GEOTHERMAL INVESTIGATIONS in Idaho Part 1

& DELLECHAIE, VICE FREDUCINE - EXPLORATION

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part 1

Geochemistry and Geologic Setting of Selected Thermal Waters

May 1973

Idaho Department of Water Resources

Water Information Bulletin No. 30 Second Printing February 1978

WATER INFORMATION BULLETIN NO. 30

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part I

Geochemistry and Geologic Setting of

Selected Thermal Waters

by

H. W. Young U. S. Geological Survey

and

J. C. Mitchell Idaho Department of Water Administration

Prepared jointly by the

U. S. Geological Survey

and

Idaho Department of Water Administration

May 1973

CONTENTS

Page

Abstract 1
Introduction
Previous Work
Well- and Spring-Numbering System 4
Use of Metric Units
Methods of Data Collection
Selection of Sampling Sites
Measurements of Water Quality and Quantity
Geologic Reconnaissance
Geology of Thermal-Water Areas
General Considerations
Generalized Geologic Setting of Idaho
Inventoried Springs and Wells
Geochemical Thermometers
Summary of Geochemical Thermometers Available
Silica Geochemical Thermometer
Sodium-Potassium and Sodium-Potassium-Calcium Geochemical Thermometers 21
Analyses of Data
Summary of Findings
Future Work
Selected References

ILLUSTRATIONS

Figure

1.	Map showing lands classified as valuable for geothermal resources in Idaho 3
2.	Diagram showing the well- and spring-numbering system
3.	Graph showing Celsius-Fahrenheit temperature relationship
4.	Map of the generalized geology of the State of Idaho and sampled spring and well locations in pocket
5.	Map showing estimated aquifer temperatures for sampled springs and wells . in pocket

ILLUSTRATIONS (Cont'd.)

Figure	Page
`	
6. Map showing areas selected for future study	

TABLES

Table

1.	Geologic environment of	[:] selected	l springs and	wells in	Idaho		9
----	-------------------------	-----------------------	---------------	----------	-------	--	---

2. Chemical analyses of thermal waters from selected springs and wells in Idaho 23

3. Estimated aquifer temperatures and atomic ratios of selected chemical constituents . 29

GEOTHERMAL INVESTIGATIONS IN IDAHO

Part 1

Geochemistry and Geologic Setting of Selected Thermal Waters

by

H. W. Young and J. C. Mitchell

ABSTRACT

At least 380 hot springs and wells are known to occur throughout the central and southern parts of Idaho. One hundred twenty-four of these were inventoried as a part of the study reported on herein. At the spring vents and wells visited, the thermal waters flow from rocks ranging in age from Precambrian to Holocene and from a wide range of rock types – igneous, metamorphic, and both consolidated and unconsolidated sediments. Twenty-eight of the sites visited occur on or near fault zones while a greater number were thought to be related to faulting.

Measured water temperatures at the 124 wells and springs inventoried ranged from 12° to 93°C (degrees Celsius) and averaged 50°C. Estimated aquifer temperatures, calculated using the silica and the sodium-potassium-calcium geochemical thermometers, range from 5° to 370°C and averaged 110°C. Estimated aquifer temperatures in excess of 140°C were found at 42 sites. No areal patterns to the distribution of temperatures either at the surface or subsurface were found.

Generally, the quality of the waters sampled was good. Dissolved-solids concentrations range from 14 to 13,700 mg/l (milligrams per liter) and averaged 812 mg/l, with higher values occurring in the southeastern part of the State.

No hot springs or wells were found within the Yellowstone KGRA (known geothermal resource area) in northeastern Idaho. At the Frazier KGRA in Raft River Valley, water temperatures at the surface above 90° C were measured at two wells. Geochemical thermometers indicate temperatures of 135° to 145° C may exist at depths. Dissolved-solids concentrations in waters issuing from the two wells were 1,720 and 3,360 mg/l. The minerals being deposited by these waters consist chiefly of halite (NaCl) and calcite (CaCO₃).

Twenty-five areas were selected for future study. Of these areas, 23 were selected on the basis of estimated aquifer temperatures of 140°C or higher and two on the basis of geologic considerations.

INTRODUCTION

The search for energy resources in the United States continues in an effort to meet increasing demands for electric energy. Widespread interest in converting the natural heat of the earth into electric power, shared by the general public, governmental agencies, and the power industry, stems from the hope that this source of energy will become a viable component of existing modes of power generation. If that hope can be realized, fossil fuel can be conserved, proposed dam sites can be saved for their scenic value, and some of the fears concerning the environmental effects of using nuclear fuels can be avoided.

The recent interest in geothermal energy and the need to establish exploration leasing rights led the United States Congress to pass the Geothermal Steam Act of 1970 (Public Law 91-581, Godwin and others, 1971, p. 10-18) which makes provision for leasing, development, and utilization of geothermal resources found on Federal lands. The Idaho Geothermal Leasing Act of 1972 (sections 47-1601 to 1611, Idaho Code) makes similar provisions for geothermal resources found on State and school lands. As provided in the Federal act, pre-leasing land classification, including Federal, State, and private lands, was conducted on a reconnaissance level by the U. S. Geological Survey and a total of 44 KGRA's (known geothermal resource area) were designated in the nine western states (Godwin and others, 1971, p. 2). Approximately 1.8 million acres of land was included in this classification. Two of the areas in Idaho, the Yellowstone KGRA in eastern Fremont County and the Frazier KGRA in the Raft River basin (fig. 1), include about 21,800 acres and represent about 16 percent of the area in the KGRA's designated in the Pacific Northwest.

In addition to KGRA's, lands potentially valuable for geothermal exploration were also designated. A total of nearly 96 million acres in 14 states is in this category. In Idaho, nearly 15 million acres or approximately 30 percent of the State (fig. 1) was classified as potentially valuable for exploration.

Economic or beneficial present uses of Idaho's geothermal resources, although of long standing, have been of only minor importance (Ross, 1971). These uses have been primarily for irrigation and secondarily for recreation and space heating of a few homes and greenhouses.

Existing knowledge and laws have been adequate with regard to development and regulation of the resource for these minor uses. However, recognition of the possibilities for development of Idaho's geothermal resources for power, also brought the realization that little information concerning both the source of the hot water and its adequacy for power development was available. Despite this lack of information, interest in looking for geothermal areas capable of sustaining power plants is keen and private interests have requested permits from the Idaho Department of Water Administration that would allow them exploration and development rights as provided in Idaho's Geothermal Resources Act of 1972 (sections 42-4001 to 4015, Idaho Code).

In recognition of the needs for information noted above, the U.S. Geological Survey in cooperation with the Idaho Department of Water Administration initiated a study to

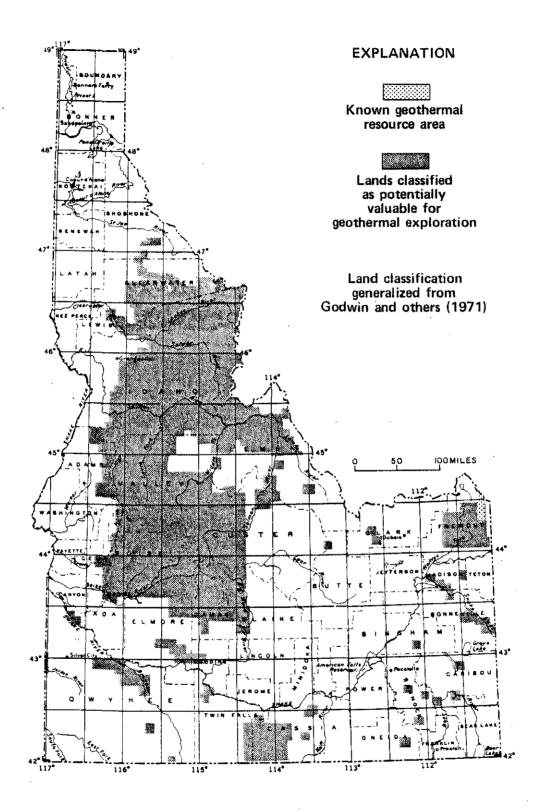
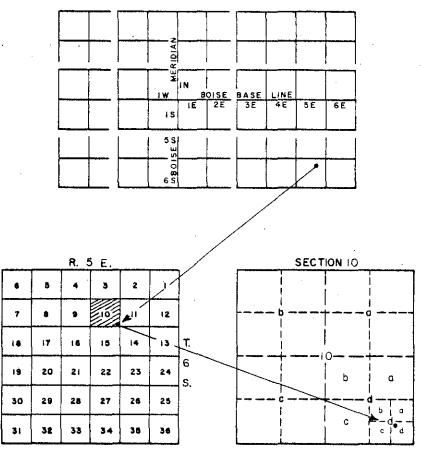


FIGURE 1. Location of known geothermal resource areas and areas classed as potentially valuable for geothermal exploration.

investigate the potential for geothermal resource development in Idaho. This report summarizes the effort in which 124 selected thermal springs and wells were visited during the spring and summer of 1972. The objectives of this progress report are: (1) to present the chemical analyses of 124 selected thermal springs and wells, estimate aquifer temperatures for them, and reconnaissance data on their geologic setting; and (2) to designate for additional study areas where: (a) estimated aquifer temperatures of 140°C or higher (a temperature of 140°C was arbitrarily selected by the authors as the minimum needed for usable water) were found, using the silica and sodium-potassium-calcium geochemical thermometers or (b) favorable geologic conditions indicate work is needed.

Previous Work


Numerous reports have briefly mentioned or described the occurrence and characteristics of thermal waters within a particular region or section of Idaho. However, only three reports (Stearns and others, 1937, Waring, 1965, and Ross, 1971) have described thermal waters throughout the State. These reports are mainly a collection of pre-existing data compiled by various workers over a time span of approximately 50-60 years. The information given in Stearns and others (1937, p. 136-151) for Idaho is essentially repeated by Waring (1965, p. 26-31). The most comprehensive of the three reports, (Ross, 1971, p. 47-67), includes data on 380 thermal springs and wells, and evaluations of the geothermal potential of some areas. Although the three reports contain much useful information applicable to this investigation, they are lacking in the water-chemistry data needed for purposes of this study.

Well- and Spring-Numbering System

The numbering system used by the U. S. Geological Survey in Idaho indicates the location of wells or springs within the official rectangular subdivision of the public lands, with reference to the Boise base line and meridian. The first two segments of the number designate the township and range. The third segment gives the section number, followed by three letters and a numeral, which indicate the quarter section, the 40-acre tract, the 10-acre tract, and the serial number of the well within the tract, respectively. Quarter sections are lettered a, b, c, and d in counterclockwise order from the northeast quarter of each section (fig. 2). Within the quarter sections, 40-acre and 10-acre tracts are lettered in the same manner. Well 6S-5E-10ddd1 is in the SE¼ SE¼ SE¼ SE¼ Sec. 10, T. 6 S., R. 5 E., and was the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 4S-13E-30adb1S.

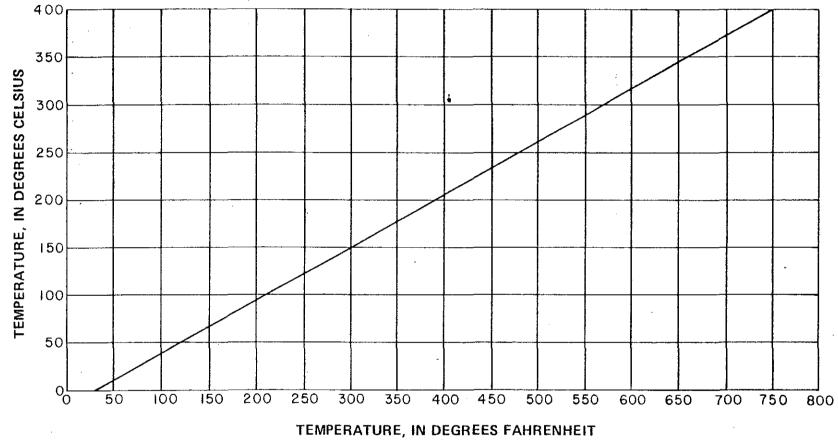
Use of Metric Units

In this report, metric units are used to present concentrations of water-quality parameters determined by chemical analyses and the temperature of water. Chemical data for concentrations are given in milligrams per liter (mg/l) rather than in parts per million (ppm), the units used in earlier reports of the U.S. Geological Survey. However, numerical values for chemical concentrations given in this report would be essentially the same

6S-5E-10ddd1

FIGURE 2. Diagram showing the well- and spring-numbering system.

whether reported in terms of milligrams per liter or parts per million. Water temperatures are presented in degrees Celsius (^oC). Figure 3 shows the relation between degrees Fahrenheit and degrees Celsius.


METHODS OF DATA COLLECTION

Selection of Sampling Sites

There are at least 380 thermal springs and wells in Idaho (Ross, 1971, p. 47-64). Because the time required to visit all of these was considered excessive, only a limited number of them could be visited, examined, and water samples collected. Generally, selection of the 124 springs and wells visited was made using the following criteria: (1) location within a classified area, figure 1; (2) temperature known or reported to be above 20°C; (3) known or reported water chemistry suggestive of higher temperatures at depth; or

5

1.53.

TEMPERATURE, IN DEGREES FAHRENHEIT Conversion of degrees Celsius (°C) to degrees Fahrenheit (°F) is based on the equation, °F = 1.8°C + 32.

FIGURE 3. Temperature-conversion graph.

တ

(4) geologic conditions suggesting an association with some inferred heat source. Where several springs or wells were closely grouped, water from the spring or well having the highest water temperature at the surface was preferentially sampled. This procedure was based on the hypothesis that the hottest waters would best reflect conditions at depth. That is, they probably would not have undergone as large a temperature decrease through conduction with the wall rock, alteration of composition by mixing with waters of intermediate levels, flashing to steam, or other alteration processes during their ascent to the surface.

Measurements of Water Quality and Quantity

Field data collected at each sampled site included measurements of pH, water temperature at the surface, and discharge. These measurements were made as close as possible to the spring vent or well discharge pipe. In some instances, only estimates of discharge could be obtained.

Water samples were collected at each spring or well for standard chemical analysis. A separate sample was collected for silica determination. This sample was diluted in the field with distilled water (one-part sample to nine-parts distilled water) to prevent silica polymerization prior to analysis.

Geologic Reconnaissance

A brief geologic reconnaissance made at each site included (1) identification of the lithology at or near the spring vent, and (2) identification of the structural setting of the site with emphasis on faulting and the intersection of fracture zones. Available geologic maps were used to aid understanding of geologic conditions in areas of interest and to determine the age of the rocks. In addition, available drillers' logs were examined to assess well construction, and aquifer or aquifers penetrated by the well.

Active deposition of silicate or carbonate minerals at or near the sample spring or well was noted where possible.

GEOLOGY OF THERMAL-WATER AREAS

General Considerations

The close association of thermal springs with main belts of present or geologically recent volcanic activity was noted by Waring (1965, p. 4). As noted by Waring, the occurrence of thermal waters is most common in extensive areas of lava flows of Tertiary and later geologic age.

Although the association of geothermal activity with specific rock types has not been established, in many areas geothermal phenomena seem more closely associated with acidic volcanic rocks of rhyolitic to dacitic composition, as well as their glassy equivalents, rather than with the more basaltic volcanic types (Healy, 1970, p. 574). The more favorable areas for exploration and development of geothermal steam are probably characterized by recent normal faulting, volcanism, and high heat flow (Grose, 1971, p. 1). Grose further states that thermal springs commonly emerge from faults along caldera margins and that some thermal water areas are indirectly associated with surface or shallow subsurface, time-related volcanism which is not evident in the immediate thermal spring area. The heat source in these areas is believed, in most cases, to come from shallow, magmatic intrusive bodies, that transfer their heat to circulating ground water.

Generalized Geologic Setting of Idaho

The State of Idaho is underlain by rocks of igneous, metamorphic, and sedimentary origins (fig. 4). These formations range in age from Precambrian to Holocene and represent a varied and complex geologic history. Large scale igneous activity has occurred throughout most of the State. Cenozoic lava flows ranging in composition from rhyolite to basalt are exposed in most of the western, central, and southern parts of the State, while Mesozoic and Cenozoic granitic rocks are the predominant rock type of large areas of central Idaho. Marine sedimentary rocks of Paleozoic age are the principal rock type of southeastern Idaho, while metamorphic rocks of Precambrian age are exposed in northern and east-central Idaho.

For purposes of this report the geology of the State of Idaho is divided into nine map units. Each unit was selected on the basis of age and lithologic considerations. The areal distribution and descriptions of these units are given in figure 4.

Although the occurrence of thermal activity and its association to a particular rock type in Idaho is obscure, known thermal anomalies are limited to the central and southern parts of the State. The occurrence and associated rock type of sampled springs and wells is discussed in the following sections.

Inventoried Springs and Wells

A brief description of the geology, including the age and lithology of the spring vent or aquifer, and where possible, the controlling structure, and the active deposition at each spring and well is given in table 1. These descriptions indicate that thermal springs and wells throughout the State issue from a great diversity of rocks types of nearly all ages. However, the lithology and age of the spring vent or aquifer may not be indicative of the aquifer from which the thermal waters originate. Many thermal springs in central Idaho occur in association with fault zones in Cretaceous and Tertiary granitic and related rocks, whereas springs and wells along the margins of the Snake River Plain occur in Cenozoic basaltic and rhyolitic lava flows and associated sedimentary rocks. In southeastern Idaho, springs and wells are primarily associated with fault zones in Paleozoic marine sedimentary rocks that may, in places, be overlain by unconsolidated valley fill.

TABLE 1

GEOLOGIC ENVIRONMENT OF SELECTED SPRINGS AND WELLS IN IDAHO

(Dash in column indicates unknown or not observed.)

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure -	Active D Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
			AD	A COUNTY				
5N 1E 35aca1	Pliocene and Pleistocene sediments	-	-	-	-	Flowing well	Savage, 1958	
4N 2E 29acd1	Pliocene and Pleistocene sediments	-	-	-	-	Flowing well; slight sulfur odor	Savage, 1958	
3N 2E 12cdd1	Pliocene and Pleistocene sediments	Northwest trend- ing fault	Yes	Yes	-	Flowing well; sulfur odor	Savage, 1958	
-			ADA	MS COUNTY				
White Licks Hot Springs 16N 2E 33bcc1S	Quaternary alluvium, proba- bly less than 5 feet thick, near Miocenc basalt and Cretaceous gramitic rocks	-	-	Yes	Yes	Numerous spring vents; gas present in several vents; sulfur odor; temperature range 63 to 65 ⁰ C	Waring, 1965	1
Zím's Resort Hot Springs 20N 1E 26ddb1S	Quaternary alluvium near Miocene basalt	Northwest trend- ing normal fault	-	Yes	Yes	Slight sulfur odor	Hamilton, 1969	
Krigbaum Hot Springs 19N 2E 22ccalS	Cretaceous granitic rocks near Miocene basalt	Northeast trend- ing normal fault	- '	Yes	-	Two spring vents; temper- ature of 40 and 43 ⁰ C	Newcomb, 1970	
Starkey Hot Springs 18N 1W 34dbb1S	Miocene basalt		-	Yes	Yes	Seven spring vents; sulfur odor; second- ary calcite in basalt near spring vents	Livingston and Laney, 1920	
			BANN	DCK COUNTY				
55 34E 26dabl	Pliocene and Pleistocene sediments (?)	-		Yes	-	Flowing well; slight sulfur odor; driller's log available	Ross, 1971	2
Lava Hot Springs 98 38E 21ddab18	Paleozoic quartzite and younger travertine	Fault	-	Yes	Yes	Numerous spring vents	Stearns and others, 1938	3
Downata Hot Springs 12S 37E 12cdc1S	Quaternary alluvium near Tertiary sediments	-	-	-	Yes (?)	-	Norvitch and Larson, 1970	
			BEAR	LAKE COUNTY				
Bear Lake Hot Springs 155 44E 13ccalS	Paleozoic limestone	North trending fault	-	Yes	-	Numerous spring vents; sulfur odor	Dion, 1969	4
			BLAI	NE COUNTY				
1S 17E 23aab1	Quaternary alluvium (?)	-	-	Yes	-	Flowing well; sulfur odor; driller's log available	Smith, 1959	5

١

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active D Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
			BLAINE C	OUNTY (Cont'd.)			
Guyer Hot Springs 4N 17E 15aac15	Paleozoic limestone	Northwest trend- ing fault (?)	Yes	Yes	Yes	Numerous spring vents; hydrogen sulfide odor; temperature range 55 to 70 ¹ 2 ⁰ C	Umpleby and others, 1930	
Clarendon Hot Springs 3N 17E 27dcb1S	Paleozoic quartzite	r -	-	-	Yes (?)	Numerous spring vents; sulfur odor; tempera- ture range 42 to 47°C	Umpleby and others, 1930	
Hailey Hot Springs 2N 18E 18dbb15	Paleozoic limestone	-	Yes	-	Yes	Numerous spring vents; sulfur odor	Umpleby and others, 1930	
Condie Hot Springs IS 21E 14dd1S	Quaternary alluvium near Pleistocene basalt	-	-	Yes	Yes (?)		Stearns and others, 1938	
15 22E 1da15	Quaternary alluvium near Holocene basalt and Paleozoic quartzite	-	-	Yes	Yes	Three spring vents.	Ross, 1971	
			. <u>BOI</u>	SE COUNTY				
Bonneville Hot Springs 10N 10E 31c1S	Cretaceous granitic rocks	-	Yes	Yes	-	Eight spring vents and numerous seeps; slight sulfur odor; temperature range 68 to 85°C; gramitic rock silicified in places	Waring, 1965	6
9N 3E 25bac1S	Cretaceous granitic rocks	-	Yes	Yes	-	One vent; slight sulfur odor	Waring, 1965	7
Kirkham Hot Springs 9N 8E 32cac1S	Cretaceous granitic rocks	-	Yes	Yes	Yes	Numerous spring vents; temperature range 48 to 65 ⁰ C	Waring, 1965	
8N 5E 1bcb1S	Quaternary alluvium overlying Cretaceous granitic rocks	- ·	-	-	-	-	Anderson, 1947	
8N 5E 10bdd1S	Cretaceous granitic rocks	-	-	-	-	-	Anderson, 1947	
			BONNE	VILLE COUNTY				
1N 43E 9cbb1S	Quaternary alluvium with travertine deposits near Paleozoic limestone	Northwest trend- ing fault	÷.	Yes	Yes	Six spring vents; sulfur odor; temperature range 23 to 25 ⁰ C	Jobin and Shroeder, 1964	ò
		-	BUT	TE COUNTY				
3N 2SE 32cdd1	Pleistocene basalt	-	· _	-	-	Driller's log available	-	
3N 27E 9abbl	Pleistocene basalt and sediments		-	-	-	Driller's log available	Ross, 1971	

ł

Spring or well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active Siliceous	Active Deposition iceous Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			ঠা	CAMAS COUNTY				
Wardrop Hot Springs IN 13E 32abb1S	Quaternary alluvium near Plaistocene basait and Cretaceous granitic rocks	·	1) X	Yes	Numerous spring vents	Walton, 1962	Ŋ
Worswick Hot Springs 3N 14E 28calS	Cretéceous granitic rocks		Yes	Yes	1	Numerous spring vents; granitic rock silicified in places; possible in- tersection of faults	Umpleby, 1913	,
Elk Creek Hot Springs 1N 15E 14ada1S	Cretaceous granitic rocks near contact with Oligocene silicic volcanic rocks		ı	Yes	·	Five spring vents and numer- ous seeps; temperature range 43 to 53 ¹² 0C	Walton, 1962	
1S 12E 31cbc1	Quaternary alluvium	ş	,	ŀ	ſ	flowing well	Walton, 1962	
1S 13E 27ccb1	Quaternary alluvium	Ļ	Yes	I	I	Flowing well; driller's log available	Walton, 1962	
Barron's Hot Springs 1S 13E 34bcciS	Quaternary alluvium near Pleistocene basalt and Cretaceous granitic rocks	ſ	ı	Yes	Yes	Numerous spring vents; temperature range 62 to 71 ⁰ C	Walton, 1962	
			C	CANYON COUNTY				
2N 2W 34abc1	Pliocene and Pleistocene sediments	ι	,	ł		Sulfur odor; driller's log ávailable	Savage, 1958	
			C	CARIBOU COUNTY				
6S 41E 19baalS	Quaternary travertine	Nest trending fault (Pelican fault)	۰.	Yes	Yes	Ten spring vents; slight sulfur odor; temperature range 34 to 42°C	Mansfield, 1927	۵.
Soda Springs 95 41E 12add1S	Holocenc travertine near Pleistocene basalt	North trending thrust fault	I	Yes	Yes	Numerous spring vents; slight sulfur odor; temperature range 24 to 31ºC	Armstrong, 1969	
			3	CASSIA COUNTY				
15S 26E 23bbc1	ı	ł	، ،	Yes	(1) sal	Flowing well; slight sulfur odor	Stearns and others, 1938	10
15S 26E 23ddc1	Pleistocene sediments	ŗ	۱ -	Yes	Yes (?)	Flowing well; driller's log available	Nace and others, 1961	10
11S 25E 11ccal	Precambrian quartzite	North trending. fault	Yes	Yes	I	Flowing well; sulfur odor; driller's log available	Crosthwaite, 1957	
14S 21E 34bdc1	Pliocene silicic voicanic rocks	ı	ı	Yes	ŀ	Flowing well; sulfur odor; driller's log available	Piper, 1923	

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active D Siliceous	eposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
				OUNTY (Cont'd.				
			LASSIA O	ODMIT (CONC. I.				
Oakley Warm Spring 14S 22E 27dcb1S	Precambrian quartzite	-	-	· -	Yes (?)	Slight sulfur odor	Anderson, 1931	
155 24E 22ddb1	-	-	-	Yes	-	Flowing well	Ross, 1971	
			LLA	RK COUNTY				
Warm Springs 11N 32E 25aac1S	Quaternary alluvium near Paleozoic lime- stone	-	-	-	-	Twelve spring vents; temper- ature range 26 to 29 ⁰ C; travertine deposits near spring vents	Stearns and others, 1939	
Lidy Hot Springs 9N 33E 2bbc15	Miocene and Pliocene silicic volcanic rocks	North trending fault	-	Yes	Yes (?)	Travertine deposits near spring vents	Stearns and others, 1939	
			CUS	TER COUNTY				
8N 17E 32bca1S	Quaternary alluvium near Tertiary silicic volcanic rocks			Yes	Yes	Numerous spring vents; hydrogen sulfide odor; temperature range 40 to 54°C; secondary quartz in volcanic rocks near spring vents	Waring, 1965 -	11
14N 19E 34daal	-	-	-	-	· _	Flowing well	-	
Sunbeam Hot Springs JIN J5E 19c1S	Cretaceous granitic rocks	-	Yes	Yes	Yes	Numerous spring vents; slight hydrogen sulfide odor; temperature range 65 to 76°C	Choate, 1962	
Sullivan Hot Springs 11N 17E 27bdd1S	Contact between Oligocene silicic volcanic rocks and Paleozoic dolomite and argillite	-	-	Yes	Yes	Hydrogen sulfide odor	Ross, 1937	
Barney Hot Springs 11N 25E 23cab1S	Quaternary alluvium	-		•	Yes	-	Waring, 1965	
Stanley Hot Springs 10N 13E 3cablS	Quaternary alluvium near Cretaceous granitic rocks	Northeast trend- ing fault	· -	Yes	Yes	Six spring vents and numer- ous seeps; hydrogen sulfide odor; temperature range 31 to 41°C	Choate, 1962	
Slate Creek Hot Springs 10N 16E 30alS	Paleozoic argillite	-	-	Yes	Yes	Eight spring vents; hydrogen sulfide odor; temperature range 32 to 50°C	Ross, 1937	
			ELM	ORE COUNTY				
55 8E 34bdc1	Pliocene and Pleistocene sediments (?)	-	-	Yes	Yes	Flowing well; hydrogen sulfide odo r	Ralston and Chapman, 1968	12

(Cont'd.)
-
14
4
9
∢
⊢

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active Siliceous	Active Deposition iceous Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			ELMORE (ELMORE COUNTY (Cont'd.)	(
Neinmeyer Hot Springs SN 7E 24b1S	Cretaceous granitic rocks	ı	Yes	1	Yes (7)	Thirteen spring vents; gas present at one vent; temperature range 68 to 76°C	Maring, 1965	
Dutch Frank's Spring SN 9E 7b1S	Cretaceous granitic rocks	u I	Yes	Yes	Yes (7)	Numerous spring vents; gas present at one vent; temperature range 53 to 65°C	Maring, 1965	
Paradise Hot Springs 3N 10E 33bd1S	Cretaceous granitic rocks	ı	I	۰.	Yes	Several spring vents	Waring, 1965	
3S BE 36cdal	Pliocene and Pleistocene sediments (?)	L	·	ı	ı	Flowing well	Dion and Griffiths, 1967	
Latty Hot Springs 3S 10E 31ddb1S	Pleistocene basalt	Northwest trend- ing fault	I	I	I	t	Malde and . others, 1963	
4S 8E 36bbal	Pliocene and Pleistocene sediments	I	I	к.	t	Slight hydrogen sulfide odor; driller's log available	Ralston and Chapman, 1968	
4S 9E 8ab1	Pliocene and Pleistocene sediments and basalt	I	1 #	Yes	I	Flowing well; driller's log available	Ralston and Chapman, 1968	
5S 10E 7acd1	Pliocene and Pleistocene sediments (?)	1	I	I	I	Flowing well; slight sulfur odor	Raiston and Chapman, 1968	
5S 10E 32bdb1	Pliocene and Pleistocene sediments (?)	I	I	Yes	L	Flowing well; sulfur odor; driller's log available	Ralston and Chapman, 1968	
		-	FRAN	FRANKLIN COUNTY				
Maple Grove Hot Springs 135 41E 7acalS	Paleozoic quartzite (?)	North trend- ing fault	1	Yes	Yes	Numerous spring vents; slight sulfur odor	Dion, 1969	13
14S 39E 36adal	Quaternary alluvium (?)	I	I	ŀ	ı	Slight sulfur odor	Dion, 1969	13
Wayland Hot Springs 15S 39E 8bdc1S	Quaternary alluvium with travertine deposits	Northwest trend- fault	T	Yes	Yes	Numerous spring vents	Dion, 1969	13
15S 39E 17bcd1	Quaternary alluvium with travertine deposits	Northwest trend- ing fault	1	Yes	Yes	Flowing well near Squaw Hot Springs	Dion, 1969	13
			FREM	FREMONT COUNTY				
Ashton Warm Springs 9N 42E 23dab1S	Pleistocene basalt	•	I	1	4		Stearns and others, 1939	14

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active De Siliceous	position Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Ares No Fig. 6
	an Mana an Air An Air an Air Air an Air Air an Air		FREMONT CC	UNTY (Cont'd.)		······································	
Big Springs 14N 44E 34bbb1S	Quaternary obsidian (rhyolite)	-	-	-	-	Numerous spring vents; tem- perature range 10 ¹ ; to 12 ⁰ C	Hamilton, 1965	
Lily Pad Lake 10N 45E 35abc1S	Tertiary rhyolite ash flows	-		-	-	Assumed numerous small seeps; no inflow or out- flow channels	Hamilton, 1965	
7N 41E 35cdd1	Tertiary silicic volcanic rocks (?)	-	-	Yes	-	. .	-	
			GEM	COUNTY				
Roystone Hot Springs 7N 1E 8dda1S	Quaternary alluvium near Miocene basalt	-	-	-	-	Five spring vents	Newcomb, 1970	15
7N 1E 9cdc1S	Quaternary alluvium near Miocene basalt	` _	-	-	-	-	Newcomb, 1970	
			GOODI	NG COUNTY				
4S 13E 28ab1	-	-	-	Yes	-	Flowing well	Stearns and others, 1938	
White Arrow Hot Springs 4S 13E_30adb1S	Quaternary alluvium near Pliocene basalt	-	-	Yes	Yes	• Four spring vents	Malde and others, 1963	
58 12E 3aaal	Pliocene sediments and basalt	-		Yes	-	Flowing well; driller's log available	Malde and others, 1963	
			IDAH	O COUNTY				
Weir Creek Hot Springs 36N 11E 13b1S	Cretaceous granitic rocks	-	Yes	-	-	Six spring vents; temper- ature range 44 to 47½ ⁰ C	Waring, 1965	
Jerry Johnson Hot ' Springs 36N 13E 18a1S	Cretaceous granitic rocks	-	-	Ϋ́εs	-	Eight spring vents; tem- perature range 41 to 48 ⁰ C	Waring, 1965	
Red River Hot Springs 28N 10E 3d1S	Cretaceous granitic rocks	-	Yes	-	-	Nine spring vents; temper- ature range 37 to 55°C	[.] Waring, 1965	
Riggins Hot Springs 24N 2E 14dac15	Quaternary alluvium, probably less than 5 feet thick, overlying Paleozoic and Mesozoic gneiss	North trend- ing normal fault	-	Yes	Yes	Four spring vents and numerous seeps	Hamilton, 1969	
Burgdorf Hot Springs 22N 4E 1bdc1S	Quaternary alluvium near Cretaceous granitic rocks	-	-	Yes	Yes	Two spring vents	Waring, 1965	

.

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active De Siliceous	position Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
· · ·			JEFFER	SON COUNTY				
Heise Hot Springs 4N 40E 25dcb1S	Tertiary silicic volcanic • rocks	Northwest'trend- ing fault	-	Yes	-	Sulfur odor; extensive travertine deposits	Stearns and others, 1938	8
			LEMH	I COUNTY				
Big Creek Hot Springs 23N 18E 22c1S	Cretaceous granitic rocks, altered, strong linea- tions (?)	-	Yes 1	Yes	Yes (?)	Fifteen spring vents; slight sulfur odor; tem- perature range 82 to 93 ⁰ C; travertine deposits below present spring vents	Waring, 1965	16
Salmon Hot Springs 20N 22E 3abd1S	Contact between Oligocene basalt and older tuffaceous rocks	Northeast trend- ing fault	-	Yes	-	Three spring vents	Forrester, 1956	17
Sharkey Hot Springs 20N 24E 34ccc1S	Oligocene silicic volcanic rocks	Northwest trend- ing fault	-	Yes	-	Silica deposition along fault trace above spring vent	Anderson, 1957	17
16N 21E 18adc1S	Quaternary alluvium, probably less than 5 feet thick, near Precambrian quartzite	-	-	Yes	-	· .	Ross, 1963	18
		-	MADIS	ON COUNTY				
Green Canyon Hot Springs SN 43E óbcalS	Tertíary silicic volcanic rocks		-	Yes	-	Travertine deposits below spring vents	Waring, 1965	
			ONEI	DA COUNTY				
14S 36E 27cda1S	Quaternary alluvium with travertine deposits	-	-	Yes	Yes	One spring vent	Burnham and .others, 1969	19
Pleasantview Warm Springs 155 35E 3aablS	Quaternary aliuvium	-	-	Yes	-	Numerous spring vents	Burnham and others, 1969	19
Woodruff Hot Springs 165 36E 10bbclS	Paleozoic limestone	Northwest trend- ing fault (?)	-	Yes	-	Nine spring vents; temperature range 27 to 32°C	Burnham and others, 1969	19
125 34E 36bcb18	Paleozoic limestone	-	-	-		Numerous spring vents	Piper, 1924	
•			OWYHI	E COUNTY				
45 2E 32bcc1	Pliocone sediments and basalt, and Tertiary silicic volcanic rocks (?)	-	-	-	Yes	Flowing well; sulfur - odor	Ralston and Chapman, 1969	20
SS SE 26bcbl	Pliocene sediments and basalt, and Tertiary silicic volcanic rocks (?)	-	'Yes (?)	Yes	Yes	Flowing well	Ralston and Chapman, 1969	20

ភ

.....

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active I Siliceous	Deposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No. Fig. 6
			OWYHEE C	COUNTY (Cont'd.)	· ·		
6S 3E 2ccc1	Pliocene sediments and basalt	-	Yes	Yes	-	Flowing well; sulfur odor; driller's log available	Raiston and Chapman, 1969	20
65 5E 10dddl	Pliocone sediments	-	-	Yes	-	Flowing well; driller's log available	Littleton and Crosthwaite, 1957	20
65 5E 29dccl	Pliocene sediments	-	-	-		Flowing well; slight sulfur odor; driller's log avail- able	Litteton and Crosthwaite, 1957	20
6S 6E 12ccd1	Pliocene sediments		-	-	-	Driller's log available	Ralston and Chapman, 1969	20
7S 5E 7abb1	Pliocene silicic volcanic rocks	-	-	Yes	-	Flowing well; driller's log available	Ralston and Chapman, 1969	20
Indian Bathtub Hot Springs 8S 6E 3bdd1S	Contact between Pliocene basalt and overlying tuffaceous rocks	-	-	Yes	-	Numerous seeps along con- tact; temperature range 37½ to 39 ⁰ C	Littleton and Crosthwaite, 1957	20
Murphy Hot Springs 16S 9E 24bb1S	Pliocene silicic volcanic rocks	Fault	-	-	-	Two spring vents	Waring, 1965	21
1N 4W 12dbb1	Pliocene sediments	-	-	-	Yes	Flowing well; hydrogen sulfide odor; driller's log available	Ralston and Chapman, 1969	
1S 2W 7ccb1	Pliocene sediments	-	-	Yes	-	Flowing well; slight sulfur odor	Ralston and Chapman, 1969	
4S 1E 34badI	Pliocene basalt and Terti- ary silicic volcanic rocks	-	-	Yes	-	Flowing weil; sulfur odor; driller's log available	Ralston and Chapman, 1969	
55 1E 24adl	Tertiary silicic volcanic rocks	-	-	Yes	-	Flowing well; slight sulfur odor; driller's log avail- able	Ralston and Chapman, 1969	
55 2E 1bbc1	Pliocene sediments and basalt (?)	-	-	Yes	Yes	Flowing well; sulfur odor	Ralston and Chapman, 1969	
7S 6E 9badi	Tertiary silicic volcanic rocks	-	-	Yes	-	Flowing well; sulfur odor	Ralston and Chapman, 1969	
Indian Hot Springs 12S 7E 33clS	Tertiary silícic volcanic rocks	Northwest trend- ing fault	Yes	-	Yes	Numerous spring vents; sulfur odor	Waring, 1965	
			<u>P0</u>	WER COUNTY				
Indian Springs 85 31E 18dab15	Paleozoic limestone	Northwest trend- ing fault	-	Yes	-	Seven spring vents	Stearns and others, 1938	
105 30E 13cdc15	Paleozoic limestone	-	-	-	-	Numerous spring vents; tem- perature range 34 to 38°C	Ross, 1971	

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active D Siliceous	eposition Carbonates	Gas	Remarks .	Principal Refer- ence for Geologic Setting	Area No Fig. 6
			TWIN	FALLS COUNTY				
Miracle Hot Springs 85 14E 31acb15	Quaternary alluvium near Pliocene basalt and older silicic volcanic rocks	-	-	Yes	Yes	-	Malde and others, 1972	
8S 14E 33cbal	Pliocene and Pleistocene sediments and basalt (?)	-	-	Yes	-	Flowing well	Stearns and others, 1938	
115 19E 33ddd1	Pliocene silicic volcanic rocks	-	-	-	-	Driller's log available	Crosthwaite, 1969 _a	
Nat-Poo-Paw Warms Springs 12S 17E 31bablS	Quaternary alluvium near Tertiary silicic volcanic rocks	- .	-	Yes	-	-	Crosthwaite, 1969 _b	
12S 18E 1bba1	Pliocene silicic volcanic rocks	- ,	-	-	-	Flowing well	Crosthwaite, 1969 _a	
Magic Hot Springs 165 17E 31aclS	Pliocene silicic volcanic rocks	-	-	Yes	Yes	Four spring vents; slight sulfur odor	Ross, 1971	
			VAL	LEY COUNTY				
Vulcan Hot Springs 14N 6E 11bda15	Cretaceous granitic rocks		Yes	-	Yes	Thirteen spring vents; hydrogen sulfide odor; temperature range 84 to 87°C; debris around some vents appears to be silicified	Waring, 1965	22
Hot Creek Springs 155 3E 13bbc15	Quaternary alluvium near Miocene basalt and Cretaceous granitic rocks	-	- .	Yes	Yes	Hydrogen sulfide odor	Newcomb, 1970	
Wolly's Hot Springs 15N 6E 14acc15	Cretaceous granitic rocks	-	• -	Yes	-	Seven spring vents; tem- perature range 58 to 59°C	Waring, 1965	
14N 3E 36abd1	Quaternary alluvium near Cretaceous granitic rocks	Northwest trend- ing fault	-	Yes	-	-	Newcomb, 1970	
Cabarton Hot Springs 13N 4E 31cab1S	Cretaceous granitic rocks	Northwest trend- ing fault	-	Yes	Yes	Numerous springs vents; temperature range 56 to 70 ¹ 2 ⁰ C	Newcomb, 1970	
Boiling Springs 12N 5E 22bbc1S	Cretaceous granitic rocks	Northeast trend- ing fault	Yes	Yes	Yes	Numerous spring vents; tem- perature range 80 to 86 ⁰ C	Waring, 1965	
			WASH11	GTON COUNTY				
14N 3W 3ddc1	Miocene basalt	-	-	-	-	Flowing well; driller's log available	Newcomb, 1970	1
13N 3W 8ccc1	Miocene busalt	-	-	Yes	-	Flowing well; driller's log available	Walker and Sisco, 1964	1

\$

Spring or Well Identification Number	Age and Rock Type of Aquifer(s) or Spring Vent(s)	Structure	Active I Siliceous	Deposition Carbonates	Gas	Remarks	Principal Refer- ence for Geologic Setting	Area No Fig. 6
· ·	······································	* · · · · · · · · · · · · · · · · · · ·	WASHINGTON	COUNTY (Cont'	d.)		· · ·····	
11N 6W 10ccal	Miocene basalt	- ·	-	-	Yes	Flowing well; hydrogen sulfide odor; driller's log available	Newcomb, 1970	23
11N 3W 7bdb1S	Quaternary alluvium, probably less than 5 feet thick, overlying Miocene basalt	Northwest trend- ing fault	-	Yes	-	Two spring vents and numerous seeps; temper- ature range 54 to 87 ⁰ C	Newcomb, 1970	23
14N 3W 19cbd15	Quaternary alluvium near Miocene basalt	-	-	Yes	-	-	Newcomb, 1970	
14N 2W 6bbalS	Quaternary alluvium near Miocene basalt		-	Yes	Yes	Numerous spring vents; sulfur odor; temperature range 63 to 70°C	Newcomb, 1970	
13N 4W 13bac1	Miocene basalt		-	Yes	-	Flowing well; driller's log available	Walker and Sisco, 1964	

Although nearly one-fifth of the sampled springs issue from known faults, a few of which are shown in figure 4, a greater number are thought to be associated with faulting. Also, some of the wells sampled are known to intersect fault zones. Determination of the geologic structure at many of the springs and wells was not possible from the brief field examination, or from existing geologic maps.

Active deposition of minerals from water discharged by thermal springs and wells occurs throughout the State. Minerals deposited include gypsum, halite, and various carbonates, and silicates. Carbonate deposits were identified using diluted hydrochloric acid while siliceous deposits were identified by hardness and visual examination.

GEOCHEMICAL THERMOMETERS

Summary of Geochemical Thermometers Available

In recent years the concentrations of certain chemical constituents dissolved in thermal waters have been used to estimate water temperatures in the thermal aquifer. However, these geochemical thermometers are useful only if the geothermal system is of the more common hot-water type rather than of the vapor-dominated or steam type, none of which is known to occur in Idaho.

Geochemical thermometers that are useful in describing and evaluating geothermal systems (excluding the sodium-potassium-calcium thermometer) have been summarized by White (1970). Part of his summary is as follows:

"Chemical indicators of subsurface temperatures in hot-water systems.

Indicator	Comments
1) - SiO2 content	Best of indicators; assumes quartz equilibrium at high temperature, with no dilution or precipitation after cooling.
2) - Na/K	Generally significant for ratios between 20/1 to 8/1 and for some systems outside these limits; see text.
3) - Ca and HCO ₃ contents	Qualitatively useful for near-neutral waters; solubility of CaCO ₃ inversely related to subsurface temperatures; see text and ELLIS (1970).
4) - Mg; Mg/Ca	Low values indicate high subsurface tem- perature, and vice versa.

57 -	,
6) - Na/Ca	High ratios may indicate high temperatures (MAHON, 1970) but not for high-Ca brines; less direct than 3?
7) - CI/HCO ₃ + CO ₃	Highest ratios in related waters indicate highest subsurface temperatures (FOURNIER, TRUESDELL 1970) and vice versa.
8) - CI/F	High ratios may indicate high temperature (MAHON, 1970) but Ca content (as controlled by pH and CO ₃ ²⁻ contents) prevents quantitative application.
9) - ***	* * *
10) - Sinter deposits	Reliable indicator of subsurface temperatures (now or formerly)>180°C.
11) - Travertine deposits	Strong indicator of low subsurface tem- peratures unless bicarbonate waters have contacted limestone after cooling."

C۱

The general principles and assumptions on which the use of geochemical thermometers (White, 1970) is based are: (1) the chemical reactions controlling the amount of a chemical constituent taken into solution by hot water are temperature dependent; (2) an adequate supply of these chemical constituents is present in the aquifer; (3) chemical equilibrium has been established between the hot water and the specific aquifer minerals which supply the chemical constituents; (4) hot water from the aquifer flows rapidly to the surface; and (5) the chemical composition of the hot water does not change as it ascends from the aquifer to the surface.

The fact that these principles and assumptions more often than not can not readily be verified in a field situation requires that the concept of geochemical thermometers be applied with caution and in full recognition of the uncertainties involved. With that understanding, geochemical thermometers provide a useful point of departure for reconnaissance screening and provisional evaluation of thermal areas.

Silica Geochemical Thermometer

The silica method of estimating aquifer temperatures (Fournier and Rowe, 1966) appears to be the most accurate and useful proposed to date. Experimental evidence has established that the solubility of silica in water is most commonly a function of temperature and the silica species being dissolved.

Practical use of the silica geochemical thermometer assumes that there is equilibration of dissolved silica with quartz minerals in high-temperature aquifers and that the equilibrium composition is largely preserved in the silica-bearing thermal waters during their ascent to the surface. White (1970) stated that while equilibrium is generally attained at high aquifer temperatures, silica may precipitate rapidly as waters cool to about 180°C and, therefore, the silica method commonly fails to predict actual aquifer temperatures much above 180°C. The rate of precipitation of silica decreases rapidly as the temperature cools below 180°C.

White (1970) also cautioned against using the silica geochemical thermometer in acid waters which have a low chloride concentration, because at temperatures near or below 100°C these waters are actively decomposing silicate minerals and thereby releasing highly soluble amorphous SiO₂. In this case, the basic assumption of equilibration with quartz would be rendered invalid.

Dilution effects caused by mixing of thermal with non-thermal waters can be a cause of erroneous temperature estimates. Cool ground waters containing low silica concentrations that mix with thermal waters rich in silica would effectively lower the silica concentration of the thermal water and a lower aquifer temperature would be indicated. Generally, as with the other geochemical thermometers described below, the possible effect of both dilution and enrichment of thermal waters on the temperature calculated using any geochemical thermometer must be considered.

The Sodium-Potassium and Sodium-Potassium-Calcium

Geochemical Thermometers

The sodium-potassium (Na/K) geochemical thermometer plots the log of the atomic ratios of Na/K against the reciprocal of the absolute temperature. White (1970) stated that ratios are of general significance only in the ratio range between 8/1 and 20/1. He also reported that Na/K temperatures are not significant for most acid waters, although a few acid-sulfate-chloride waters yield reasonable temperatures. Fournier and Truesdell (1973) point out that Ca enters into silicate reactions in competition with Na and K and the amount of Ca in solution is greatly dependent upon carbonate equilibria. Calcium concentration from carbonates decreases as temperature increases, and may increase or decrease as the partial pressure of carbon dioxide increases, depending on pH considerations. Therefore, the Na/K ratio should not be used for purposes of geochemical thermometry when partial pressures of carbon dioxide are large, as higher carbon dioxide partial pressures may permit more Ca to remain in solution and consequently a smaller Na/K ratio. Fournier and Truesdell (1973) suggest that this ratio should not be used when the $\sqrt{M_{Ca}}/M_{Na}$ (square root of molar concentration of calcium/molar concentration of sodium) is greater than 1.

The sodium-potassium-calcium (Na-K-Ca) geochemical thermometer devised by Fournier and Truesdell (1973) is a method of estimating aquifer temperatures based on the molar concentrations of Na, K, and Ca in natural thermal waters. Accumulated evidence suggests that thermal, calcium-rich waters do not give reasonable temperature estimates using Na/K atomic ratios alone, and that the Ca concentration must be given consideration. Fournier and Truesdell (1973) showed that molar concentrations of Na-K-Ca for most geothermal waters cluster near a straight line when plotted as the function log K* = log (Na/K) + β log (\sqrt{Ca}/Na) versus the reciprocal of the absolute temperature, where β is either 1/3 or 4/3, depending upon whether the waters equilibrated above or below about 100°C and where K* is an equilibrium constant. For most waters they tested, the Na-K-Ca method gave better results than the Na/K method. It is generally believed that the Na-K-Ca geochemical thermometer will give better results for calcium-rich environments provided calcium carbonate has not been deposited after the water has left the aquifer. Where calcium carbonate has been deposited, the Na-K-Ca geochemical thermometer may give anomalously high aquifer temperatures. Fournier and Truesdell (1973) caution against using the Na-K-Ca geochemical thermometer in acid waters that are low in chloride.

ANALYSES OF DATA

The chemical analyses of thermal spring and well waters sampled for this investigation are given in table 2. The aquifer temperatures estimated by the silica method were obtained by applying the silica concentration in table 2 to the plot of silica concentration versus temperature curves from Fournier and Truesdell (1970, fig. 1, curve A, p. 530). These calculated values of temperature are given in table 3.

Likewise, values of Na, K, and Ca concentrations from table 2 were used to calculate aquifer temperatures and these values are also given in table 3. Values of the various atomic ratios calculated for each sampled spring or well are given in the remainder of table 3. The estimated aquifer temperatures that are given in table 3 are also shown in figure 5.

Most thermal waters in Idaho are low in dissolved solids with concentrations in sampled waters ranging from 14 to 13,700 mg/l. Thermal waters in the southeastern part of Idaho are higher in dissolved solids than thermal waters in other parts of the State. Waters which are high in dissolved solids generally give high Na-K-Ca temperatures relative to silica temperatures (table 3) whereas waters low in dissolved solids give high silica temperatures relative to low Na-K-Ca temperatures.

Measured temperatures of sampled waters ranged from 12°C in northern Fremont County to 93.0°C in Cassia and Lemhi Counties and averaged 50°C for all sampled springs and wells. Examination of the temperature data collected does not reveal any correlation of temperature with location, rock type, or structure.

SUMMARY OF FINDINGS

- 1. A total of 124 thermal springs and wells was visited and described in Idaho in 1972. At each site, water samples were collected and analyzed, and the geology briefly examined.
- 2. Of the 124 springs and wells visited, 16 were in the Basin and Range

	1	, ον ειτά Γις, ύ				1				2	ы			4	u,							Q
		muibo2 noistrosdA nishA		7.4 7.1 13		3.8	15	16	12	3,9	3,6	۲.		2.9	19	1 å	15	. 13	17	1.5		13
		Percent Polium		68 68 56		88	92	94	÷6	52	43	19		32	68	6 2	36	96	40	33		54
		Alkelinit) Alkelinit)		94 122 122		55 72	54	81	56	392	445	176		515	628	83	74	72	295	241		83
		Hq (bteif)		7.5 7.1		7.6	8.5	80 90	8.6	7.7	6.6	6.7		ō.ō	6.4	8.0	8.2	8.7	7.3	7.3		B.1
		Specific Specific		285 311 386		2,030	940	668	502	1,170	1,580	413		2,040	1,500	421	460	337	653	261		377
		иол- 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		000		940	0	0	٥	0	Ģ	Q		540	0	۵	Ö	¢	•	0		0
		88 2005 1005 1007 100		110		66	30	14	12	280	430	0/T		150	60	٢	¢	s	061	200		Ŷ
	(by period Solids for per mc-fi for per mc-fi		0.26 .31 .41		1.96	16.	.67	.50	96.	1.31	.36		2.12	1.37	. 44	,41	.37	-54	s.		.42
		bevioseiŭ sbiioS (beimiuoimD)		193 225 299		1,440	666	490	369	706	962	262		1,560	1,010	324	303	273	396	371		306
		(NO2) Niftafe	1	0.05 .06 .08		.07	.07	50.	,05	.02	.38	·5.		95 95	.06	.06	90.	.07	50.	20.		,02
		Fluoride (F)		101 2		80 50	2,3	2.8	ō.	3.2	1.	4		1.7	13	16	15	71	1.7	2.3		11
er liter)	A.	([]) ζμιοτταε		4.44.02 07.44.16		150	32	26	14	87	190	20	•	6/	83	п	[]	01	14	ê.5		7.2
milligrams per liter)	gical Survey	(Phosphate (Phosphate		0,03 .02 .01		50	.03	.03	£0.	Èlo	6 4		≿ı	5	9	70,	10.	. 02	10	.03		20.
, <u>д</u> (S. GBOROGICAL	əfallu2 (402)	COUNTY	222	COUNTY	660	330	190	150	BANNOCK COUNTY	011	18 0	E COURTY	B00 .	60	72	6 8	15	28	63	COUNTY	52
stituente	۳, e	efenodraCe (500)	AdA		ADAHS	. 0	a	6	Q	BANNOC	0		5	BLAINE	0	25	30	. 0	0	o'	BOISE	23
(Chemical constituents	Anatyset by:	Bicarbonate (HCO ₃)	Ŧ	112 145 141		71	47	8)	60	478	542	214	31	256	766	51	29	88	360	294		58
Cherr	•	Potassium (X)		3.2 1.1		17	3.6	5.E	1.6	21	65	9.1		61	19	2.1	1.7	1.5	17	8.9		2.9
		mutbo2 (#V)		4 2 2 2 2 2 2		420		140	86	150	170	20		180	330	84	81	68	63	48		67
		(Magnesium Magnesium		0.3		r;	Ľ	. 2.	0	25	32	35		, 2	1.3	٥	ŗ	Ci	11	12		Γ.
		neutole⊃ (a⊃)		শ শ । ম শ		39	12	5.3	4.5	02	20	43		210	22	6,9	2.2	2	56	09		2.2
		esili2 (i2)		33 46 78		110	64	73	56	20	32 32	29		35 2	100	ŝ	60	85	28	26		001
		этилатодаоТ (Э ⁰)		40.0 47.0 75.0		65.0	65.0	43.0	56.0	40.5	44,5	43.0		47.5	70.5	70.5	47.U	0.85 _d	52.0	44.0		85.0
		(gim) Discharge		22 -		30	I	40	130	15		a490			15	a1,000	001	20	346	a20		363
		Sample Collection Date		5-31-72 5-31-72 5-31-72		6-29-72	6-29-72	6-29-72	6-27-72	7-27-72	8-15-72	5-17-72		5- 9-72	21-12-9	7-11-72	7-11-72	7-11-72	8-8-72	8- 8-72		8-18-72
		Reported Well Depth Below Land Surface (feet)		1,195 400						582					260							
		Spring or Mell Lentification Number		SN IE 35acal AN 2E 29acdi 3N 2E 12cddi		White Licks Not ' Springs Jón 2E 33bccJS	Zim's kesort Hot Springs 20N 1E 26ddb15	Krigbaum Hot Springs 19N 2E 22ccalS	Starkey Hot Springs 18N 1W 34dbb1S	55 34E 26dab1	Lava Hot Springs 95 38E 21dda15	Downata Hot Springs 125 37E 12cdclS	Bear Lake Not Springs	15S 44E 13ccafS	1S 17E 23aab1	Guyer Hot Springs. 4N 171: ISaaclS	Clarendon Hut Springs 3N 17E 27dcb1S	Hailey Hut Springs 2N 18E 18dbb1S	Condie Hot Springs 1S 21E 14dd1S	IS 22E IdalS		Bonneville Hot Springs 10N 10E 31c1S

CHEMICAL ANALYSES OF THERMAL WATERS FROM SELECTED SPRINGS AND WELLS IN IDAHO TABLE 2

-	t≯о Атея Ио. Fıg. €		7			a				ι.		ı				л ,			10				
	muibo2 noifqnozdA Rifio		Ľ	13	14	12		0,1 9,9		13	14	17	11	14	51	aci,	7		1228	15	2.7		μ,
	jne⊃te¶ Sodium		94	95	95 96	59		34 20		76	96	96	97 95	54	16	J.	H		85 90 65	95	53		ch.
	as CaCO ₃ Alkalinity		131	73	73 83	984		264		103	89	52	69 177	185	229	2,050	1,830		45 30 103 118	84	139		171
	(bt∍iî) (bt∍iî)		8.1	7.8	89.60 89.60	6.3		6.3 7.2		8.0	7.3	8,2	9.2 7.4	7.3	7.5	6, B	6.3		7.7 7.7 8.0	9.6	7.4		7.0
	Specific Conductance		009	322	317 336	7,950		898 648		252	328	14	150	471	589	4,590	066'2		3,050 6,090 574 282	421	606		457
	CaCO3 2	1	٠	0	90	510		19		۰	G	•	••	0	0	670	011,		88 2 ° °	a	٥		42
	85 CaCO3 #		Ξ	ŝ	s e	1,500		260		प	ŝ	w	N €3	10	Ø1	2,700	3,000		130 330 23 39	1	130		210
	Dissolved Solids (fors per ac-ft)		0,63	.33	29	6.32	i	19 13		62.	.38	.41	16	.46	.52	4.8	4.24		2.34 4.57 51	4.	ŝ		.37
	Dissolved Solids (Calculated)	•	464	245	216 237.	4 ,650		599 398		215	277	302	116 308	337	384	3,530	3,120		1,720 3,360 372 210	295	365		274
	Nitrate (50N)		0.04	90.	25	.05		-12		.07	.07	90.	0.03	.08	.13	.04	01		52 57 0	.04	.56		.12
	Fluoride (F)		13	15	3.1 14	1.7	1	3.2		4.]	15	61	8. 11	14	4.1	1.9	ъ.		5.7 14 1.3	59	2.9		1
	(כז) בעיזסגיקני		34	6	5.1 5.6	006'I		នន		5.1	ŝ	25	2.1 12	15	ï	40	4.9		006 25 7	53	80		5.3
	Phosphate Phosphate	(Cont'd.)	0.02	.02	10	COUNTY .04 I		0,07	21	.03	.02	.02	5	.04	a i≓	20	.07	۲Ľ	0 .0.0 .0.0	.03	.03	21	.02
	(204) Sulface		79	45	547 1975		E COUNTY	170 56	S COUNTY	12	35	45	5.5 7.9	13	N COUNTY 59	DU COUNTY 950	800	A COUNTY	57 59 15	22	33	K COLNTY	62
	сатроляте (503)	COUNTY	0	ដ	30 1	BONNEVILLE 0 391	BUTTE	0 0	CAMAS	37	58	15	26 10	0	CANYON	CARIBOU 0 9	0	CASSIA	0 0 0 0	52	0	CLARK	0
	Βίςατροπατε (ΗCO3)	B015E	160	46	85 40	1,200		322		15	51	82	31 216	226	279	2,500	2,290		55 36 125	43	169		209
	mužezejo9 (X)		4,8	1.3	6. 1.1	120	1	21		, M	1.9	1.4	1.3	2.5	. 80	240	23		22 35 9.6	2.2	3.1		2.9
	(BN) (BN)		130	66	66 88	011,1	:	21 22		54	69	87	32 92	66	011	94	12		1110 1110 110	87.	70		9.9
	muisengaM (gK)		۰	Ľ	. 9	96		24		0	a	0	۰.			260	170		4.4.n/m	0	9.3		19
	Calictur≂ (Ca)		4.5	5 6	2,4 1,9	440	į	74 64		1.4	1,8	2.3	3.2	3.6	3.5	660	640		53 1130 34	2.7	37		3
	451112 (12)		120	69	48 59	1		33 55		73	96	63	36 76	77	50 13	24	29 6		90 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70	44		17
	Tempersture (⊃0)		80,0	65.0	40.0	25.0		41.0 b35.0		b6.0	81.0	53.5	31.0 35.0	70.0	51.0	42.0	31.0		93.0 b90.0 60.0 43.0	47.0	38.0		0.92
)іісійна (қрм)		, 20	8,250	82 70	a70		12		193	466	31s	31 A	33	a700	a1,300	1		58 60 2,090 850	a10	100		1,920
	Sample Collection Sate		8- 4-72	7-14-72	6- 8-72 8-18-72	8-10-72		8- 9-72 8- 9-72		6-20-72	7-10-72	6-21-72	6-20-72 6-20-72	6-20-72	6- 9-72		8-15-72		5-18-72 5-18-72 7-26-72 7-26-72	10-26-72	7-25-72		8-28-72
	Surface (feet)				-							5		-						Ä			
	heported Meported barl Uepth barl							360					400 190	1/1	316				414 540 447		500		
	Spring or Well Identification Number		9N 3E 25bac1S	Kirkham Hot Springs 9N 8E 32caciS	BN 5E 1bcb1S BN 5E 10bdd1S	IN 43E 9cbbls		JN 25E 32cdd1 JN 27E 9æbbl		Wardrop Hot Springs IN 13E 32abb1S	Worswick Hot Springs 3N 14E 28calS	Elk Creek Hot Springs IN ISE 14adalS	15 12E 31cbcl 15 13E 27ccbl	Barron's Not Springs 15 13E 34bcc15	2N 2W 34abcl	65 41E 19baalS	Soda Springs 95 41E 12add15		155 266 236bc1 155 266 23ddc1 115 256 11ccal 145 216 34bdc1	Oakley Warm Spring 14S 22E 27dcb1S	15S 24E 22ddb1		Warm Springs 11% 32E 25aac15

. 24

	.ог лота Нід. 6				Ц								12								13	13	13
	muibo2 Absorption Afjex		0.7		5.1	1.3	61	5, 7	5	11	8.0			16	6.6	Ξ	20	2	8828		12	16	5
	Percent Percent Muibo2		16		12	30	96	99	10	55	10		1 6	96	94	96	86	86	96.99 96.99		92	ŝ.7	1
	Alkalinity as CaCO _J		347		192	185	86	454	148	11	06		654	68	81	94 1	144	117	364 135 121 235		403	430	573
	(bisil) (bisil)		6.3		6.7	7.3	8.5	7.0	7.8	8,8	8,0		7.7	3.8 5	8.6	9.2	8.5	8.4	7.9 2.5 7.9		7.3	7.3	7,0
	Specific Specific		691		651	625	413	1, 070	364	293	437		1,340	295	268	232	382	243	703 387 367 590		3,160	1,890	16,400
ess	Non- erbonate		140		o	×	٥	0	26	٥	a		0	0	0	0	0	0	0000		Ģ	0	0
Hardness	635 C8C03	•	280		72	220	प	170	0/1.	e,	12		23	M	و	ম	শ	٦	6 7 9 9 9		320	92	470
(13+3)	Discloved sbilds req roat		0.64		,58	,54	44	.87	23	.29	49		1.17	.36	ň	.27	4.	.34	67 38 32		2,58	1.51	13.4
	Diselved spiles (Calculated)		471		475	396	320	640	215	211	362		859	267	513	200	297	248	491 285 265 365		006'1	1,110	9,830
	Nitrate (NO ₃)		0,02		9 0.	ľ.	90,	90	.25	.05	£0°		.04	.02	.02	70,	·06	.07	96. 96.		.07	1.5	3
	(i) Etrortice		ę		8.4	1.1	15	1.8	ų	1	8.7		2,2	10	10	5.1	17	7	16 20 15		1.1	10	i.
	(C1) Chloride		90	,	26	•1	12	57 .	4	ŝ	2		59	2.9	2.4	2.6	4.5	2.7	10 3.2 6.1 29		630	320	5,400
	(4) 64) brasphate	(-p, 1	0,03		.02	10.	.02	.02	.03	10	.02		8	.03	50.	.03	.01	.04	03 03 03	~ 1	.04	50,	.06 5,
	(۵۵٤) (۵۵٤) (۱۳۶	LI (Cont 'd	190 (YINUCO	2	150	5	56	35	15	011	CUNIC	¢.5	5	30	17	14	10	5.4 12 12 2.5	YTNU00	260	15	50
	Carbonate (CO3)	K COUNTY	0	CUSTER	0	0	0	•	0	58	0	ELMORE	0	ts	40	35	50	33	19 19 19 19 10	FRANKLIN		3	9
	вісетролаге (НСО3)	CLARK	179		234	226	119	554	181	Ř	011		197	s.	71	45	74	06	447 81 115 270	рц I	491	524	
	potassium Potassium		15		13	7.6	2.4	15	1.5	s.	4,5		11	1.8	1.2	ļ	œ.	1.7	⊳. 33 05 05 ⊳. 33 05 05		110	24	660
	LeN) mutho2		27		100	45	58	170	5	60	. £8	•	320	67	57	50	87	5	160 82 79 130		490	360	5,100
	Magnesium (3)g)		16		5'5	21	0	п	20	۲,	1.		-	ς.	2	г.	э	0	0 5 2 7		24	1.7	اد ع
	Calctum (sJ)		87		51	55	1.5	6	37	2,2	8.1		1.6	1.1	5.2	1.5	1.5	4,	2 ° 6 ° -		68	25	0
	silice (12) (12)		34		43	23	16	38	18	\$5	86		58	101	72	69	86	100	85 45 45		SS	08	8 0 160
	Temperature (OC)		6.02d		51.0	40.0	76.0	41.0	b28.5	41.0	50.0		34.0	76.0	65,0	56.0	68.0	b55.0	38.0 62.0 32.0 37.5		76.0	44.5	77.0
	(ឧកនារ ប្រវន្តសំខន្តខ្		₆ 250 b		a25	20	444	70	170 b	0ft	185		5	349	8300	4	a700	<u>م</u> ،	80 I I 147 S		350	•	006 ⁸
	Date		-72		-72	-72	-72	- 72	-72	- 72	-72		5-72	-72	-72	-72	- 72	-72	2222		-72	-72	9-72
	suple Collection		8-25-72		7-12-72	7-32-72	7-12-72	7-12-72	7-13-72	7-12-72	7-11-72		7- 5	8-17-72	8-17-72	8-29-72	8-14-72	7- 5-72	6- 6-72 8-29-72 6-19-72 6-22-72		5-10-72	5-11-72	- <u>-</u> -2
	Reported Below Land Below Land Surface (feet)					3,000							1,320				600		1,900 1,003 1,300			40	
	Spring or Well Identification Number		Lidy Hot Springs 9N 33E 2bbciS		8N 17E 32bcalS	14N 19E 34daal	Sunbeam Hot Springs 11N 15E 19c15	Sullivan Hot Springs 11N 17E 27bdd1S	Barney Hot Springs 11N 25£ 23cab1S	Stanley Hot Springs 10M 13E 3cablS	Slate Creek Hot Springs 10N 16E 30alS		5S 8K 34bdc1	Neinmeyer Hot Springs 5N 7E 24b1S	Dutch Frank's Spring SN 9E 7b1S	Paradise Hot Springs 3N 10E 33bd1S	35 BE 36cdal	Latty Hot Springs 35 10E 31ddb1S	45 8E 36bbal 45 9E 8abl 55 10E 7acd1 55 10E 32bdb1		Maple Grove Hot Springs 13S 41E 7acalS	145 39£ 36adal	Wayland Hot Springs 155 396 85dc15

(Cont'd.)	
TABLE 2	

Reported Well Depth Below Land Surface Surface Sample Sample Sample Sample Surface Sample Sam	Discharge (gpm) (gpm) (c) (c) (c) (ca) (ca) (ca) (ca) (ca)	Sodium (sv) Potassium (K)	Biekrbonate (HCO ₃) (Carbonate	נף) אומפאלאפרפ (גטא) געולאנפ געולאנפ	Chloride (IC)	(7)	Nitrate (XOX) Solids Solids	Calculated) Dissolved Dissolved	(cous her mc-	carbonate Non- Banate	Specific Specific	Hq (bisit)	Alkalinity as CaCO3 Percent	muibo2 muibo2 noitprondA	Алейо Атея Мо. Рід. Ф
		-	NELIN	- 2		-	-		-	-		1	4		_
22 5-10-72 25 82.0 130 250 23	4	,300 880	733 0	54 0.08 7,700	7,700	۲ ا	1.6 13,700	18.	6 720	120	22,200	7,8	109	B4 70	1 13
			FREHOWT	NT COUNTY											
₈ 2 41.0 110		36 1.6	92 6	4.7 .05	2.9	2.2	21	205 .	28	9 5	366	7.6	75	94	8,8 14
8-28-72 92,000 12.0 47 5.6 .6		14 3	46 0	3.2 .03	2.5	3.1	59.	102 .	.14 16	0	102	6.4	38	60	1.5
8-30-72 - _b 17.5 .1 2.6 .4		.5 1	0 tr	2.2 .03	1.1	Ŀ	4 4 7	14	50	8	19	7.2	6	10	r.
350 8-9-72 - 36.0 75 28 6.3		78 8.6	240 0	33 .02	24	5.4	. 79 3	380	.52 96	0	538	7.9	197	61	3,5
			H	COUNTY											
a20 b55.0 120 8.7	a 16	0 7.7 6 5 3	187 0	110 .04	62	9 9 9			.78 24	0 (664	7.5	153	19 14	4 15 * 3
t. 7 0-1 th	n	מ	-	, Turk	2	٥			*		A70	0-1	Å at		2
160 6-21-72 - ₆ 47.0 92 9.6 1.2 100	160	5.9	0 8/2	10 - 01	8.2	12	.49	373	S1 30	0	497	7.0	207	85	9.5
5-26-72 826 65.0 97 1.2 0 91	6	1.6	141_22	15 .03	9.9	12	.11 3	316	£4.	9	407	7,5	152	98 23	~
692 6-19-72 - 43.0 62 1.6 .1 90	6	8.	83 42	19 °.03	4.0	19	.17 2	264	.39 4	0	413	8.6	138	97 19	~
	Ş	ų		COUNTY	•	r r						, ,	t		
2. 0 2.2 44 4/14 4/2 42 5.4 0 5.7 5.7 5.	4	'n	77 17	51 50	2, 2	7-7	-		31.		148	8. S	X	88 98 4	4
8-23-72 ₈ 300 48.0 49 2.7 2 37		4.	24 25	25 .04	6°T	ð.É	T 50.	155	2	0 8	186	8.7	61	[6	5.9
8-21-72 35 55.0 76 2.7 0 81	18	1.6	36 36	44 _01	4.4	23	04	286	39 6	Ċ	380	8.6	68	95 J.4	_
8-,1-72 850 42,0 72 6.2 ,1 1		160 3.4	11 25	300 .02	80	2.1	.02 51	582	.79 Jt	0	812	8,6	51	95]7	
8-1-72 162 45.0 73 2.3 0 49	5 7	æ.	19 4I	18 .02	'n	2	.05 11	. 66I	.27 6	.0	218	8.1	84	94	5 . 8
			JEFFERSON	ON COUNTY	,										
7-27-72 ₂ 50 ₆ 49.0 30 450 82 1,500	500	190	1,100 0	40 .04	2,400	3.1	.3 5,940	40 8.08	8 1,500	560	8,840	6.7	902	66 17	8
			HHA	COUNTY											
7-13-72 g75 93.0 150 5.3 ,2 ;		220 14	488 0	53 .05	. 55	15	-07 7.	57 121	.99 J.4	G	1,010	7,5	400	94 2b	16
8-24-72 145 45.0 33 23 11 11		190 28	565 0	34 .04	50	1.8	-03 6	649	.88 100	0	1,060	6.3	463	75	8.2 17

TABLE 2 (Contid.)

									 				 			(I	(13-2)	Hardness	e55				<u> </u>		1
Spring ur Well Idantification Number	Keported Below Land Below Land Gett Depth Keported	Sample Collection Date	(gpm) Discherge	Темретагите (ос)	silica (12)	autols) (٤)	៣០៤៩១៣១៨៧ (១៩)	(aN) (aN)	Potassium (K)	Bicarbonate (HCO3)	Cerbonate (503) Sulfate	(4) atedpage (504)	(C1) Chloride	Fluoride (F)	Niersec (NO _I)	Devicenti Solida Contectated	bevlozeiŭ solide teq enci	ະອ ເພິ່ງ	-лой сятроляге	Specific Conductance	(bisit) (bisit)	Alkalinity Alkalinity	Tercent sodium Sodium	Absorption Kitsi	. о <mark>м вэт</mark> А . д гд гд
										LENHI (COUNTY ((Cont'd.							:						
Sharke/ Hot Springs 20N 24E 34ccc1S	*	8-24-72	80	b ^{52.0}	, 16	7.3	0.6	270	11	470 0	0 160	0,02	51	12	0,08	840	1.14	21	· o	1,270	7.4	386	93	26	17
16N 21€ 1Badc1S		8-24-72	8 ²⁰	46.0	37		1.4 1	160		339 0	0 66	9	26	1	.06	486	66	33	0	757	7.4	278	88	12	3.8
										₹	NO NO IN	COUNTY													
Green Canyon Hot Springs SN 43E 6bcalS		8- 9-72	r	b44.0	25	140	32	3.9	3.6	167 0	0 330	10,	1.7	1.6	.13	621	.84	480	34 Û	846	6.8	137	5		
										21	ONEIBA CO	COUNTY													
14S 36E 27cda1S		5-16-72	44	25.0	19	240	79 1,200		210	958 0	0 25	a	2,100	4	.95	4,350	5.92	920	0+1	7,590	6.5	786	69	17	19
Pleasantvi ck Marm Springs : 15S 35E 3aablS		5-16-72	, 3,810	25.0	21 3	110	33 2	280	29	331 6	0 110	٥	470	Ľ.	1.5	1,220	1,66	410	. 140	2,190	6.8	172	58	Q	19
Woodruff Hot Springs 165 36E 10bclS		5-11-72	,	27.0	29 1	130	42. - -	016	87	454 0	58	.03	1,600	ف	1,4	5,090	4.2	510	140	5,370	7.3	372	76	18	19
12S 34E 36bcb1S		5-17-72	189	24.0	33	56	61	15	4.3	226 0	0 18	a	35	ej.	.73	295	40	220	33	479	6.7	185	13	٩.	
										DW.	ONTHEE COU	COUNTY													
45 2E 32bcc] 55 3E 26bcb1 65 3E 2ccci 65 5E 10ddd 65 5E 29dcci	2,704 3,000 1,940 1,667	6- 6-72 6-12-72 6-12-72 6-14-72 6-14-72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42.0 84.5 35.0 34.0 34.0	94 92 70 100	8 5 7 8 T	14- - 00-0	50 80 80 80 80 80 80 80 80 80 80 80 80 80	89 11 10 14 1- 16 13 03 13	390 0 74 38 149 29 165 21 140 0	255 74 7	1 0 0 0 0 0 0 0 0 0	15 17 15 15	7.7 30 17 28 15	988258	479 416 366 361	55 59 6 7 9 9 9 9 9 9	5 e u # 13	00000	689 522 506 459	8.6 8.6 0.0	320 124 171 170 115	93 96 96	18 24 28 9.7	20 20 20 20 20
6S 6E 12ccd1 7S 5E 7abbi	990 1,625	6-15-72 6-14-72	Ļ 1	37.0 39,0	001 81	10 6.3	.1 .5 .1	50	14 7.2	460 0 96 1	18.18	,6 ,06	18 8.3	9'5 7	90, 31	548 230	.75 .31	27 16	00	833 278	7.3 8.1	377 80	81 81	14 5.4	20 20
Indian Bathtub Hot Springs BS 6E 3bdd15		7- 3-72	458	39.0	76	5,9	4	24	7.3	124 . 2	2 15	. 04	-31	40 60	67.	242	.33	16	. 0	287	5 19	105	28	ad S	20
Murphy Hot Springs 16S 9E 24bb1S		5-23-7 2	a70	51.0	83	ġ.	0	30	2.0	67]	1 4.	Γ. ζ.	2.3	3.6	-64	163	.22	. 2	0	137	7.1	57	54	п	21
11 4W 12dbb1 15 2W 7ccb1 45 1E 34bad1 55 1E 24ad1 55 2E 1bbc1	640 1,700 3,120 1,800	6-13-72 6- 5-72 6- 6-72 7-24-72 6- 7-72	410 169 1,060 30	85.5 45.5 75.0 49.5	49 88 88 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	2.2 1.9 1.2	00 ⁷ ,00	110 120 98 87	1, 1, 8, 9 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	214 0 187 12 108 33 108 33 105 31 60 54	20 4 4 6 6 8 7 4 6 6 8 7 6 6 8 7 6 6 6 7 6 6 6 7 6 7 6	.6 23 23 23 23 23 23 23 23 23 23 23 23 23	1328	7.9 11 12 5.8	99999	302 334 333 277 277	4,4,4,4,1) H 12,10,0 B	୩୦.୫୯୬	00000	4 5 4 5 4 5 4 5 4 5 5 4 3 9 4 3 9 4 3 9 4	2.0 9.0 9.0 9.0	176 176 144 138	37 55 55 55 55 57 55 55 55 55 55 55 55 55 55 55 55 55 5	04070	
7S bE 9badl	016	6-15-72	153	50.0	56	1.6	0	66	2.8	72 40	27	. 06	5.2	22	50.	331	.45	च	0	446	8.2	126	97	a	
Indian Hot Springs 125 7E 33clS		6- 2-72	1,730	69.8	75	1.5	0	75	.6	67 30) 24	9.	8,4	77	.06	262	.36	4	0	360	8.0	105	26	17	
										- 1	POWER COL	COUNTY													
Indian Springs 85 31E 18dablS		7-27-72	1,540	32.0	20	76	1 61	110	01	254 0	. 19	.02	220	۲.	.13	6 00	.82	270	. 09	1,100	7.5	208	46	2.9	
10S 30E 13cdc1S		7-27-72	418	36.0	22	55	33	62	14	160 0	0 23	. 02	250	ж.	.02	576	.78	370	230 1	1,110	7.6	131	26	1.4	
Miracle hot Springs										THIN	FALLS	COUN													
BS 14± 31acb15		5-24-72	a 350	54.0	93	7.7		120	1.5	63 54	53	.03	35	20	.50	999 F	. 53	Ś	0	560	0.6	142	97	53	

																	(()]-0	Hardness	ssi						
Spring or Well Identification Number	Reported Meil Depth Meil Veit Meit Veit Meit Meit Meit Meit	Sample Collection Date	agrarici (mqa)	Temperature (OC)	111108 (15)	ສບເວໂຄວີ (ຣວ)	misengaM (%g)	(18N) Muthos	muiesston (X)	Bicarbonate (HCO _I)	Carbonate (CO _J)	6101102 (502)	(Phosphate	Chloride Chloride	Fluoride (7)	N147816 (N03)	Dissolved 5011ds (Calculated	spilosi bitosi bisolved	NGD- CTCO T T	Von- carbonate	Specific Conductance	(fiseld) Hq	Alkelinity as CaCO3	Percent Sodium Teatum	ποίτατοεάλ οίτειο	,оИ в о тА 0. д іЯ
									. '	THIN FA	FALLS COL	COUNTY (Co	(Cont'd.)													
8S 14E 33cbal 11S 19E 33ddd1	210 620	5-24-72 5-25-72	60 1,930	59.0 33.0	97 63	1.1 27	0 3.9	100 17	1.5 8,6	58 118	38	26 12 0.	0.03	27 15	15 .3	0.54 1	351 209	0.45 .28	ម្ល ភូមិ ភូមិ	0.0	479 266	¢r ¢r ¢	135 97	98 28	26 .8	
Nat-Poo-Paw Warm Springs 125 17E 31babl5		7-25-72	30	36.0	19	34	14	43	11	266	0	18	to	80	6.1	.05	260	.38	140	0	469	7.6	218	37	1.6	
125 18E Ibbal	775	7-25-72	543	38.0	63	18	2	16	9	95	0	9.3 .	.26	95)	ē.	.63	176	.24	53	0	198	7.6	78	36	1	
Magic Hot Springs 165 17E 31aclS		5-23-72	385	45.5	23	30	6,8	13	4.5	162	0	IS	.00	3.8	r.	.42	180	.24	011	0	281	6.4	133	19	s.	
											VALLEY (COUNTY														
Vulcan Hot Springs 14N 6E 11bdalS		8- 2-72	a ⁵⁰⁰	87,0	120	1.8	Ŀ	z	ň	120	٩	43	.02	17	24	.05	362	-46	ŝ	0	451	8,5	86	96	18	22
Hot Creek Springs 15N 3E 13bbc1S		8- 2-72	361	b34.0	60	1.3	Γ.	60	9.	17	45	91	. 02	16	2.6	0	210	.29	ম	0	279	8. 6	88	26]4	
Molly's Hot Springs J5N 6E 14acclS		8- 2-72	a20	0.63	87	61	0	70	1.5	48	30	17	1 20.	10	17	£0.	258	Ş£.	S	0	326	7.7	58	96	14	
14N 3E 36abdl	\$0	8- 3-72	1	42.5	45	1.6	a	58	4.	62	22	17 .	.04	15	3.8	60,	194	.26	4	0	275	9,2	87	76	13	
Cabarton Hot Springs 13N 4E 31cablS	21	8- 3-72	a 70	70.5	78	1.7	٩	100	1.9	70	26	46	.02	48	11	.05	348	74.	*	0	511	7.7	101	57	21	
Boiling Springs 12N 5E 22bbclS		8- 3-72	165	85.0	\$6	1.9	ŗ	11	1.7	81	24	12	.02	12	13	.04	270	.37	ŝ	e	331	60 80	106	5	14	
										¥	JUDNIHS	WASHINGTON COUNTY	<u> 논</u> 1													
14N 3M 3ddc1 13N 3N 8ccc1 11N 6M 10cca1 11N 3M 7bdb1S 14N 3M 19cbd1S	925 963 400	6-28-72 6-28-72 6-28-72 6-30-72 6-30-72 6-27-72	- 1/3 10 58	35.5 28.0 70.0 87.0 50.0	70 84 170 170 55	2,6 8.7 27 8	0 19 19 19 19 19	73 73 160 80	6.8 23 5.1 19 1.9	157 225 92 198 81	101	15 14 150 270 110	95 13 27 10 95 13 27 10 95 13 27	3.8 55 190 15	1 2 4 5 8 9 8	10.05 10.05 10.05	266 318 612 612 1,080	.43 .43 .43 .43 .43	25 7 70 23		309 338 698 480 406		155 185 162 68	15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	12 6.4 16 7.2	08 86 86
14k 2¥ 6bbalS 13N 4W 13baci	1,350	6-28-72 6-28-72	431	70,0 28.0	72 73	17 3.5	г, г <u>.</u>	200 86	3.8	24 188	20	14	00 I4	140 3.2	9.1 .7	8.5	567 294	4.	43	 	1,000	4.0 8.5	53 188	90 95	13	
a Díscharge estimated.	nated.		ł		4																					

b Measured temperature is probably lower than at point of discharge.

TABLE 3 ESTIMATED AQUIFER TEMPERATURES AND ATOMIC RATIOS OF SELECTED CHEMICAL CONSTITUENTS

1,497

		Water	Aquifer Tu	emperatures from				Atomi	Atomic Ratios			
Spring or Well Identification Number	Discharge (gpm)	at	Geochemical (round aSilica _b Soc	Geochemical Thermometers ^o C (rounded to 5 ^o C) illica _b Sodium-Potassium-Calcium	Sodjum Potassium (Na/K)	Calcium Bicarbonate (Ca/HCO3)	<u>Magnesium</u> Calcium (Hg/Ca)	Sodium Calcium (Na/Ca)	Chloride Bicarbonate plus Carbonate (C1/HCO3 + CO3)	Chloride Fluoride (Cl/F)	V <u>Calcium</u> Sodium V(Ca/Na)	Area Number Fig. 6
					A	COUNTY						
SN IE 35acal 4N 2E 29acd1 SN 2E 12cdd1	22	40.0 47.0 75.0	85 95 125	88 85 05 05	26.0 39	0.058 .047 .022	11.0	19.9 21.3 65.4	0,075 .051 .11	0.239 .236 .208	0.154 .14 .068	
					ADAK	ADAMS COUNTY				۰,		
White Licks Hat Springs 16N 2E 33bcclS	30	65.0	145	145	42	.836	510.	18.8	3.64	9.13	. 054	-
Zim's Resort Hot Springs 20N JE 26ddb1S	1	65,0	115	82	8,68	.389	F 10,	27.6	182,	7.46	.066	
Krigbaum Hot 5prings 19N ZE 22cca15	40	43,0	120	95	L.27	r.	.062	46		4.98	.06	
Starkey Hot Springs 18N 1N 34dbb1S	130	56.0	110	70	4. 18	ŧII.	·	53,3	. 364	8.34	60.	
55 346 26dahl	5	40.5	3	185	BANNOCK 12.1	BANNOCK COUNTY	9 9 9	1 7±	515	14.6	204	n
Lava Hot Springs 95 38E 21dda15	I	44.5	80	210	7.41	. 337	439	2.47	.603	145	.234	· ••
Downsta Hot Springs 12S 57E 12cdc1S	064 ⁰	43.0	80	60	3.74	.306	,575	. 811	161.	26.8	ę[,I ,	
					BEAR LAI	LAKE COUNTY						
Bear Lake Hot Springs 155 44E 13ccal5	Ņ	47.5	85	230	5102	1.25	.432	1.49	152.	5.96	.292	7
15 17E 23aabl	15	70.5	135	160	BLAINE 29.5	BLAINE COUNTY	2 60.	26.1	.186	3.42	. 052	'n
Guyer Hot Springs 4N 17E 15aac1S	, 000	70.5	130	06	, 89	.087	,	50.5	.248	.368	,074	
Clarendon Hot Springs 3N 17E 27dcb1S	100	47.0	125	. 85	8	211.	.075	64.2	.318	- 393	.066	
Hailey Hot Springs 2N 18E 18dbb1S	70	0,65b	130	85	77.1	.035	ŀ	£.22	.196	447	.076	
Condie Hot Springs 15 21E 14dd1S	346	52.0	80	06	6.73	.237	324	1.96	.067	4.41	.431	
15 22E IdalS	c ² 0	44,0	75	65	9.17	.311	.33	1.39	,038	1,51	.580	
									,			

.

TABLE 3 (Contid.)

	690°	22.2	92 ° I	Z 95	-	960	£°.79	06	SEC	0.744	oto	142 22E 27deb15 Spring Gakley Warm
	50£ '	68 ° Z	¥80'	84.2	621	861.	5 <i>L</i> ' <i>L</i>	56	\$6	42.0	057	142 51E 34P9CI
	560	11.5	15L ⁻	52.4	τ.	011	85	06	110	0'09 0'06 ^P	060°2	ISSE HICCAL
οι	820	7.57	8-06	8 ¥ t	500	S* S	2214	011	551	0'06 ^P 0'56	09 85	122 S9E S299¢1 122 S9E S2PP¢1
01	1 40.	84.6	5815	1.81	210.	ζ¢*Τ	43.3	SÞĽ	SEL	0 15	82	1-4420 390 331
						, COUNTY ,						
	99.7	52.25	400.	ΣΣΟ.	824.	452	788.	22	08	0,15	-	Soda Springs Sibbaxi 318 800
6	Σ66°	τ.τι	820	812	619'	204.	999`	230	04	45.0	002't [°]	SI86081 315 23
						T COUNTY	CARIBO					
	2901	1.44	890.	8,42	270	510'	524	\$5	58	0.12	004 [°]	ZN ZM 348pcj
						ALNEOD I	CANYOR					
	20 °	745	≯ [[]`	6.74	(1 La)	6.701	٤-75	20		0.07	۲S	12 12E 24Pcc12
	20	723	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 20	a 60 ,	Þ20.	1 29	06	132	0.02	12	JoH s'norraß sgnirg2
	120	\$851	960	1.02	250	\$20	021	04	120	2210	*	12 12E 33°CD1 12 13E 33°CD1
	880.	I₽,I	290,	56	-	620	181	20	58	0°IÉ	51	
	£90°	S02-	244°	6.29	•	£40,	901	08	SIL	5,52	212	Elk Creek Ilot Springs Elk Creek Ilot
	tzo.	641	801.	8.66	-	Þ\$0 '	8119	56	SEE	0.18	991	2H 14E 58C412
												toH Actives Workick Hot
5	90 '	299 °	660*	2.78	-	740.	9.05	551	021	0.99	£61	STAdaSE BEI NI
												зоН цотьтяМ галітц2
						COUNTY	CAMAS					
	12 6 '	7.14	21° 717	1 L	819.	60£ -	5819 5815	55 06	59 501	0.25b 0.14	- ZT	24 51E 84991 24 52E 35594
	424,	52.5		21	¥25.			06	501	0.17	21	theart are we
						CONNLLA	311108					
8	690 '	665 .	27.2	92.4	92 '	822.	9.21	061	32	0.25.0	027	STAGOR HIE NI
						TTE CONNLA	INTEN					
	¥20°	517 ·	281° 201°	Þ 29 6 24	- 690	270. 240.	102 152	SZ 59	011 001	0.22	04 2 ⁵	BN 2E JOP9912 BN 2E JP9912
	580.										osz ^o	
	920,	201,	220.	9.09	780°	290.	86-3	08	STI	0159	052	roh menini) sgnirgs Slogol 38 NQ
L	650	۲.4	99£-	₽^05	-	.043	T '97	071	OST	0.08	50	SIDEGSZ BE NG
9	80.0	0.227	951-0	1.52	\$20.0	820-0	٤, 9٤	061	522	0.28	292	Bonneville Hot Springs 2015 301 901
							35100					- III - L \ 7 U
d . 8i7	(711)	(1/72)	$(C1/RC0^2 + C0^2)$	(#)/#N)	(#3/8 %)				-0 in*	(-)	(wd3)	1 2018731
1,∋danu M di sifi	<u>Sodius</u> V <mark>(Ca</mark> /Ka)	fe Fluoride (Cl/F)	Bicarbonate plus Carbonat	ណាវេ (នេ)	antio (s) (s)/sM)	Bicarbonate (Ca/HCO ₃)	(Na/K) Porassium	()'2 of behavior muiolal-muissarof-muibo	ror) 2 s⊃i[i2₀	at Surface (oC)	egrerictica (acre)	Tadmun Tadmun
6914	ACTICITE	abiroido	abitoid)	mirbo2	mini saudeļv	Calcium	untpos	30 State The The The State Sta	urman's ces	oru terequel		fiaw to gaing?
	L	· · · · · · · · · · · · · · · · · · ·	Solins :					Real ton from	reliupA .	Mater	I	L

Continue of The Network of Table Section Section Control Section Representation Representation <threpresentation< th=""> Representation</threpresentation<>			Wat AT	Antifer Te	emperatures from				Aronio	r Barine			
100 38.0 0.5 4.5 $\frac{20510}{1000000000000000000000000000000000$		ischarge (gpm)	Temperature at Surface (DC)	Geochemica (roun aSilica _b So	l Thermoneters of ded to 5°C) dium-Petassium-Culcium	Sodium Potassium (Na/K)	Calcium Bicarbonate (Ca/HCO ₃)		Sodium Calcium (Na/Ca)	Bicarbonate plus Carbonate (C1/HCO ₃ + CO ₃)	<u>Chloride</u> Fluoride (Cl/F)	V <u>Calciue</u> Sodiue. V(Ca/Naj	Area Number Fig 6
						CASSIA COL	UNTY (Cont'd.)						
	S.24E Z2ddb1	100	38.0	56	45	38,4	0.333	0.414	3.3	0,815	14,8	0.310	
							URK COUNTY						
		1,920	29.0	60	25	5,81	.393	.58	.32	.044	2.84	2.7	
2 2	dy Hot Springs 33E 2bbclS	c250	0.02 _b	85	65	3.06	.74	.303	ĸ	.077	.714	1.25	
						tsm	TER COUNTY						
n_{10}	17E 52bcalS N 19E 34daal	c ²⁵ 50	51.0 40.0	06 02	185 60	1.51 1.01	.371	.432	8.3 1.45	.191 .03	1.66 1.95	.16¢ .598	11
10_{10} 70 41.0 85 100 19.3 113 135 136 135 136 135 136 136 137 131 135 136 136 137 131 136 136 137 131 136 136 137 131 136 136 137 131 136 136 131 136 131 136 131 136 131	nbeam Hot Springs N 15E 19clS	444	76.0	135	130	60.2	610.		98. 8	.174	.429	.052	
12 10 428.5 60 15 10.2 31.4 112 025 12 30.0 130 90 31.4 112 025 12 50.0 130 90 31.4 112 025 2 34.0 110 145 90 31.4 112 025 2 34.0 110 145 90 31.4 112 025 2 34.0 110 145 90.7 141 10.7 2 34.0 110 145 02.3 313.4 112 025 2 34.0 110 145 02.3 312 312 2 34.0 120 125 125 021 111 2 34.5 125 125 021 121 125 2 34.5 125 125 125	llivan Hot Springs N 17E 27bddlS		41.0	85	100	19.3	.135	.37	6.05	-177	17	21.	
Not 110 11.0 135 45 204 112 075 185 50.0 130 90 31.4 112 075 2 34.0 130 90 31.4 112 075 2 34.0 130 145 125 017 118 075 349 76.0 135 125 05.3 335 135 118 2 349 76.0 135 125 05.3 335 155 200 65.0 130 145 125 017 118 2 36.0 130 75 031 15 155 2 65.0 130 75 63 031 15 2 65.0 130 75 63 031 13 2 65.0 130 155 031 13 13 2 6 130 125 031 13 13 </td <td>rney Hot Springs N 25E 23cab1S</td> <td>170</td> <td>d28.5</td> <td>60</td> <td>15</td> <td>10.2</td> <td>118.</td> <td>163.</td> <td>.424</td> <td>,038</td> <td>4.29</td> <td>2.45</td> <td></td>	rney Hot Springs N 25E 23cab1S	170	d28.5	60	15	10.2	118.	163.	.424	,038	4.29	2.45	
185 50.0 130 90 31.4 112 02 2 34.0 110 145 90 31.4 112 02 349 76.0 130 145 145 91.5 017 141 349 76.0 135 125 6.3.3 335 .15 500 65.0 120 70 145 6.3.3 .335 .15 6 56.0 120 70 125 6.3.3 .335 .15 6 56.0 130 70 126 .19 .19 .15 6 38.0 130 75 6.3 .031 .15 6 38.0 130 75 0.01 .10 .103 .103 6 38.0 132 73.5 .011 .103 .103 .103 .103 6 5 73.5 0.01 .133 .113 .103 .103 .103	aniey Hot Springs N 13E ScablS	110	41.0	305	45	204	211.	.075	47.5	.147	161.	6 .	
2 34.0 110 145 ELMORE COUNTY 349 76.0 135 125 63.3 .335 .181 349 76.0 135 125 63.3 .335 .181 540 65.0 136 125 63.3 .335 .181 - 56.0 113 76 86 .197 .181 - 56.0 113 75 63.3 .335 .197 .15 - 45.0 130 76 76 86 .93 .13 .13 - 45.0 136 75 63 .03 .13 - 45.0 135 75 .03 .13 .13 - 45.0 135 75 .03 .13 .13 - 45.0 135 .14 .13 .13 - 45.0 125 .03 .13 .13 - 44.5 125	ate Creek Hot Springs N 16E 30alS	185	50.0	130	06	31.4	.112	.02	9.7I	, 11 ,	,431	.125	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							ORE COUNTY						
349 76.0 135 123 63.5 .335 .135 c ³ 00 65.0 120 70 80.8 .197 .15 c ³ 00 65.0 120 70 80.8 .197 .15 c ³ 00 65.0 113 75 65 .031 .11 c ⁷ 00 66.0 130 70 165 .031 .11 c ⁷ 00 66.0 130 70 165 .031 .11 c ⁷ 00 66.0 130 70 73.5 .001 .103 c ⁷ 37.5 95 70 149 .013 .103 c ⁷ 37.5 95 70 246 .014 .112 350 76.0 130 235 74.5 .011 .103 c 44.5 125 736 .014 .112 c 44.5 125 170 .25.5 .073 .446	BE 34bdcl	2	34.0	011	145	49.5	.017	181.	£1.3	.127]4.4	FE0.	12
c300 65.0 120 70 80.8 .197 .15 - 56.0 115 75 65 .031 .1 - 56.0 115 75 65 .031 .1 - 56.0 130 70 165 .031 .1 - 455.0 135 135 54 .007 .1 - 455.0 130 125 73.5 .011 .103 - 45.0 130 125 73.5 .011 .103 - 54 37.5 95 75 .011 .103 - 54 37.5 95 75 .014 .112 - 44.5 125 173 .246 .444 - 44.5 125 170 .25.5 .073 .468	inmeyer Hot Springs 7E 24b1S	349	76.0	135	125	63.3	- 335	.15	901	.088	.155	. 057	
 56.0 115 75 65 051 111 6700 66.0 1130 70 165 031 111 68.0 130 70 165 031 - 113 68.0 135 1135 135 031 - 103 62.0 1130 125 135 011 103 62.0 1100 125 1349 0313 - 1132 54 007 - 103 54 37.5 031 100 54 033 - 132 54 033 - 132 54 033 - 132 54 033 - 132 54 37.5 011 103 54 033 - 132 54 37.5 011 103 54 37.5 011 103 54 37.5 011 103 54 37.5 011 114 54 37.5 011 55 10 011 56 31 56 31 56 073 468 	tch Frank's Spring 9E 7b1S	c.300	65.0	120	04	80.8	. 197	St.	45.2	.672	,129	. 094	
c 700 66.0 130 70 165 0.01 - * - d55.0 135 135 54 .007 - - * - d55.0 135 125 54 .007 - - - * 62.0 130 125 73.5 .011 .103 - * 62.0 130 125 73.5 .011 .103 - * 37.5 95 70 246 .013 - - * 37.5 95 70 246 .014 .132 * - - - - .019 - - - .132 .132 .132 .132 .132 .132 .133 .132 .144 .132 .144 * 6 105 235 .013 .255 .033 .468 - 44.5 125 170	radise Hot Springs 10E 33bdIS	I	56,0	115	75	85	150.	п.	58.1	.056	.449	080.	
a - d55.0 135 135 54 .007 - a 38.0 130 125 135 54 .001 .103 - - 65.0 130 125 73.5 .011 .103 - - 65.0 130 125 73.5 .011 .103 - - 65.0 130 126 .013 .132 54 37.5 95 70 54 .014 .132 55 37.5 95 206 .014 .132 55 76.0 105 235 7.58 .276 .444 350 76.0 105 235 7.58 .276 .444 - 44.5 125 170 25.5 .073 .468	8E 36cdal	c700	68.0	130	70	165	120.	ł	101	.062	142	.051	
8 38.0 130 125 75.5 001 143 - 52.0 130 80 114 037 - 54 37.5 95 70 54 011 - - 54 37.5 95 70 246 013 - - 54 37.5 95 70 246 014 132 6 13 75 246 014 132 6 13 236 75 246 132 55 76.0 135 235 758 276 444 55 125 170 25.5 073 468	tty Mot Springs 10E 31ddb1S	ı	d55.0	135	135	5	.007	·	235	.038	.207	.043	
FRANKLIN COUNTY 350 76.0 105 235 7.58 276 444 - 44.5 125 170 25.5 073 468	8E 366bal 9E 8abl 10E 7acdl 10E 32bdbl	80 i) 47 V)	38,0 62,0 32,0 37,5	130 90 95	125 80 65 70	73.5 149 246	.011 .037 .033	.103 - .132	87.2 159 55.1 90.7	.038 .045 .179	1.79 .107 .163 1.2	.041 .042 .073	
. 350 76.0 105 235 7.58 .276 .444 44.5 125 170 25.5 .073 .468	ple Grove Hot Coringe					FRANKI	TIN COUNTY						
- 44.5 125 170 25.5 .073 .468	S 41E 7acalS	350	76.0	105	235	7.58	,276	.444	a.e	2.21	307	.07	13
	5 39E 36adal	I	44.5	125	170	25.5	.075	.468	1.25	1.05	17.1	.05	13

							,						
Instruction Control Instruction Control <thinstructin< th=""> Instruction Contro <th< th=""><th>Spring or Well Identification Number</th><th>Discharge (gpm)</th><th>mater Temperature at Surface (°C)</th><th>Geochemical Geochemical (round _aSilica _bSod</th><th>emperatures from 1 Thermometers ⁰C 14um-Potassium-Calcium</th><th></th><th>Calcium Bicarbonate (Ca/HCO3)</th><th>Magnesium Calcium (Mg/Ca)</th><th>Atomic Atomic Sodium Calcium (Na/Ca)</th><th>Ratios Chloride Bicarbonate plus Carbonate $(C1/HOG_3 + OG_3)$</th><th></th><th>VCalcium Sodium V(Ca/Naj</th><th>Area Number Fig. 6</th></th<></thinstructin<>	Spring or Well Identification Number	Discharge (gpm)	mater Temperature at Surface (°C)	Geochemical Geochemical (round _a Silica _b Sod	emperatures from 1 Thermometers ⁰ C 14um-Potassium-Calcium		Calcium Bicarbonate (Ca/HCO3)	Magnesium Calcium (Mg/Ca)	Atomic Atomic Sodium Calcium (Na/Ca)	Ratios Chloride Bicarbonate plus Carbonate $(C1/HOG_3 + OG_3)$		VCalcium Sodium V(Ca/Naj	Area Number Fig. 6
						FRANKLIN CO	WWTY (Cont'd.				-		
10^{-1} <	 Wayland Hot Springs SSC 200 Bhdcis 		. 0 .2	521	• 075	9 0	857 U		0 11	:	Ş	0.045	:
v_{0} v_{1} <	155 39E 17bcd1	25	82.0	155	270	E. 8	519	.152	9	5.51 1 at	147	10.0	2 2
a_1 10 <						FREMO	ã						
0,00 120 0 0 126	Ashton Ware Springs 9N 42E 23dab15	c ²	41.0	145	06	38,3		. 15	57.1	.054		.106	14
i i <td>Big Springs 14N 44E 345bblS</td> <td>92,000</td> <td>12,0</td> <td>36</td> <td></td> <td>7.54</td> <td>.185</td> <td><i>71</i>E.</td> <td>4.36</td> <td>-094</td> <td>.432</td> <td>.614</td> <td></td>	Big Springs 14N 44E 345bblS	92,000	12,0	36		7.54	.185	<i>71</i> E.	4.36	-094	.432	.614	
	Lily Pad Lake 10N 45E 35abclS		d17.0	SE>	20	,85 ,	.36	.254	.335	.17	5,89	7.11	
α <td>7N 41E 35cdd1</td> <td>,</td> <td>36.0</td> <td>120</td> <td>85</td> <td>15.4</td> <td>B71.</td> <td>.371</td> <td>4 , Bt</td> <td>.172</td> <td>2.38</td> <td>.246</td> <td></td>	7N 41E 35cdd1	,	36.0	120	85	15.4	B71.	.371	4 , Bt	.172	2.38	.246	
7 13 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>GEN</td><td>COUNTY</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						GEN	COUNTY						
$ \begin{array}{cccccc} - & - & - & - & - & - & - & - & - & - $	Roystone Hot Springs 7N 1E &ddalS	c20			150	35.3	178.	÷114	32.1	.571	2,08	.067	15
- $ -$ <td>7N 1E 9cdc1S</td> <td>ı</td> <td>45.0</td> <td>135</td> <td>85</td> <td>31.8</td> <td>,135</td> <td>.264</td> <td>11.5</td> <td>.305</td> <td>2.01</td> <td>.142</td> <td></td>	7N 1E 9cdc1S	ı	45.0	135	85	31.8	,135	.264	11.5	.305	2.01	.142	
						0001	NG COUNTY						
65.0 13 115 70 91 0.2 115 70 12 0.2 0.1 115 237 0.31 43.0 115 70 191 0.29 103 8.1 115 237 0.31 c^0 47.5 100 35 98.6 213 11340 0.32 0.31 0.32 0.31 0.31 c^0 48.0 100 35 137 111 112 23.9 0.01 0.3 0.11 c^0 48.0 137 111 112 23.9 0.01 0.3 0.12 0.31 c^0 48.0 113 112 213 209 0.01 0.32 0.31 0.31 0.31 c^0 42.0 120 120 120 120 100 101 101 101 101 101 50 450	4S 13E 28abl	•	d47.0	135	100	28.8	.054	, 202	17.6	.051	.366	.114	
	White Arrow Hot Springs 4S 13E 30adb1S	826	65.0	135	115	56.7	. 013	ı	132	-07	.295	.044	
c ⁰ 47.5 100 35 94.6 239 - 15.3 .063 .512 .227 c ¹⁰ 48.0 100 35 157 .171 .122 23.9 .063 .636 .101 35 55.0 120 80 157 .114 - 52.3 .104 .103 .024 6 42.0 120 95 86.1 .114 - 52.3 .104 .103 .024 6 42.0 120 95 86.1 .114 - 52.3 .104 .103 .034 6 42.0 120 95 104 .114 - 37.1 .065 .105 .034 6 43.0 120 55 104 .184 - 37.1 .065 .104 .135 6 49.0 10 120 55 144 .1 .105 .104 .132 6 49.0 10 13 .5 .1 .105 .104 .112 7 </td <td>5S 12E 3aeal</td> <td>,</td> <td>43.0</td> <td>115</td> <td>70</td> <td>191</td> <td>.029</td> <td>, 103</td> <td>98.1</td> <td>511.</td> <td>.237</td> <td>.051</td> <td></td>	5S 12E 3aeal	,	43.0	115	70	191	.029	, 103	98.1	511.	.237	.051	
c ⁰ 47.5 100 35 98.6 .239 .15.3 .063 .512 .227 c ³⁰⁰ 48.0 100 35 157 .171 .122 23.9 .065 .636 .101 35 55.0 120 80 .114 .122 23.9 .104 .103 .034 60 43.0 120 80 .114 - 52.3 .104 .103 .034 61 120 92 86.1 .114 - 52.3 .104 .103 .034 61 42.0 120 92 86.1 .114 - 52.3 .104 .103 .034 61 45.0 120 95 104 .184 - 371 .065 .104 .112 60 49.0 50 26 43 .56 .134 .123 .134 .134 7.0 49.0 20 13.4 .56						IBAH	COUNTY						
c ³⁰⁰ 48.0 100 35 157 .171 .122 23.9 .066 .656 .101 35 55.0 120 80 86.1 .114 - 52.3 .104 .103 .074 5 42.0 120 80 .86.1 .114 - 52.3 .104 .103 .074 162 42.0 120 95 80 .865 .027 45 .378 2.04 .057 162 45.0 120 55 104 .184 - 37.1 .065 .804 .112 162 49.0 80 205 13.4 .633 .3 5.81 .175 .45 .064 .051	éeir Creek Hot Springs 56N 11E 13b1S	c40			35			,	15.3	. 083	.512	.227	
35 55.0 120 80 86.1 .114 - 52.3 .104 .103 .074 c ⁵ 0 42.0 120 95 80 .858 .027 45 .378 2.04 .057 162 45.0 120 55 104 .184 - 37.1 .065 .804 .112 162 45.0 120 55 104 .184 - 37.1 .065 .804 .112 c ⁶⁰ d ^{90.0} 80 205 13.4 .623 .3 .5.81 .75 .45 .051	ferry Johnson Hot Springs 56N 13E 18a1S	c300	48.0	100	35	-		.122	23.9	.066	.636	101.	
c ⁵⁰ 42.0 120 95 60 .858 .027 45 .378 2.04 .057 162 45.0 55 104 .184 - 37.1 .065 .804 .112 2 49.0 80 205 13.4 .623 .3 5.81 .15 .051	ted River Hot Springs 28N 10E 3d1S	35			08	86.1	.114	ľ	52.3	.104	.103	.074	
162 45.0 120 55 104 .184 - 37.1 .085 .604 .112 JEFFERSON COUNTY c ⁶⁰ d49.0 80 205 13.4 .623 .3 5.81 3.75 415 .051	tiggins Hot Springs 24N 2E 14dac1S	c ⁵⁰	42.0	120	95	80	.858	-027	4 S	. 378	2.04	.057	
LEFFERSION COUNTY JEFFERSION COUNTY c ⁶⁰ 49.0 80 205 13.4 .623 .3 5.81 3.75 415 .051	Burgdorf Hot Springs 22N 4E ibdclS	162	45.0	120	55	104	.184	ŀ	. 37.1	.085	.804	.112	
C ⁶⁰ d ⁴ 9.0 80 205 13.4 .623 .3 5.81 3.75 415 .051						JEFFERS	ON COUNTY						
	Heise Hot Spring: AN 408 25dcb15		_d 49.0	80	205	13.4	.623	£	5.83	3.75	415	.051	ŝ

TABLE 3 (Cont'd.)

_ <u>7</u>	
	:
- 2	i.
_ C	۶.
-	-
	1
- 14	ı.
-	I
- 0	L
- 4	

Spring or Well Identification Number	Discharge (gpm)	Mater Temperature at Surface (^D C)	Aquifér Ter Geochemical (round aSilica bSodi	Aquifer Temperatures from Geochemical Thermometers ^O C (rounded to 50C) Silica _b Sodium-Potassium-Calcium	Sodium Potassium (Na/K)	Calcium Bicarbonate (Cu/HCO3)	<u>Magnesium</u> Calcium (Mg/Ca)	Atomic Sodium Calcium (Na/Ca)	c Ratios Chloride Bicarbonate plus Carbonate (C1/HOO3 + CO3)	Chloride Fluoride (C1/F)	rcalcium Sodium V(Ca/Na)	Area Number Fig. 6
					LIMET	I COUNTY						
Big Creek Hot Springs 23N 18E 22c1S	c ⁷⁵	93.0	160	175	26.7	0,017	0.062	72.4	. 102	1.04	0,038	16
Salmon Hot Springs 20N 22E 3abd1S	145	45.0	80	205	2.11.5	.062	786	1	.152	14.9	.092	17
Sharkey Hot Springs 20N 24E 34ccc1S	a	d52.0	135	175	11	.024	.135	د .5		2,28	.036	17
16N 21E 1Badc15	c ²⁰	96.0	85	165	24.7	.049	.21	25.3	.132	99. t	.075	18
Green Canyon Hot Springs					HADTSON	8						
ł43E 6bcalS	ŀ	d44.0	20	N	1.84	1.28	.377	.049	.018	.569	n	
14S 36E 27cdalS	44	25.0	65	250	ONETDA 9.72	A COUNTY	.542	8.72	.377	2,810	.047	61
Pleasantview Warm Springs 15S 35E 3aab1S	3,810	25.0	6 5	375	16.4	.506	494	4 . 44	2.44	360	.136	19
Woodruff Hot Springs 165 36E 10bbcJS	1	27.0	80	190	8.71	.436	57	12.2	6.06	1,430	.046	19
12S 34E 36bcb1S	189	24.0	8 5	35	5.93	.577	.559	.467	.267	62.5	1.81	
					3HV40	ONVHEE COUNTY						
45 2E 32bcc1 55 3E 26bcb1 65 3E 2ccc1 65 5E 10ddd1 65 5E 29dcc1	62 80 98 4 80 98 4 80 94 80	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	135 135 135 135 135	165 90 150 145 165	29 102 59,2 45,4	.016 .037 .023 .023	281	63.8 87.2 121 83.7 23.6	.066 .214 .159 .139	1.04 .25 .287 .536	049 054 046 103 103	20 20 20 20 20 20 20
6S 6E 12ccdl . 7S 5E 7abb1	1.1	37.0 39.0	135 125	175 190	20.6 11.8	.033 .1	082	29.6 13.8	.067	1.72. .459	.068	20
Indian Bathtub Hot Springs 85 6E 3bdd1S	458	0, 92	120	185	12.6	.072	.112	36	60 Î	.487	.163	20
Murphy Hot Springs 165 9E 24bblS	c70	51.0	125	160	25.5	.014	·	87.2	.058	.342	094	21
IN 4K 12dbb1 IS 2M 7ccb1 4S 1E 34bad1 5S 1E 24ad1 5S 2E 1bbc1	410 169 1,060 30	35.5 45.5 66.0 49.5	85 80 125 115	40 85 80 65	624 170 258 213 247	.016 .015 .016 .017		87,2 110 155 145 101	- 225 - 164 - 164 - 164	1.9 .926 .536 1.02	049 042 039 04	
7S 6E 9bad1	153	50.0	135	130	60.1	, 034	ι	105	.145	, 236	.046	
Indian Mot Springs 12S 7E 33clS	1730	0.69	120	60	213	.034	I	87.2	.148	.322	.059	

[Cont'd
m
w.
Ę.

-

		Water	Aquifer Te	superatures from				Atomic	Atomic Ratios			
Spring or Well Identification Number	Discharge (gpm)	Temperaturo at Surface (oC)	Geochemical (round aSilica bSod	Geochemical Thermometers OC (rounded to SoC) illica þSodiums-Potassium-Calcium	<u>Sodium</u> Potassium (Na/K)	<u>Calcium</u> Bicarbonate {Ca/HCO3)	<u>Kagnesium</u> Calcium (Mg/Ca)	<u>Sodium</u> Ca) cium (Na/Ca)	Chloride Bicarbonate plus Carbonate (C1/HCO3 + CO3)	Chloride Fluoride (C1/F)	V <u>Cal crum</u> Sodium V(Ca/Na)	Area Number Fig. 6
					BMOA	POWER COUNTY						
Indian Springs 85 31E 18dab1S	1,540	32.0	65	70	18,7	0.456	0.412	7.52	1.49	168.0	0,288	
10S 30E 13cdc1S	418	38.0	70	70	7.53	.875	591	1.17	2.69	167	562	
				ι.	THIN FI	FALLS COUNTY						
Miracle Hot Springs 8S 14E 31acb15	c350	54.0	ŞEİ	85	136	£20,	· .	95.1	. 511	938	. 045	
85 14E 33cbal 115 19E 33ddd1	60 1,930	59.0 33.0	135 115	110 70	115 3.36	,019 .348	.238	158 1.1	, 3 67 , 219	.965 26.8	.038	
Mat-Poo-Paw Warm Springs 125 17E 31bab1S	30	36.0	65	80	6.65	.195	.679	2.2	.052	2.26	492	
12S 18E 1bba1	543	38.0	115	65	4,54	.288	181.	1.55	.145	7.14	.963	
Nagic Hot Springs 165 17E Jlac1S	385	45.5	70	45	4,93	. 282	,489	.755	.04	6.79	1.53	
					ATTE	VALLEY COUNTY						
Vulcan Hot Springs 14N 6E 11bdalS	c500	87.0	150		53.3	.023	.092	16	.244	.38	.052	22
Hot Creek Springs ISN 3E 13bb¢lS	198	d.0	011	60	170	116	.127	80.5	.435	3.3	- 069	
Molly's Hot Springs 15N 6E 14acc1S	c20	59.0	130	S8	79.4	.063	ı	61		.315	.073	-
14N 3E 36abd1	ı	42.5	56	45	247	039	·	63.2	.306	2.12	6 79.	
Cabarton Hot Springs 13N 4E 31cablS	c 70	70.5	125	100	89.5	.037	۰ ۱	0, EDI	. 874	2.39	.047	
Boiling Springs 12N 5E 22bbclS	165	85.D	135	06	11	.036	.087	65.1	.196	.495	.07	
					WASHI NGTON	HETON COUNTY						
14N 3W 3ddcl 13N 3W 8cccl	1 1	25.5	110	180 240	18.3 5.4	.025	.127	48.9 14.6	.038 .024	2.04	.08 .147	
11N 6W 10ccal 11N 3M 7bdb1S 14N 2W 19cb41S	1/3 30 58	70.0 87.0 50.0	170 170 105	140 165 65	53.4 26.9 71.6	. 045 . 208 . 15	- . 043 . 165	103 19.4 17 4	,85 1.65 .315	6.41 35.1 10	.037 .063 128	23
2 M	431	0.07	120	80	89.5	1.08	10,	20.5	5.43	39.5	-075	
LON 4W 15Daci	- ≜ (equilibri	4W 35DBCJ - 20.0 240 Deite curve & feculithrium with currierty) Fournier		ou and Truesdall 1970	6 07	070.	+60 [°]	Q 7 7	074.	c 4 .7	6/n-	
b Fournier and Truesdeil, 1973.	Truesdeil,	1973.				,						

c Discharge estimated. d Measured temperature is probably lower than temperature at point of discharge.

physiographic province (Fenneman, 1931) of southeastern Idaho, 5 were in the Middle Rocky Mountain physiographic province of eastern Idaho, 24 were in the eastern Snake River Plain, and 37 in the western Snake River Plain of the Columbia Plateau physiographic province of south-central and southwestern Idaho and 42 were in the Northern Rocky Mountain phsiographic province of central Idaho. No thermal waters were found north of the Lochsa River in northern Idaho.

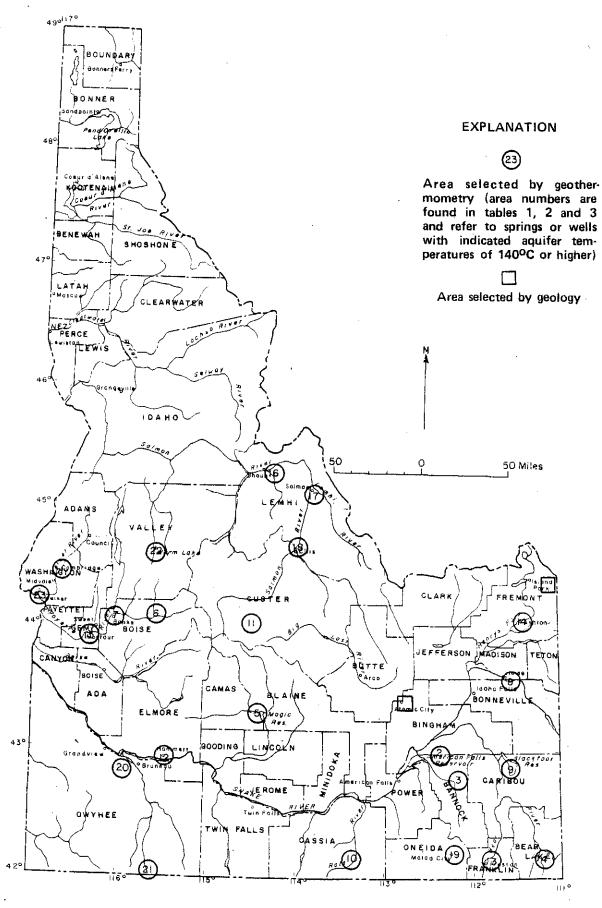
3. The kinds and age of rocks supplying water to the springs and wells inventoried are summarized below:

Sedimentary and metan Precambrian and Paleozo	•	Granitic rocks of Cretaceous and Mic age	ocene
Springs	. 12	Springs	19
Wells	1	Wells	0
Total	13	Total	19
Silicic volcanic and ass tary rocks of Paleocene		Basalt of Miocene and Pliocene age	
age		Springs Wells	1 4
Springs	12	Total	5
Wells	31		_
Total	43	Surficial deposits of Pleistocene Holocene age	and
Basalt of Pliocene to Hol	ocene age		
		Springs	30
Springs	2	Wells	6
Wells	2	Total	36
Total	• 4		

Rock type and age

- 4. Twenty-eight of the springs and wells visited occurred on or near known fault zones, while a greater number are thought to be related to faulting.
- 5. The quality of the spring and well waters sampled was, except in a few instances, remarkably good. Dissolved-solids concentrations ranged from 14 to 13,700 mg/l and averaged 812 mg/l. In the southeastern part of the State, where waters were much more heavily mineralized, dissolved-solids concentrations are as much as 13,700 mg/l and average 3,510 mg/l.
- Measured temperatures of the water at the springs and wells ranged from 12^o to 93^oC and averaged 50^oC. No areal pattern for the distribution of measured temperatures was found.

7. Estimated aquifer temperatures for the waters sampled ranged from 5° to 370°C as estimated by the sodium-potassium-calcium geochemical thermometer and from less than 35° to 170°C as estimated by the silica geochemical thermometer. Estimated temperatures, using both thermometers, showed agreement within


25°C for 42 of the 124 sampled sites. Estimated aquifer temperatures in excess of 140°C were found at 42 of the sites sampled. Generally, for waters high in dissolved solids, the Na-K-Ca geochemical thermometer indicated higher aquifer temperatures than did the silica geochemical thermometer, whereas for waters low in dissolved solids, the silica geochemical thermometer indicated highest temperatures.

- 8. Deposition of minerals from thermal waters included gypsum, halite, and various carbonates and silicates.
- 9. Although it was thought that thermal water would be found in or near the Yellowstone KGRA in Idaho, an intensive search of this area failed to reveal the existence of any true thermal waters.
- 10. Within the Frazier KGRA in southern Idaho, surface temperatures of 93° and 90°C (measured temperature of 90°C is probably lower than temperature at point of discharge) were found at two wells. Estimated aquifer temperatures for water from these two wells are calculated to range from 135° to 145°C. Dissolved-solids concentrations were 1,720 and 3,360 mg/l and the minerals being deposited were chiefly halite and calcite.

FUTURE STUDIES

Selection of areas in which further work will be concentrated in Idaho by the U.S. Geological Survey and the Idaho Department of Water Administration will be based on the data reported herein and on the following considerations:

- Of the 124 springs and wells inventoried, estimated aquifer temperatures of 140°C or higher are indicated for 42 of the springs and wells listed in table 3. Figure 6 gives the location of the 23 areas in which these springs and wells were found. Two areas shown in figure 6 were selected on the basis of geologic considerations only.
- 2. Geophysical surveys (gravity and aeromagnetometer) that include most of the areas noted above are available. These surveys, made by the U. S. Geological Survey, will be studied and interpreted as an aid to narrowing down the number of areas to be first studied.
- 3. Evaluation of the known geology in terms of the structure, lithology and age of the rocks, and the geologic history of the 25 areas shown in figure 6.
- 4. Areas found to have such things as existing geophysical surveys, detailed geologic maps, available additional hot springs and wells from which water samples can be obtained for analysis, topography suitable for making additional geophysical surveys and for heat studies, and ready accessibility to men and equipment will be in priority over other areas equally promising.

 $\pi \in \mathcal{G}$

The data collected in the areas selected for immediate study will be aimed toward delineation of the surface area encompassed by the geothermal anomaly, and a preliminary description of the hydrology of the area. Methods used to help delineate the surface expression of the apparent anomaly in an area and the hydrology of the area will include, where possible:

- 1. Calculation of aquifer temperatures by geochemical thermometers using water samples collected from springs and wells.
- 2. Analysis of data obtained from heat studies. These heat studies will consist of a series of temperature measurements made at one-meter depths over the suspected area of the anomaly.
- 3. Geophysical surveys (gravity and aeromagnetometer) and other surveys as needed.
- 4. Examination and analysis of topographic, climatologic, hydrologic, and geologic maps and well logs to provide such things as information on ways and means of recharge to and discharge from the anomaly, the permeability of rocks in the recharge area, and at depth, and the subsurface structure.
- 5. Analyses of water samples collected in and around the area for oxygen and hydrogen isotopes. These isotopes are used to indicate the age of ground water and thereby lead to further understanding of the movement of water in the subsurface.

SELECTED REFERENCES

Anderson, A. L., 1931, Geology and mineral resources of eastern Cassia County, Idaho: Idaho Bur. Mines and Geology Bull. 14, 169 p.

_____ 1947, Geology and ore deposits of Boise Basin, Idaho: U. S. Geol. Survey Bull. 944-C, p. 119-319.

_____ 1957, Geology and mineral resources of the Baker quadrangle, Lemhi County, Idaho: Idaho Bur. Mines and Geology, Pamph. 112, 71 p.

- Armstrong, F. C., 1969, Geologic map of the Soda Springs quadrangle, southeastern Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-557, 2 sheets.
- Barnes, H. L., ed., 1967, Geochemistry of hydrothermal ore deposits: New York; Holt, Rinehart, and Winston, Inc., 670 p.
- Blackwell, D. D., 1969, Heatflow determinations in the northwestern United States: Jour. Geophys. Research, v. 74, no. 4, p. 992-1007.
- Bodvarsson, G., 1970, Evaluation of geothermal prospects and the objectives of geothermal exploration: Geoexploration, 8, 7.
- Burnham, W. L., Harder, A. H., and Dion, N. P., 1969, Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho - an initial assessment: U. S. Geol. Survey Open-File Report, 40 p.
- Chasteen, A. J., 1972, Geothermal energy growth spurred on by powerful motives: Mining Engineering, v. 24, no. 10, p. 100.
- Choate, Raoul, 1962, Geology and ore deposits of the Stanley area: Idaho Bur. Mines and Geology Pamph. 126, 122 p.

Crosthwaite, E. G., 1957, Ground-water possibilities south of the Snake River between Twin Falls and Pocatello, Idaho: U. S. Geol. Survey Water-Supply Paper 1460-C, p. 99-145.

_____ 1969_a Water resources of the Goose Creek Rock Creek area, Idaho, Utah, and Nevada: Idaho Dept. of Reclamation Water Information Bull. 8, 73 p.

_____ 1969b Water resources of the Salmon Falls Creek Basin, Idaho-Nevada: U. S. Geol. Survey Water-Supply Paper 1879-D, 33 p.

- Dion, N. P., 1969, Hydrologic reconnaissance of the Bear River Basin in southeastern Idaho: Idaho Dept. of Reclamation Water Information Bull. 13, 66 p.
- Dion, N. P., and Griffith, M. L., 1967, A ground-water monitoring network for southwestern Idaho: Idaho Dept. of Reclamation Water Information Bull. 2, 16 p.

- Ellis, A. J., 1970, Quantitative interpretation of chemical characteristics of hydrothermal system, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1 Geothermics, Spec. Issue 2, p. 516-528.
- Fenneman, N. M., 1931, Physiography of Western United States: New York, McGraw-Hill Book Co., 534 p.
- Forrester, J. D., 1956 Geology and mineral resources of the Salmon quadrangle, Lemhi County, Idaho: Idaho Bur. Mines and Geology Pamph. 106, 102 p.
- Fournier, R. O., and Rowe, J. J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet steam wells: Am. Journ. Sci., v. 264, p. 685-695.
- Fournier, R. O., and Truesdell, A. H., 1970, Chemical indicators of subsurface temperature applied to hot waters of Yellowstone National Park, Wyo., U. S. A., in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, 1970, v. 2, Part 1 Geothermics, Spec. Issue 2, p. 529-535.
- ______ 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochim. et. Cosmochim. Acta. (in press).
- Godwin, L. H., Haigler, L. B., Rioux, R. L., White, D. E., Muffler, L. J. P., and Wayland, R. G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U. S. Geol. Survey Circ. 647, 17 p.
- Greenberg, S. A., and Price, E. W., 1957, The solubility of silica in solutions of electrolytes: J. Phys. Chem. 61, p. 1539-1541.
- Grose, L. T., 1971, Geothermal energy: geology, exploration, and developments; Part 1: Colorado School Mines Research Inst. Min. Industries Bull., v. 14, no. 6, 14 p.
- Hamilton, Warren, 1965, Geology and petrogenesis of the Island Park Caldera of rhyolite and basalt, eastern Idaho, in Shorter Contributions to General Geology, 1964: U. S. Geol. Survey Prof. Paper 504-C, p. CI-C37.

_____ 1969, Reconnaissance geologic map of the Riggins quadrangle, west-central Idaho: U. S. Geol. Survey Misc. Inv. Map I-579, 1 sheet.

- Healy, J., 1970, Pre-investigation geological appraisal of geothermal fields, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 1 Geothermics, Spec. Issue 2, p. 571-577.
- Holland, H. D., 1965, Some applications of thermochemical data to problems of ore deposits, II. Mineral assemblages and the composition of ore-forming fluids: Econ.

Geology v. 60, p. 1101-1166.

- Jobin, D. A., and Schroeder, M. L., 1964, Geology of the Conant Valley quadrangle, Bonneville County, Idaho: U. S. Geol. Survey Mineral Inv. Field Studies Map MF-277, 1 sheet.
- Kirkham, V. R. D., 1924, Geology and oil possibilities of Bingham, Bonneville, and Caribou Counties, Idaho: Idaho Bur. Mines and Geology Bull. 8, 108 p.
- Littleton, R. T., and Crosthwaite, E. G., 1957, Ground-water geology of the Bruneau-Grandview area, Owyhee County, Idaho: U. S. Geol. Survey Water-Supply Paper 1460-D, p. 147-198.
- Livingston, D. C., and Laney, F. B., 1920, The copper deposits of the Seven Devils and adjacent districts including Heath, Hornet Creek, Hoodoo, and Deer Creek: Idaho Bur. Mines and Geology Pamph. 1, 105 p.
- Mahon, W. A. J., 1970, Chemistry in the exploration and exploitation of hydrothermal systems, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Resources, Pisa, 1970, v. 2, Part 2 Geothermics, Spec. Issue 2.
- Malde, H. E., Powers, H. A., and Marshall, C. H., 1963, Reconnaissance geologic map of west-central Snake River Plain, Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-373, 1 sheet.
- Mansfield, G. R., 1927, Geography, geology, and mineral resources of part of southeastern Idaho: U. S. Geol. Survey Prof. Paper 152, 453 p.
- Meinzer, O. E., 1924, Origin of the thermal springs of Nevada, Utah, and southern Idaho: Jour. Geology, v. 32, no. 4, p. 295-303.
- Nace, R. L., and others, 1961, Water resources of the Raft River Basin, Idaho-Utah: U. S. Geol. Survey Water-Supply Paper 1582, 138 p.
- Newcomb, R. C., 1970, Tectonic structure of the main part of the basalt of the Columbia River Group, Washington, Oregon, and Idaho: U. S. Geol. Survey Misc. Geol. Inv. Map I-587, 1 sheet.
- Norvitch, R. F., and Larson, A. L., 1970, A reconnaissance of the water resources in the Portneuf River Basin, Idaho: Idaho Dept. of Reclamation Water Information Bull. 16, 58 p.

Piper, A. M., 1923, Geology and water resources of the Goose Creek Basin, Cassia County, Idaho: Idaho Bur. Mines and Geology Bull. 6, 78 p.

_____ 1924, Possibilities of petroleum in Power and Oneida Counties, Idaho: Idaho Bur. Mines and Geology Pamph. 12, 24 p.

Ralston, D. R., and Chapman, S. L., 1968, Ground-water resources of the Mountain Home area, Elmore County, Idaho: Idaho Dept. of Reclamation Water Information Bull. 4, 63 p.

_____ 1969, Ground-water resources of northern Owyhee County, Idaho: Idaho Dept. of Reclamation Water Information Bull. 14, 85 p.

Ross, C. P., 1937, Geology and ore deposits of the Bayhorse region, Custer County, Idaho: U. S. Geol. Survey Bull. 877, 161 p.

Pamph. 130, 98 p. _____ 1963, Geology along U. S. Highway 93 in Idaho: Idaho Bur. Mines and Geology

- Ross, C. P., and Forrester, J. D., 1947, Geologic map of the State of Idaho: U. S. Geol. Survey and Idaho Bur. Mines and Geology, 1 map.
- Ross, S. H., 1971, Geothermal Potential of Idaho: Idaho Bur. Mines and Geology Pamph. 150, 72 p.
- Savage, C. N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bur. Mines and Geology County Report 3, 94 p.
- Siever, R., 1962, Silica solubility, 0°-200°C, and diagenesis of siliceous sediments: Jour. Geol. v. 70, p. 127-150.

Smith., R. O., 1959, Ground-water resources of the middle Big Wood River-Silver Creek area, Blaine County, Idaho: U. S. Geol. Survey Water-Supply Paper 1478, 64 p.

- Stearns, H. T., Bryan, L. L., and Crandall, Lynn, 1939, Geology and water resources of Mud Lake Region, Idaho, including the Island Park area: U. S. Geol. Survey Water-Supply Paper 818, 125 p.
- Stearns, H. T., Crandall, Lynn, and Steward, W. G., 1938, Geology and ground-water resources of the Snake River Plain in southeastern Idaho: U. S. Geol. Survey Water-Supply Paper 774, 268 p.
- Stearns, N. D., Stearns, H. T., and Waring, G. A., 1937, Thermal springs in the United States: U. S. Geol. Survey Water-Supply Paper 679-B, p. 59-206.

- Umpleby, J. B., 1913, Ore deposits in the Sawtooth quadrangle, Blaine and Custer Counties, Idaho, in Contributions to Economic Geology: U. S. Geol. Survey Bull. 580, p. 221-249.
- Umpleby, J. B., Westgate, L. G., and Ross, C. P., 1930, Geology and ore deposits of the Wood River region, Idaho: U. S. Geol. Survey Bull. 814, 250 p.
- Walker, E. H., and Sisco, H. G., 1964, Ground-water in the Midvale and Council areas, Upper Weiser River Basin, Idaho: U. S. Geol. Survey Water-Supply Paper 1779-Q, 26 p.
- Walton, W. C., 1962, Ground-water resources of Camas Prairie, Camas and Elmore Counties, Idaho: U. S. Geol. Survey Water-Supply Paper 1609, 57 p.
- Waring, G. H., (revised by R. R. Blankenship and Ray Bentall), 1965, Thermal springs of the United States and other countries of the world a summary: U. S. Geol. Survey Prof. Paper 492, 383 p.
- White, D. E., 1970, Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources, in Proceedings United Nations Symp. on the Development and Utilization of Geothermal Energy, Pisa, 1970, v. 1, Part 2 Geothermics, Spec. Issue 2.
- White, D. E., Muffler, L. J. P., and Truesdell, A. H., 1971, Vapor-dominated hydrothermal systems compared with hot-water systems: Econ. Geol., v. 66, no. 1, p. 75-97.