hailey area reflects intrusion, glaciation, vulcanism, and uplift, stream erosion, all of which have played a major role in the structure of the area. Hailey is located at the boundary of the Idaho Batholith and the Snake River Plain. As a result, both the granitics of the Batholith and volcanic flows and debris predominate. Glacial deposits and alluvium overlie volcanic debris, marine detritus, and quartzite in the normal-faulted Wood River valley. In addition to the faults bounding the valley, a major northeast-southwest trending thrust-block boundary fault is evident along Deer Creek canyon extending into the Pioneer Mountains to the east of Like the Snake River Plain, the Hailey area the valley. seems aseismic, although a large number of earthquakes occur in the Sawtooth Mountains north of Stanley.

(3) Soils

Soils range from deep and productive in the valley bottoms to shallow and unproductive on the steep south slopes. Much of the area is characterized by fluvial slopes with soils formed from underlying granitics, sandstone, volcanic rhyolites, and metamorphosed sediments. Soils derived from the granitics of the Batholith are generally gravelly, sandy loams or loamy sands. The profile is not well developed and ranges in depth from 25 cm to 90 Sedimentary soils are moderately deep clays or cm. clayloams over well-fractured bedrock. Soils whose parent material is volcanic are loams or clay loams with shallow to moderately deep profiles. The soils of the Batholith are highly erosive, while the sedimentary and volcanic soils are very cohesive and much less erosive.

d. Water Resources

(1) Surface Water

The primary stream in the area is the Big Wood River, which is fed largely by snowmelt in the upper reaches of the watershed. Temperature variations control the stream discharge during the high spring runoff. Precipitation rarely contributes directly to high runoff in the basin. The Big Wood River drains over 1660 km² of the Boulder, Pioneer, and southern Sawtooth Mountains. The river empties into the Magic Reservoir which provides irrigation water supply for Lincoln and Gooding counties, 25 km south of Hailey. Diversions above Hailey are used to irrigate an average of 4000 ha. The average discharge of the river at Hailey is 10.8 m³/s, with recorded extremes of 141 m³/s and 0 m³/s. Forty-seven percent of the total flow of the river in the 1976 water year occurred in May and June. Average water guality of the river in 1975 and 1976 just south of Hailey is shown in table G-1. Irrigators are generally short of water each year. Decreed water rights on the river above the Magic Reservoir total approximately 28 m³/s.

	WATER QUALITY O	TABLE G-1 THE BIG WOOD RIVER, 1 (mg/1)	975 AND 1976
Ca	39	HCO3	140
K	. 1.1	SOZ	15
Mg	7.6	TDS	L49
Na -	3.3	Specific Conducta	290 Ance
CL	1.4		
F	· 0.3	рн	8.3

(2) Groundwater

The Wood River aquifer is unconfined fluvio-glacial sedimentary deposit underlying the valley to depths of more than 90 m. Beds of sand and gravel interbedded with clays and silt yield large supplies of water to wells up to 30 m deep in the valley. The water table, which has an average gradient of 7.6 m/km, is deepest in late winter and shallowest in June. The groundwater is of uniformly good quality, although it ranges from moderately hard to hard. Groundwater outflow from the upper Big Wood Basin totals about 6000 hm³ annually.

2. Natural Environment

a. Flora

The dominant vegetation types around Hailey and in the mountains to the west are conifer timber and sagebrush-grass. Lodgepole pine (Pinus contorta) and Douglas fir occur primarily on the north and east slopes, while mountain big sagebrush, bitterbrush, blue bunch wheatgrass, and chokecherry generally occur on the south and west slopes. Associated vegetation types found in the include grassland, meadow, bottoms aspen, and valley riparian. Slopes along the north side of upper Deer Creek are highly sensitive and difficult to revegetate. Although vegetation types throughout the area are well-established, forest fires and timber harvests result in local short-term changes.

b. Fauna

Primary large mammals in the area include mule elk, black bear, and mountain goats (Oreamnos deer, ⁷ Predators include bear, mountain lion (Felis americanus). concolor), lynx (Lynx canadensis), bobcat, and coyote. Common rodents include the Columbian ground squirrel, red squirrel (Tamiasciurus hudsonicus), chipmunk (Eutamias sp.), deer mouse (Peromyscus maniculatus), and snowshoe rabbit. Forest grouse (Teraonidae) are common in the timbered areas, while passerine species including fox sparrow (Passerella iliaca), song sparrow (Melospiza melodia), and yellowthroat (Geothlypis trichas) are found throughout the area. Beaver (Castoridae), muskrat, snipe (Scholopacidae), blackbirds (Corvidae), frogs, and garter snakes (Thamnophis sirtalis) are common in the marshy valley bottoms. Summer range for deer and elk is abundant. Extremely valuable winter range is located in Deer Creek canyon, on Buttercup Mountain to along Willow Creek to the west, and the south. Approximately 100 elk and 300 deer winter along the sagebrush-covered south slopes of Deer Creek canyon. Cow. Creek canyon in the northern part of the area is vegetated with aspen and provides good elk forage during calving in From 40 to 60 elk can be found in the area May and June. during this period.

c. Aquatics

Fish found in the major streams of the region include rainbow, cutthroat, eastern brook trout, and whitefish. Dolly Varden trout and kokanee salmon (Oncorhynchus nerka) are found in the South Fork of the Boise River just west of the area of interest. Fisheries capability is low throughout the tributaries of the Big Wood River. These streams do contain some native rainbow trout. Several times a year, fish are planted in Soldier Creek, Willow Creek, and Deer Creek.

3. Cultural Environment

a. Land Use

Of the 30,600 ha in the area of interest, an estimated 11,700 ha are under the jurisdiction of the Sawtooth National Forest, 9800 ha are controlled by the Bureau of Land Management, 1500 ha belong to the State of Idaho, and the remainder is private land. Land uses on the USFS and BLM in the western half of the area of interest include snowmobiling, hunting, cross-country skiing, scenic travel, and summer recreation, mining (16 lead and silver mines are located in the area), and cattle and sheep grazing. Recreational facilities at Clarendon Hot Springs are the only geothermal development in the area. The eastern half of the area is used for grazing, farming, a travel corridor, and residential.

b. Socioeconomics and Demography

All of the area of interest is located in Blaine County, which had a population in 1976 of 7900. The population density in the county in that year was 1.7 people/km². Eighteen percent of the county population is classed as rural-farm, while 82 percent is classed as rural-nonfarm. Hailey, the county seat, had a population in 1970 of 1425. The county population increased 38 percent in the six years from 1970 to 1976, compared to a 16.5 percent population increase in the State of Idaho during the same period. Migration accounted for 79 percent of the county's population increase.

The unemployment rate in the county in 1976 was 14.4 percent, ranging from 10.6 percent in September to 22 percent in May at the end of the ski season. Services as a group employ the largest number of people (27 percent of total), with trade, state and local, and nonfarm proprietors together accounting for an additional 40 percent. Per capita income in 1970 was 114 percent of the state average.

c. Archaeological and Historical

Archaeological surveys in the region indicate that primitive man inhabited the area; however, no extensive archaeological studies have been conducted which yield specific data for the area. The first white man in the area was a trapper traversing the mountains to Boise in 1824. A gold discovery in 1863 led to the founding of Hailey and Many of the mining towns established during the Ketchum. subsequent 30 years are now ghost towns. Homesteading fluorished in the 1880's and sheep grazing was extensive until the Sawtooth National Forest was established in 1905. The Union Pacific Railroad began construction of the Sun Valley Resort in 1936, marking the advent of recreation as a major industry in the area.

d. Aesthetic Values

The Hailey area is highly prized for both its abundant wildlife and near-pristine wilderness. Located on the edge of the Sawtooth National Recreation Area, the only road into the region is heavily utilized by recreational travelers. The study area receives heavy use in summer by backpackers and campers and in winter by skiers, who frequent the area from all parts of the world. Preservation of the environment in this area would be a major concern to potential developers.

IV. POTENTIAL ENVIRONMENTAL IMPACTS

The environmental impacts that may result from the development of geothermal resources in the areas under consideration will vary significantly. In general, the developments will be on a relatively small scale, so that cumulative impacts in any one area will be minor.

A. AIR QUALITY

Sources of air pollution from geothermal development include dust from cleared areas and roads, vehicle emissions, dissolved gasses in the geothermal fluids, and emissions from industrial processes. Dust can be controlled to a certain extent by gravelling, watering, or oiling roads The dissolved gas content (especially hydrogen and sites. sulfide) in most geothermal resources in Idaho is very low. Geothermal systems will be a closed cycle unit in most processes, resulting in no release of dissolved gasses to the environment. Where this is not the case, gas emissions can be reduced through the use of scrubbing units. Emissions from industrial processes will vary and can be if necessary, to meet state and federal controlled, regulations.

B. NOISE

Noise levels during geothermal development will generally be highest during well drilling. Noise levels from drill rigs range from less than 50 dBA at 6 m for cable tool rigs to higher than 70 dBA at 6 m for oil rigs. Drill rigs may operate for 24 hours a day where the noise does not cause disruption. The noise from open water discharge lines from a geothermal well rarely exceeds 70 dBA at 1.5 m. Any of these noise levels should be reduced to less than 60 dBA at 300 m.

C. SOILS

The primary environmental impacts of geothermal development on soils will be increased erosion on cleared land and instabilities on steep slopes. To a great extent, these impacts can be reduced through careful siting of well and plant sites. The hills surrounding Pocatello and the canyons in the Hailey area are especially susceptible to soil stability problems.

D. WATER RESOURCES

The impact of goethermal resources on water quality and supply is one of the major concerns in the State of Idaho.

Water contamination can result from casing leaks, seepage from holding ponds, uncontrolled discharge from wells, and improper disposal of the geothermal fluids. Regulations require that geothermal wells be cased and cemented through shallow groundwater aquifers to reduce the chance of geothermal fluids leaking into these aguifers through the wellbore. Drilling muds help to reduce the seepage from holding ponds; however, if seepage of poor quality fluids is high, the holding ponds can be lined. Proper design of wells, wellheads, piping systems, and discharge systems should reduce the chances of water contamination from these sources. Samples from thermal wells and springs across the state indicate total dissolved solids ranging from 180 to 13,000 mg/l, with a mean of 630 mg/l. The quality of some geothermal fluids, then, can be expected to be compatible with surface and shallow groundwaters. Indications are that geothermal systems in Idaho are not completely separated from other groundwater aquifers. As a result, production of geothermal fluids may interfere with groundwater supplies in some places.

E. SEISMICITY

Geothermal areas have been associated with areas of significant seismic activity. Production and injection of geothermal fluids may increase the activity in some areas. The Snake River Plain in Idaho is considered very aseismic and background levels of seismic activity in the areas under consideration are low. Depending on the amount of faulting and the imbalance created by production and injection in these areas, microseismic activity may or may not increase.

F. SUBSIDENCE

Whenever large quantities of fluids are withdrawn from unconsolidated sediments or when declining reservoir pressures reduce the support for overburden, subsidence may result. In some areas in Idaho, subsidence due to the withdrawal of water for irrigation has been documented. The adverse impacts of subsidence depend on the location. Significant subsidence in a city may result in structural damage to many buildings. The same amount of subsidence in an undeveloped or agricultural area may not result in any damage.

G. FLORA

The major impact to flora generally results from the clearing of land for roads, drill sites, and process facilities. If those disturbed lands are revegetated with native species following development, the impact can be reduced. If not, soil erosion may increase and a significant invasion of noxious species such as halogeton (Halogeton glomeratus) may result. Reestablishment of native vegetation on unstable slopes is difficult and in areas with low moisture availability, this reestablishment may take decades.

H. FAUNA

The impact on local fauna in developed agricultural or metropolitan areas will be minimal. The prime species displaced by development in those areas will be small mammals. In the undeveloped areas of Hailey, Blue Gulch, and Bruneau-Grand View, development may result in major impacts to fauna. Each of these areas is prime habitat for elk, mule deer, and raptors. Nesting and calving areas are particularly vulnerable in the spring and early summer and development in these areas should be avoided. Aquatic species may be impacted as a result of increased erosion or discharge of poor quality goethermal fluids to streams. In most cases, design of facilities will reduce this impact.

I. SOCIOECONOMICS

If major development occurs in sparsely populated areas, the population influx may result in significant social and economic impacts. These impacts would include lack of housing, strain on utilities and service, especially water supply and medical services. If development occurs in an orderly manner, there may be an opportunity for planning early in the development phase which could reduce many of the adverse impacts. The kinds of development that can be expected in the areas under consideration are either retrofitting existing processes to utilize geothermal fluids or small-scale new processes. These developments should result in few adverse socioeconomic impacts.

J. ARCHAEOLOGICAL AND HISTORICAL

All of the areas under "consideration are known to or are expected to have significant heritage resources. Where these resources have been documented (e.g., the route to the Oregon Trail), they should be protected during development. Archaeological curves should be conducted in undisturbed areas where no data exist. If archaeological resources are uncovered during development, state archaeologists will be consulted.

REFERENCES

4

Sality N

Ada Council of Governments, 1973. Background Information for Ada County, Idaho. Environmental Planning Report 3.

Ada Council of Governments. Waste Water Sources and Water Use, Environmental Report 8.

- Ada Council of Governments. Ada County Ecology. Environmental Report 9.
- Bureau of Land Management, 1976. Environmental Analysis Record for the Agricultural Development Program.
- Bureau of Reclamation, 1977. Water Quality Study-Boise Valley, Vol. 1. Bureau of Reclamation, Pacific Northwest Region, Boise, Idaho.
- EAR No. 11-010-5-77. Geothermal Leasing and Development on Potential Areas within the Boise District-Bruneau, Grandview and Bennett Mountain. Bureau of Land Management, Boise District, Boise, Idaho.
- Longyear, A.B., W.R. Brink, L.A. Fisher, R.H. Matherson, J.A. Neilson, S.K. Sanyal, 1978. Mountain Home Geothermal Project - 1st Quarterly Report IDO/1704-1. U.S. Department of Energy, August 1978.
- National Oceanic & Atmospheric Administration, 1977. Climatological Data Annual Summary. Vol. 80 (No. 13), National Climatic Center, Asheville, N.C.
- Ralston, D.R. and S.L. Chapman, 1969. Ground-Water Resources of Northern Owyhee County, Idaho. Water Information Bulletin 14. Idaho Dept. of Reclamation.
- U.S.E.P.A., 1972. Idaho Environmental Status and Program Evaluation. Region IX EPA, Seattle, Washington.
- U.S. Forest Service, 1975. Proposed Land Use Plan, Council Planning Unit, Payette National Forest.
- U.S. Forest Service, 1977. Final Environmental Impact Statement, Development of Phosphate Resources in Southeastern Idaho.
- U.S. Geological Survey, 1976. Water Resources Data for Idaho, Water Year 1976. Report ID-76-1.
- Young, H.W. and R.L. Whitehead, 1975. Geothermal Investigations in Idaho - Part 3: An Evaluation of Thermal Water in the Weiser Area, Idaho. Idaho Department of Water Resources Water Information Bulletin 30.

-395-

Young, H.W., W.A. Harenberg, and H.R. Seitz, 1977. Water Resources of the Weiser River Basin, West-Central Idaho. Water Information Bulletin No. 44, Idaho Department of Water Resources.

4

and the second
, and a second of the second
.

- · · ·