DIEDAS TOTAL CONTROL CONTROLS GLOBANIA CONTROLS CONTROLS GLADELA, VERSENSAN DEPOS

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGY AND EARTH RESOURCES OLYMPIA, WASHINGTON 98504

THE LOW TEMPERATURE GEOTHERMAL RESOURCE OF THE YAKIMA REGION - A PRELIMINARY REPORT

by

John H. Biggane

Open-File Report 81-7

September 1981

Table of Contents

 $s_{i}^{2} \kappa_{j}$

¢.: N

ر 1 م€

(

List of Figures	
List of Tables	
Introduction	
Location and Topography	
Stratigraphy of the Yakima Region	
Grande Ronde Formation	
Vantage Member of the Ellensburg Formation 3	
Wanapum Formation	
Frenchman Springs Member	
Squaw Creek Member of the Ellensburg Formation 4	
Roza Member	
Priest Rapids Member 4	
Mabton Member of the Ellensburg Formation 5	
Saddle Mountains Formation 5	
Umatilla Member	
"Huntzinger" Valley Flow (Asotin Member?) 5	
Selah Member of the Ellensburg Formation 6	
Pomona Member	
Rattlesnake Ridge Member of the Ellensburg Formation 6	
Elephant Mountain Member 6	
Upper Ellensburg Formation and Quaternary Sediments. 7	
Previous Geophysical Investigations in the Yakima Region . 8	

i

Table of Contents (cont.)

Ψ.

 \mathbf{C}

 \mathbf{C}

(

Previous Geothermal Research in the Yakima Region 9
Temperature Data
Calculation of Geothermal Gradients in the Yakima Region
Geothermal Gradients in the Yakima Region 12
Accuracy of the Geothermal Gradients Obtained by the Regression Analysis
Projected Land Surface Temperatures and Slope Aspect
Chemical Geothermometers
Summary
References
Appendices
Appendix A: Symbols Used on Figures 2 through 8 and 13 through 26
Appendix B: Well Locations and Bottom Hole Temperatures from Wells in the Yakima Region
Appendix C: Well Data Groups Used in the Bottom Hole Temperature Regression Analysis

ii

ILLUSTRATIONS

Ex 31

() _______

6

バコ ド

			rage
Figure	1.	Generalized stratigraphic section	2a
-	2.	Stratigraphic correlation line No. 1	2 b
	3.	Stratigraphic correlation line No. 2	2c
	4.	Stratigraphic correlation line No. 3	2 d
	5.	Stratigraphic correlation line No. 4	2e
	6.	Stratigraphic correlation line No. 5	2f
	7.	Stratigraphic correlation line No. 6	2g
	8.	Stratigraphic correlation line No. 7	2 h
	9.	Typical natural gamma response of the Umatilla and Squaw Creek Members	4a
	10.	Spring and well location map	In pocket
	11.	Temperature logs of the DNR Black Rock Well No 1	10a
	12.	"Step-like" distortion of a temperature log	105
	13.	Temperature versus depth for group 1	12a
	14.	Temperature versus depth for group 2	12b
	15.	Temperature versus depth for group 3	12c
	16.	Temperature versus depth for group 4	12d
	17.	Temperature versus depth for group 5	12e
	18.	Temperature versus depth for group 6	12 1
	19.	Temperature versus depth for group 7	12g
	20.	Temperature versus depth for group 8	12h
	21.	Temperature versus depth for group 9	12i
	22.	Temperature versus depth for group 10	12j
	23.	Temperature versus depth for group 11	12k

iii

ILLUSTRATIONS-Continued

1

()

(

1.548

×s

P.

		Page
Figure	24. Temperature versus depth for group 12	- 12L
	25. Temperature versus depth for group 13	12m
_	26. Temperature versus depth for group 14	· 12n
	27. Well data group location map	In pocket
	27a. Map showing locations of well data groups with respect to the locations of springs and wells	In pocket
	28. Temperature logs, line No. 1	120 `
	29. Temperature logs, line No. 2	12p
	30. Temperature logs, line No. 3	12q
	31. Temperature logs, line No. 6	12r
	32. Temperature logs, line No. 7	12s
	33. Slope aspect versus normalized surface temperature	14a
	**	

iv

List of Tables

Table		Page
1	Geothermal Gradients, Land Surface Temperatures, and Depths to the 20 ⁰ C Isotherm	13
2	Measured and Predicted "Aquifer" Temperatures	15
3	Mean Elevation, Slope Aspect, and Normalized Land Surface Temperatures for Well Data Groups 1-13	18
4	Chemical Data for Springs in Yakima County, Washington	19
5	Chemical Data for Wells in Yakima County, Washington	20

Introduction

The low temperature geothermal resource of the Yakima region is currently at the initial stage of its development. Several domestic heat pump systems utilize the warm groundwater for space heating, and larger installations have been considered. This report provides a preliminary summary of the geothermal resource for portions of the Yakima region.

Location and Topography

The Yakima region lies in the western portion of the Columbia Plateau in south-central Washington. The region's major topographic and structural features are a series of southeast-trending anticlinal ridges and synclinal valleys. The Yakima River serves as the region's major drainage.

Stratigraphy of the Yakima Region

The lava flows of the Columbia River Basalt Group (CRBG) and the interbedded sediments of the Ellensburg Formation comprise the bulk of the region's near-surface stratigraphic section. The nature of the rocks underlying the basaltic lavas is uncertain, but they are probably related to older volcanic rocks (Ohanapecosh Formation) that are exposed to the west (Bentley and others, 1980). Oil and gas exploration boreholes are presently being drilled in Yakima County and should provide information on the deeper geologic units in the future. Alluvial sediments overlie the Ellensburg Formation throughout much of the lowlands of the Yakima region (Campbell, 1976, 1977a, 1977b; Swanson and others, 1979a).

The total thickness of the Columbia River Basalts is unknown but probably exceeds 1,000m in the Yakima region (Bentley, 1977; Bentley and others, 1980). All three formations of the Yakima Basalt Subgroup (CRBG)--the Grande

Ronde, Wanapum, and Saddle Mountains Formations--are found in surface exposures (Swanson and others, 1979a).

Individual basalt flows usually contain two major zones, the colonnade and the underlying entablature, which are set apart by differing joint characteristics (Swanson, 1967; Diery and McKee, 1969). Straight, vertical columns are typical of the colonnade, while thinner, inclined, or curved columnar joints are found in the entablature. Horizontal joints are found in both zones. A basal breccia is often observed beneath the colonnade, and a vesicular zone often occurs at the flow top.

An generalized stratigraphic section is shown in Figure 1. Subsurface stratigraphic correlation lines for the lower Yakima, Black Rock, and Moxee Valleys are shown in Figures 2 through 8. (Symbols used in Figures 2 through 8 are explained in Appendix A.) These correlation lines were constructed by interpreting both drillers' and borehole geophysical logs. Neutron-neutron logs are shown in Figures 2 through 8, but it should be noted that natural gamma, gamma-gamma, and neutron-gamma logs were also utilized for these correlations. Formation thicknesses reported in later sections of this report are apparent thicknesses, since dip corrections have not been made.

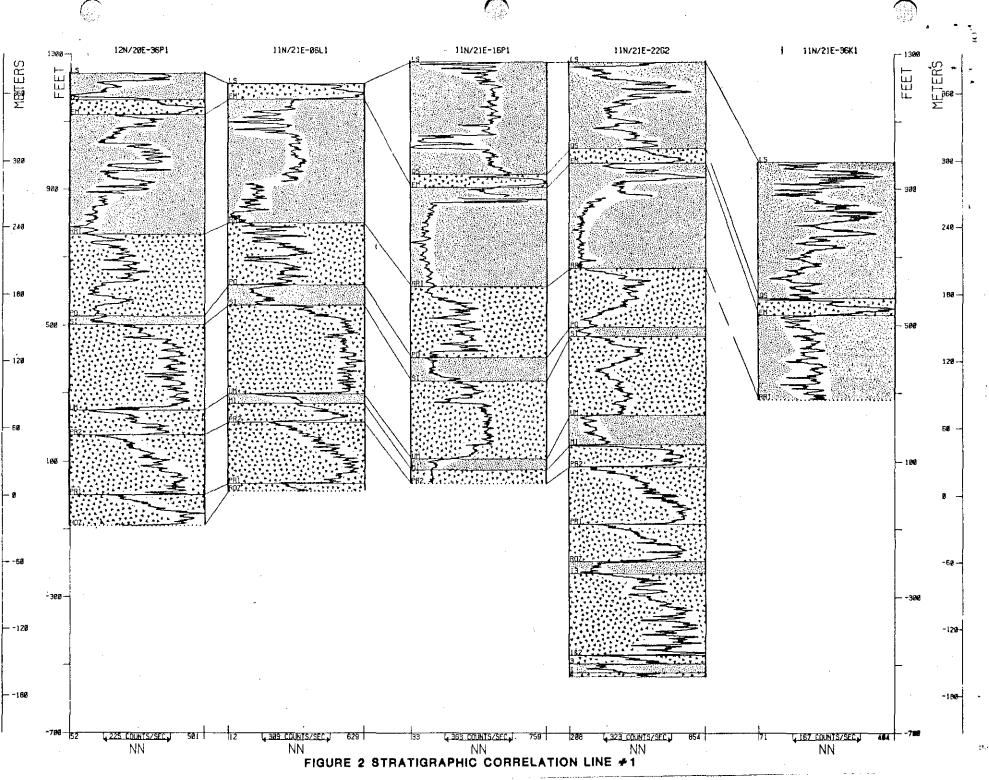
An overview of the region's geologic units is given below. Interested readers are referred to Swanson (1967), Schmincke (1967a and 1967b), Diery and McKee (1969), Bentley (1977), Campbell (1976, 1977a, and 1977b), Swanson and others (1979a), and Bentley and others (1980) for more detailed information.

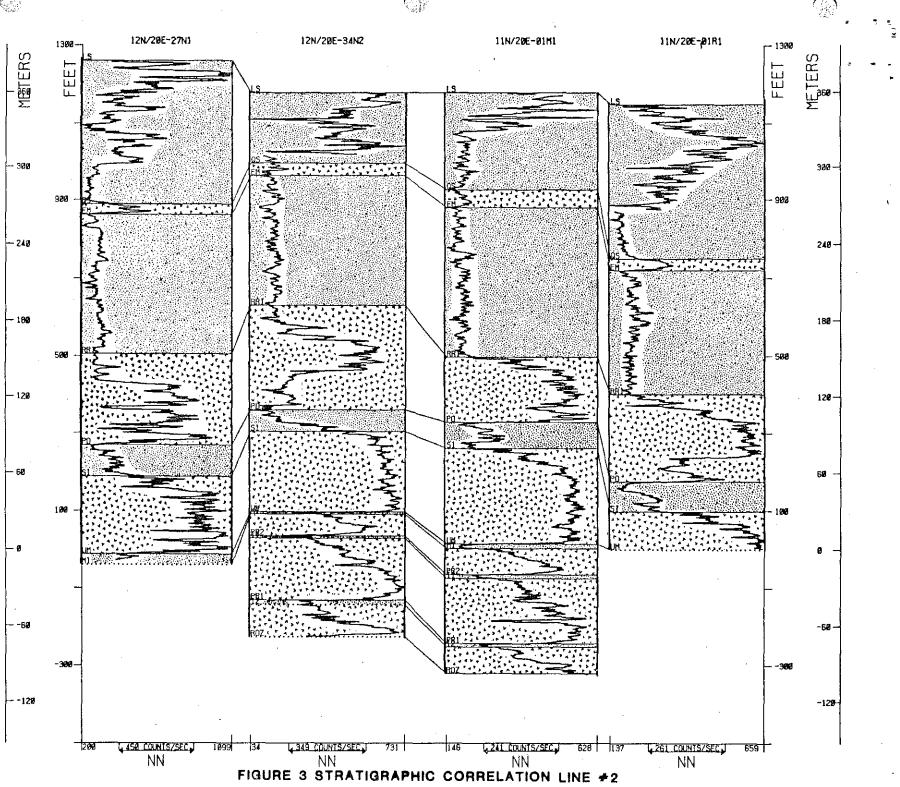
Grande Ronde Formation

The Grande Ronde Formation has been informally divided into four magnetostratigraphic units of which three $(N_1, R_2, \text{ and } N_2)$ have been mapped in the region (Swanson and others, 1979a). The total thickness of this formation

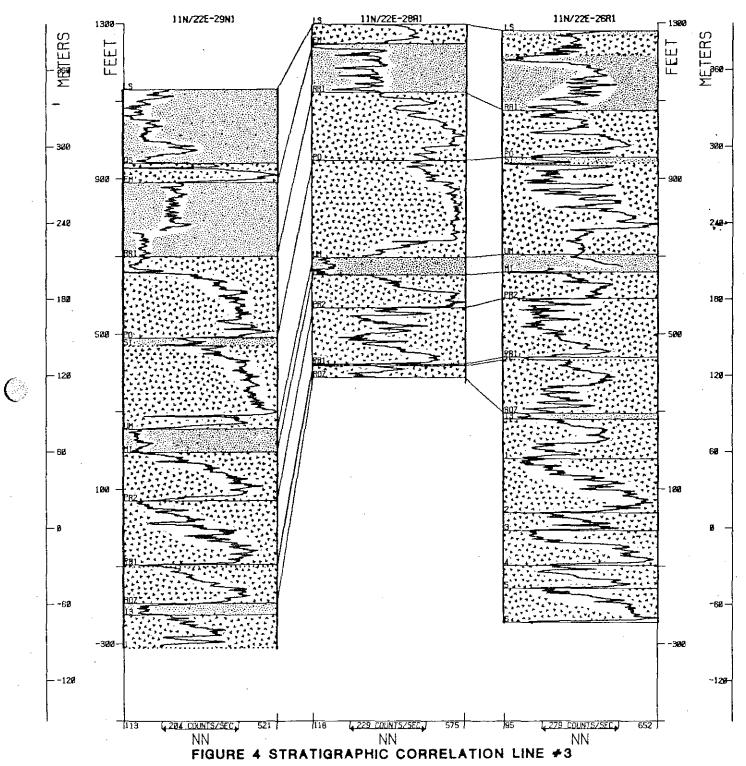
		
	COLUMBIA RIVER BASALT GROUP	ELLENSBURG FORMATION
	ELEPHANT MOUNTAIN	OUATERNARY AND UPPER ELLENSBURG SEDIMENTS
	MEMBER	RATTLESNAKE RIDGE MLMBER
	POMONA MEMBER	SELAH MEMBER
	UMATILLA MEMBER	MABTON MEMBER
$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	PRIEST RAPIDS MEMBER	QUINCY DIATOMITE?
	ROZA MEMBER	SQUAW CREEK MEMBER
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	FRENCHMAN SPRINGS MEMBER	VANTAGE MEMBER
	GRANDE RONDE FORMATION	
F L T A U Y U T L Y L F A U A Y A Y A Y A Y A Y A Y A Y A Y A Y		

, DF

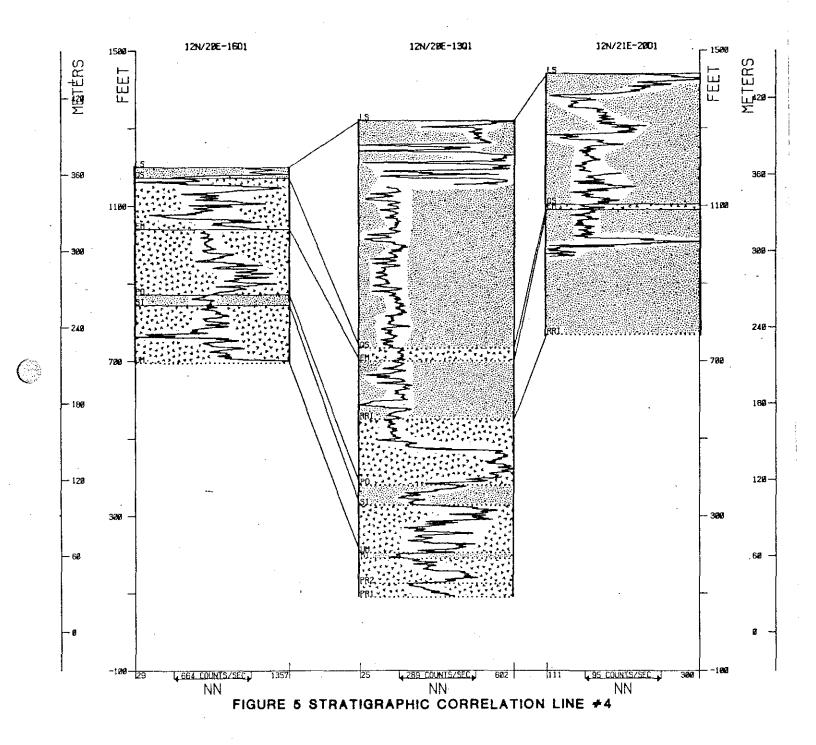

(


Ô

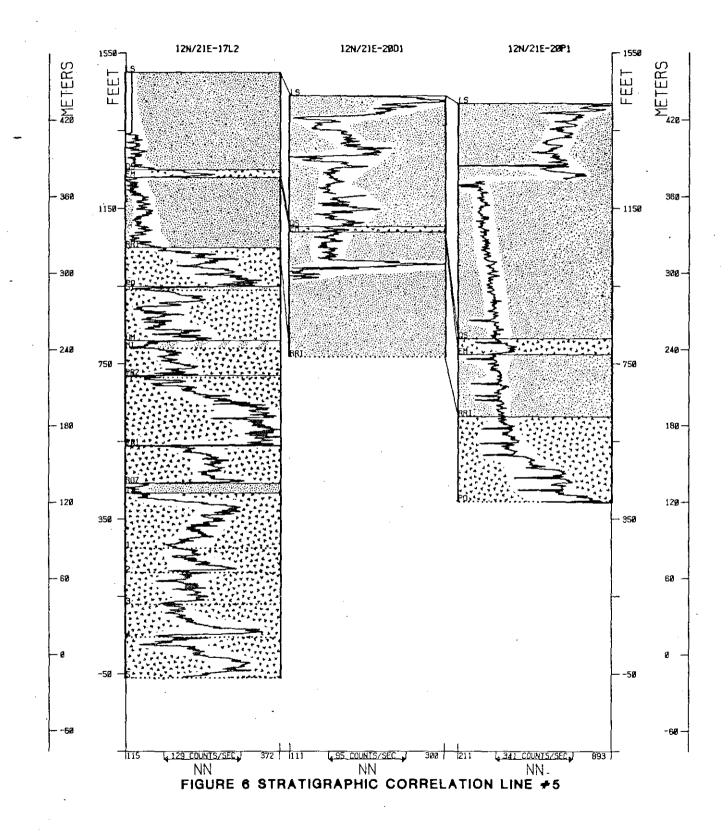
(:


FIGURE 1 GENERALIZED STRATIGRAPHIC SECTION

2a

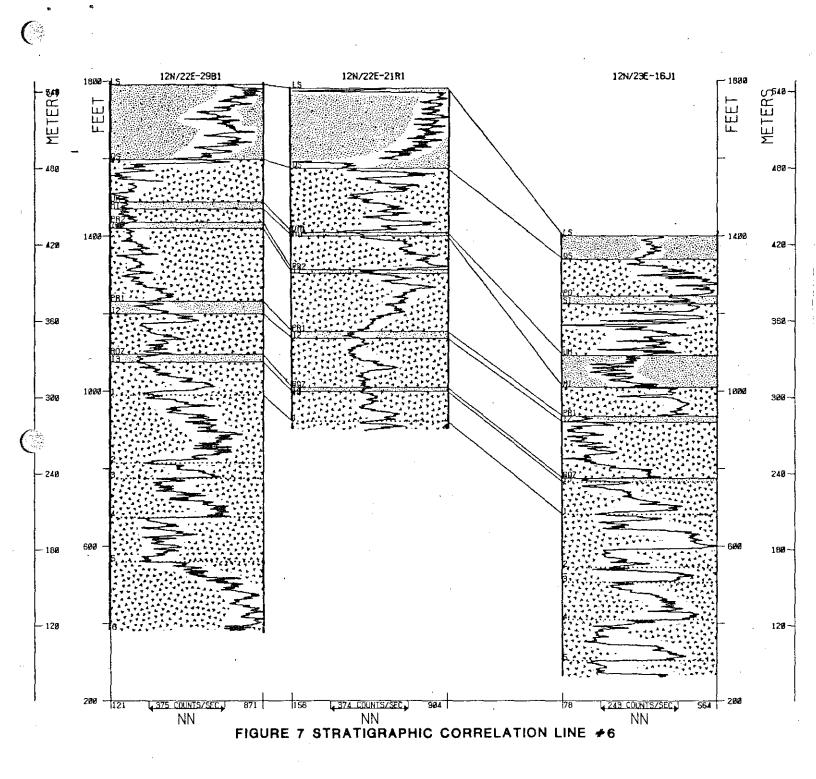


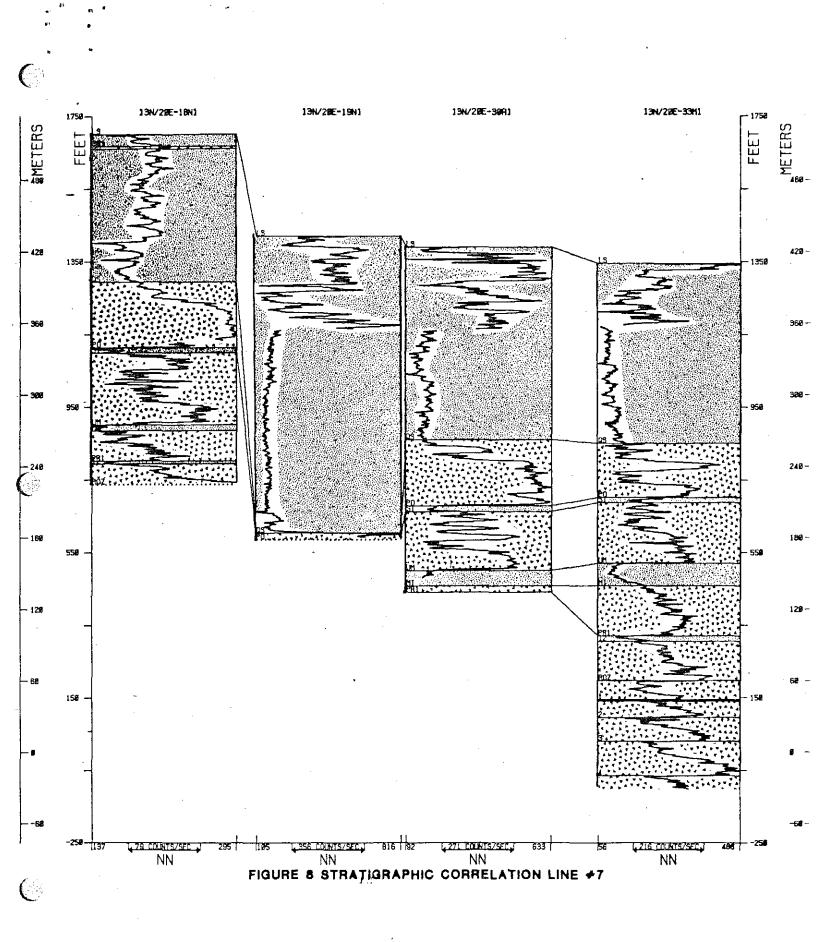
2¢


(

2d

· .


2e


(in

٢

2f

2g

h

in the Yakima region probably does not exceed 1,000m and may vary by as much as 400m because of an irregular pre-basalt topography (Bentley and others, 1980). Individual flows average 20 to 30m in thickness (Bentley and others, 1980).

Vantage Member of the Ellensburg Formation

The Vantage Member of the Ellensburg Formation lies between the Grande Ronde and Wanapum Basalt Formations throughout most of the region. The reported thickness of this member ranges from 0 to 30m (Diery and McKee, 1969; Bentley, 1977; Bentley and others, 1980). This member is composed of volcaniclastic sandstones, siltstones, claystones, and minor quantities of conglomerate and diatomite (Diery and McKee, 1969; Bentley and others, 1980). None of the wells for which stratigrahic sections are given in this report have penetrated the Vantage Member.

Wanapum Formation

In the Yakima Region, the Wanapum Basalt Formation is composed of three members: the Frenchman Springs, the Roza, and the Priest Rapids Members.

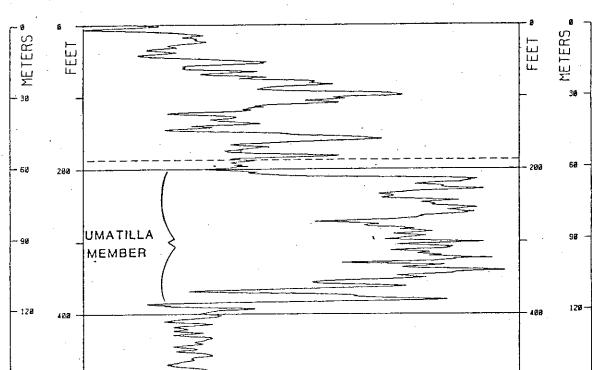
Frenchman Springs Member

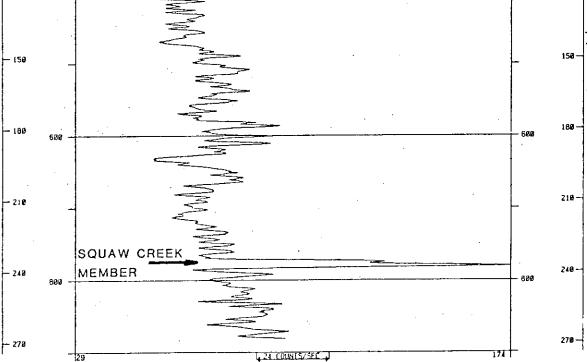
The Frenchman Springs Member, the thickest (over 150m) and most widespread Wanapum Member, is composed of up to six flows at Union Gap (Bentley and others, 1980). None of the wells for which stratigrahic sections are given in this report have completely penetrated this member. Six flows have been tentatively recognized in several wells where their combined thickness ranges from 80 to over 150m. Several thin (up to 8m thick in well

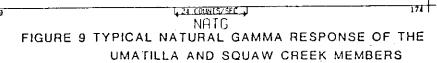
11N/21E-22G2) discontinuous sedimentary interbeds lie between the flows of the Frenchman Springs Basalt Member.

Squaw Creek Member of the Ellensburg Formation

The Squaw Creek Member of the Ellensburg Formation lies between the Frenchman Springs and the Roza Members throughout much of the study area. The thickness of this member ranges from 0 to nearly 11m. This member can be used as a stratigraphic marker due to its high natural gamma response. A typical reponse is shown in Figure 9. The composition of the Squaw Creek Member varies from a diatomite or jasperoid to sandstone or conglomerate (Diery and McKee, 1969; Bentley and others, 1980).


Roza Member


The Roza Member occurs as a single flow in the Yakima region. The thickness of this member ranges from under 30m to almost 45m along the subsurface correlation lines. A thin (0 to 10m) interbed (Quincy Diatomite?) separates the Roza Member from the overlying basalt flow.


Priest Rapids Member

Two basalt flows of the Priest Rapids Member normally occur in the subsurface of the region, with the upper flow thickness ranging from 10m to almost 60m and the lower flow thickness ranging from 45m to almost 60m. A thin (up to 5m) interbed occurs rarely between these two flows. Only one flow was found to occur in several wells in the Black Rock and Moxee Valleys. The thickness of this flow ranges from more than 20m to 42m at these locations. The upper surface of the Priest Rapids Basalt Member is often deeply weathered (Bentley and others, 1980).

a

Mabton Member of the Ellensburg Formation

The Mabton Member of the Ellensburg Formation overlies the Priest Rapids Member throughout much of the Yakima region. The thickness of the member varies from Om to over 25m. The Mabton Member is composed of volcaniclastic deposits and airfall tuff (Bentley and others, 1980).

Saddle Mountains Formation

Four members of the Saddle Mountains Formation are found in the Yakima region. These flows include the Umatilla, Huntzinger, Pomona, and Elephant Mountain Members. Interbedded between these flows are sediments of the Ellensburg Formation that may reach thicknesses greater than 100m.

Umatilla Member

The Umatilla Member consists of a single basalt flow with a thickness that ranges from 30m to 60m in the subsurface of the Black Rock and Moxee Valleys and from 60m to over 80m in the lower Yakima Valley. The colonnade contains poorly developed columns 1m to 2m in diameter and is overlain by a glassy entablature and flow top breccia (Schmincke, 1967b). The Umatilla Member serves as a stratigraphic marker because of its high natural gamma response (Crosby and others, 1972). A typical response is shown in Figure 9.

"Huntzinger" Valley Flow (Asotin Member?)

The Huntzinger Valley flow (Asotin Member?) occurs as a "valley filling" basalt flow southeast of Selah in the Moxee and Black Rock Valleys (Bentley, 1977; Campbell, 1977a). This flow has not been identified in any of the stratigraphic sections that were prepared for this report. Selah Member of the Ellensburg Formation

The Selah Member, an interbed lying between the Umatilla and Pomona Members, is composed of volcaniclastic deposits and vitric tuffs (Schmincke, 1967a). The thickness of this member ranges from less than 10m to over 15m in the subsurface of the Black Rock and Moxee Valleys and from 0m to almost 25m in the lower Yakima Valley.

Pomona Member

The Pomona Member, a single basalt flow, ranges in thickness from less than 40m to over 80m in the subsurface of the lower Yakima Valley. In the subsurface of the Black Rock Valley, the Pomona Member was found to be only 30m thick and in several locations was absent altogether. The Pomona Member in the subsurface of the Moxee Valley was found to be 45m to 55m thick. The upper surface of the Pomona Member is often broken into blocks of highly oxidized scoria (Schmincke, 1967b).

Rattlesnake Ridge Member of the Ellensburg Formation

The Rattlesnake Ridge Member, an interbed lying between the Pomona and Elephant Mountain Members, is composed primarily of siltstone and claystone with interbedded conglomerate (Bentley and others, 1980). The thickness of this member ranges from 40m to over 100m in the subsurface of the region. Bentley and others (1980) report thicknesses of up to 200m for this member in the Toppenish basin.

Elephant Mountain Member

The Elephant Mountain Member usually occurs as one flow in the Yakima region with a second flow, the Ward Gap, being found at Snipes Mountain

(Campbell, 1977b) and at Ward Gap (Schmincke, 1967a). The thickness of this flow ranges from 8m to over 15m in the subsurface of the lower Yakima Valley and is absent in most of the wells studied in the Black Rock Valley. In the subsurface of the Moxee Valley, the thickness ranges from 0m to just over 10m. A thick (48m) section occurs in well 12N/20E-16D1, but it is uncertain whether the entire section is Elephant Mountain Basalt.

Upper Ellensburg Formation and Quaternary Sediments

Overlying the Elephant Mountain Basalt Member are Ellensburg and younger Quaternary sediments. The thickness of these sediments range from 0 to over 170m along the correlation lines that were prepared for this report, and it is expected that greater thicknesses would be found towards the center of the lower Yakima Valley. The Ellensburg sediments consist of volcaniclastic deposits with interbedded conglomerates and sandstones, whereas the Quaternary sediments consist of silt, sand, gravel, and loess deposits (Campbell, 1976, 1977a, and 1977b; Bentley and others, 1980).

In regions where the Elephant Mountain and/or Pomona Basalt Members are absent, the Selah and Rattlesnake Ridge Members are difficult to separate from the upper Ellensburg sediments. Where this situation occurs, the Selah and Rattlesnake Ridge Members have not been differentiated from the upper Ellensburg sediments on the correlation lines that are shown in this report.

- 7

Previous Geophysical Investigations in the Yakima Region

Gravity and aeromagnetic studies have been conducted in the Yakima region by Robbins and others (1975), Konicek (1975), and Swanson and others (1979c). The known seismic history of the region is summarized by Myers and Price (1979).

Analysis of gravity data suggests that the basalts (CRBG) extend to a depth of 2m to 4km in the Yakima and Toppenish Valleys and to a depth of about 1km in the Ahtanum Valley (Robbins and others, 1975; Konicek, 1975). Circular gravity lows were observed just west of the cities of Yakima and Zillah and were interpreted as possibly resulting from buried volcanic cones or deposits of rock having a lower density than the basalts (Robbins and others, 1975). A large gravity high, centered just south of Union Gap, was attributed to a thin layer of sediments (Robbins and others, 1975).

The aeromagnetic study showed low intensity, small amplitude anomalies over the valleys and anomalies of greater intensity and amplitude over the ridges (Swanson and others, 1979c). Magnetic studies may prove useful for mapping the younger valley-filling Yakima Basalts (Swanson and others, 1979c). Magnetotelluric studies hold promise for exploration work below the level of the basalts, but unfortunately none have been published for this region.

Historical earthquake epicenters with hypocenters equal to or greater than 10km deep tend to be concentrated along a north-south line between the cities of Yakima and Ellensburg (Myers and Price, 1979). Historical earthquake epicenters with hypocenters less than 10km deep tend to be concentrated along the same north-south line and along a northwest-southeast line trending through the lower Yakima Valley (Myers and Price, 1979). Magnitudes of 4 or less have been reported for these shallow and deep-seated earthquakes (Myers and Price, 1979).

Previous Geothermal Research in the Yakima Region

Geothermal research in the Yakima region began with a report by Smith (1901). In this report, Smith noted the warm temperatures (approximately 22°C) of the ground water flowing from artesian wells in the Moxee Valley and calculated geothermal gradients of 50 to 73°C/km for the region.

Foxworthy (1962) reported an average geothermal gradient of 40.5°C/km in water wells greater than 15m deep in the Ahtanum Valley and suggested that the rock type had little effect on the gradient.

Blackwell (1980) reported geothermal gradients of 26 to 37° C/km and heat flow values of 57 to 64mWm⁻² from water wells in the region.

Schuster (1980) noted that goeothermal gradients of 50 to 70°C/km were commonly measured in water wells of the region and that several very shallow wells produced warm waters. Depth to 20°C in water wells of the Yakima region were reported to range from 9m to 471m (Schuster, 1980).

Temperature Data

Subsurface temperature data in the Yakima region has been collected by the Geological Engineering Section of Washington State University (WSU), by the Department of Geological Sciences of Southern Methodist University (SMU), by the Washington State Department of Natural Resources (DNR), by the U. S. Geological Survey (USGS), and by the Oregon Institute of Technology (OIT). Some 200 bottomhole temperatures and depths for wells in the Yakima region are given in Appendix B. Well locations are shown in Figure 10.

The accuracy of the temperature data varies with the collecting agency. The temperature data collected by SMU and the DNR have an accuracy of approximately $\pm 0.2^{\circ}$ C (Blackwell, 1980). The accuracy of the temperature data collected by the USGS and OIT is unknown.

The temperature probes utilized by WSU since 1974 were recalibrated in a water bath as part of this project. Prior calibrations were only approximate because of the use of a nonstandard thermometer. Previously published WSU temperature data have been corrected to reflect the calibration changes. The change in calibration averaged less than -1.0° C. The precision of the WSU temperature probes is approximately $\pm 0.2^{\circ}$ C, and the field accuracy is approximately $\pm 0.4^{\circ}$ C. The temperature probes used by WSU prior to 1974 are no longer available, and their accuracy is therefore uncertain.

The DNR Black Rock well #1 was logged on successive days with the WSU temperature probe "A" and with the SMU probe VPR 1. The temperature logs are plotted in Figure 11 and are in close agreement, even though the WSU probe was the fourth tool to be run in the hole that day.

Calculation of Geothermal Gradients in the Yakima Region

Determination of geothermal gradients in water wells of the Yakima region is complicated by intra-aquifer borehole flow. The net result of the borehole flow is a distorted thermal gradient, often assuming a step-like form, with the recorded temperature distribution being unrepresentative of the actual geothermal gradient (see Figure 12).

Three options were available to past investigators in their attempts to determine accurate geothermal gradients in these water wells. The first, and most common method, is based on recorded bottom hole temperatures (BHT) and assumed land surface temperatures (LST), as shown in equation (1).

Geothermal Gradient = $\frac{BHT - LST}{depth(km)}$

(1)

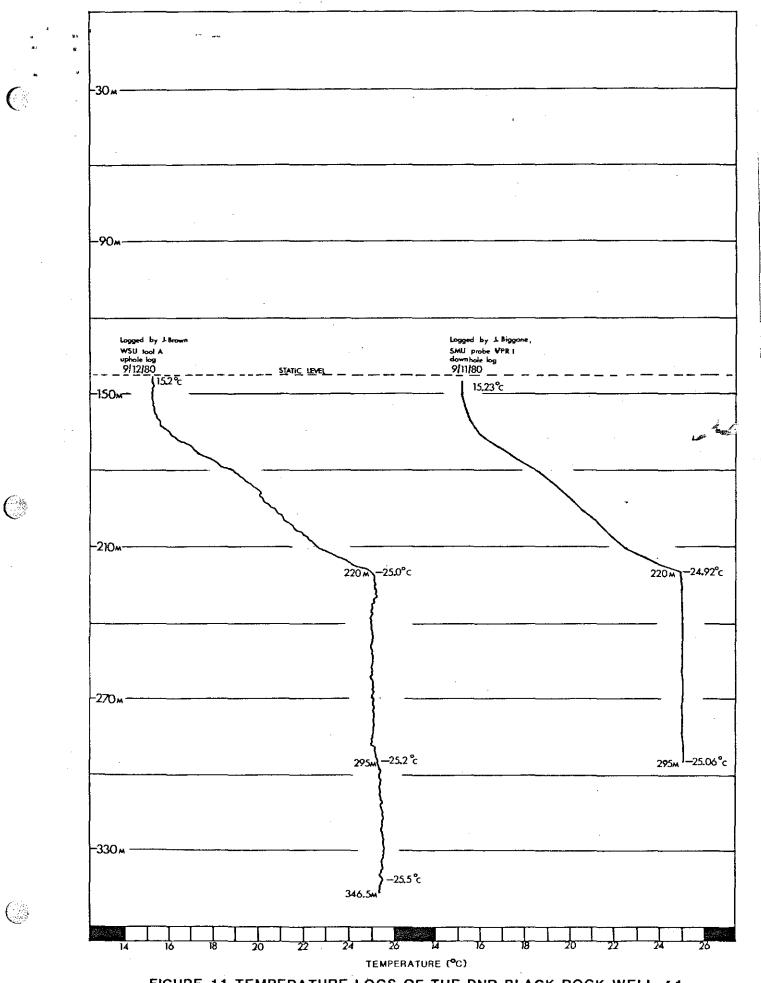
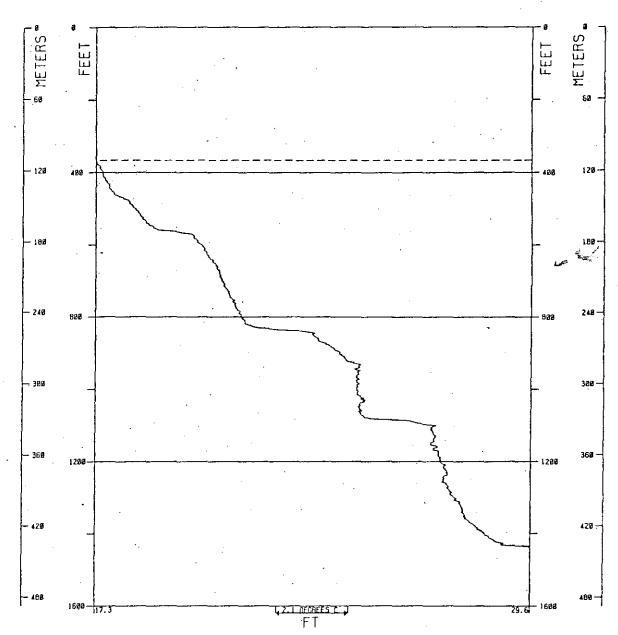



FIGURE 11 TEMPERATURE LOGS OF THE DNR BLACK ROCK WELL #1

10a

C

િ

(F

10b

For shallow wells, it is very important that an accurate LST be used in this method. The error involved varies according to equation (2) and is large for even small errors in the LST.

(

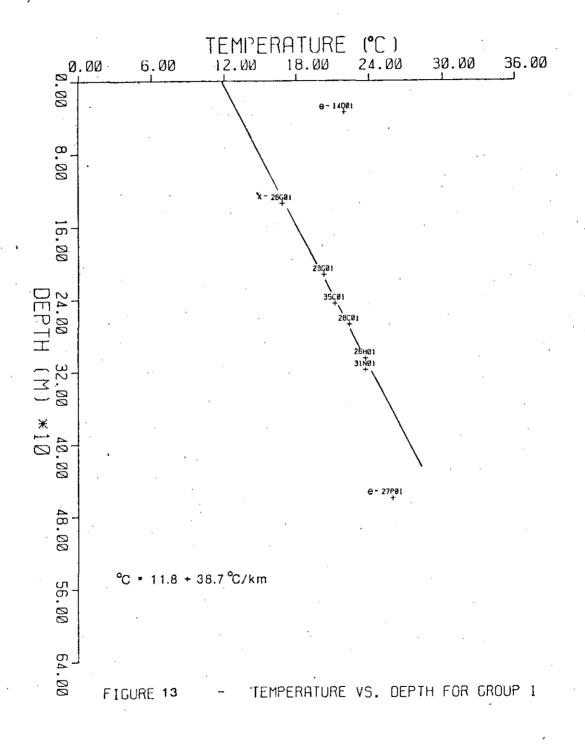
$$error = \frac{LST(assumed) - LST(actual)}{depth(km)}$$
(2)

This method was applied in the Yakima region with very limited success because accurate LST are not available. The geothermal gradients of neighboring wells calculated in such a manner often differed by more than 100 percent.

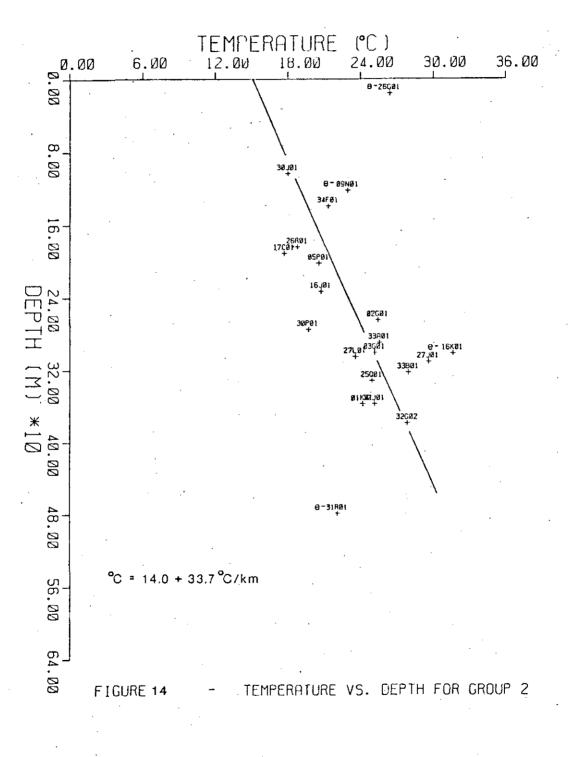
A second method is based on selecting portions of the recorded thermal gradient that appear undistorted and then calculating the geothermal gradient over that interval. This method is time-consuming and does not allow a check on whether the selected interval is actually unaffected by borehole flow.

The third option available to the investigator is to disregard the data altogether.

A new approach to the problem was developed for this report. This method involves a simple least squares linear regression analysis of the BHT's of a group of wells. Well data groups were based on proximity and similar slope aspect and angle. An additional well data group was selected for well depths greater than 650m.

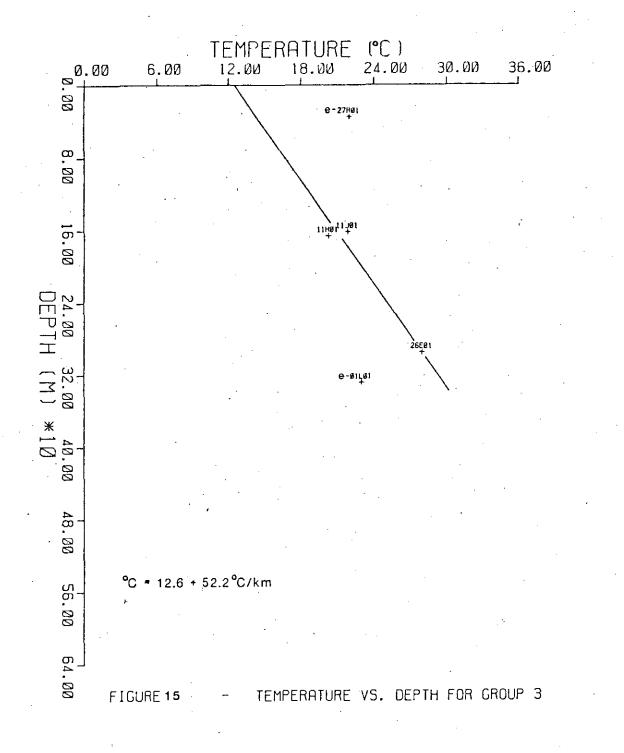

The BHT linear regression analysis has several advantages over the other gradient determination methods. Uphole flow does not affect the BHT, and poor quality data can be discriminated by its "lack of fit" to the rest of the data. Downhole flow can affect the BHT, but in many cases the deepest portion of the well appears to be isolated from the flow. A very rapid increase of temperature is recorded in the bottom of the wells that are isolated from the downhole flow (see Figure 12). Wells in which downhole flow does affect the BHT are discussed in a later section of this report.

. Geothermal Gradients in the Yakima Region


Plots of BHT vs. depth for the well data groups are shown in Figures 13 through 26. (Symbols used in Figures 13 through 26 are explained in Appendix A.) The results of the least squares linear regression analysis are summarized in Table 1. Geothermal gradients for the shallow (less than 650m deep) well data groups range from 25.1°C/km to 52.2°C/km. Projected land surface temperatures range from 10°C to 14°C. Depths to the 20°C isotherm range from 142m to 344m. The areal distribution of the geothermal gradients, projected land surface temperatures, and depths to the 20°C isotherm are shown in Figure 27.

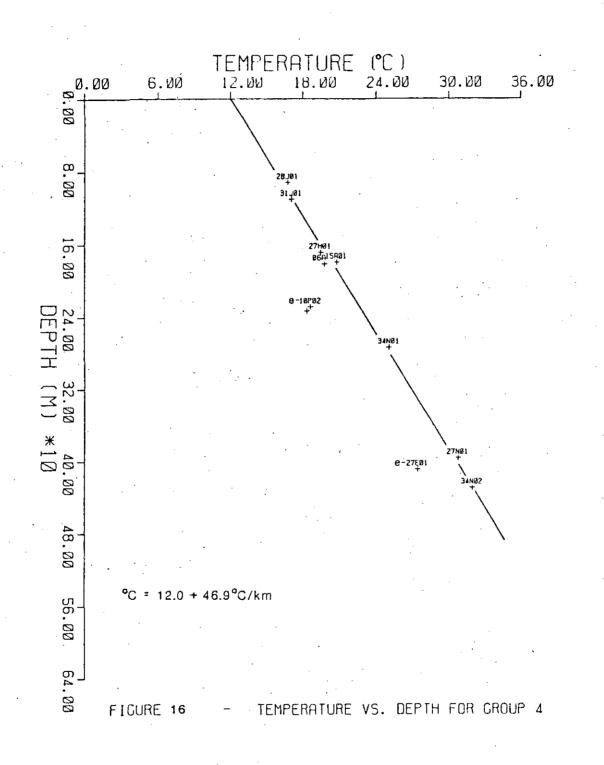
The majority of wells that were included in the deep (greater than 650m deep) well data group are located outside of Yakima County. Despite the fact that these deep wells are separated by large distances, an excellent relationship between BHT and depth exists (Figure 26). The least squares regression analysis of the deep well data group yielded a geothermal gradient of 29.9°C/km, a projected land surface temperature of 24.3°C, and a depth to the 100°C isotherm of 2,532m. A listing of the wells that were included in the individual well data groups is given in Appendix C.

Accuracy of the Geothermal Gradients Obtained by the Regression Analysis Temperature logs (Figures 28 through 32) of wells in well data groups 4,

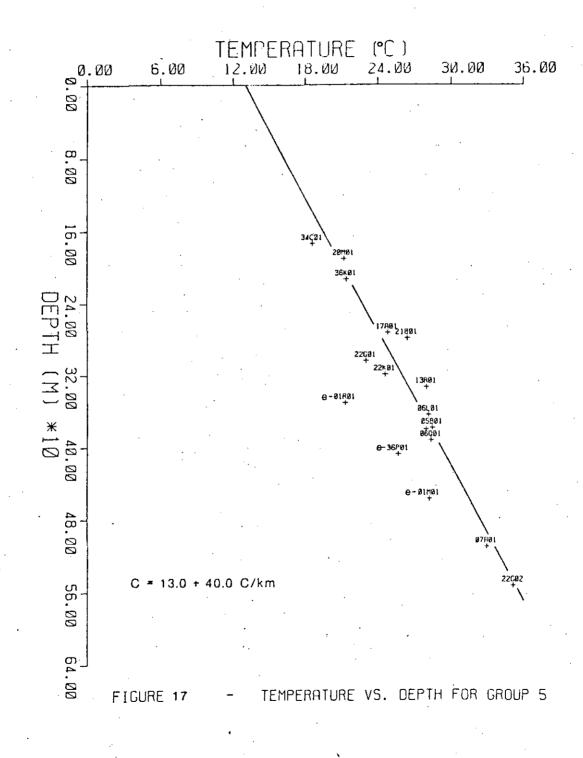


12a

.


12b

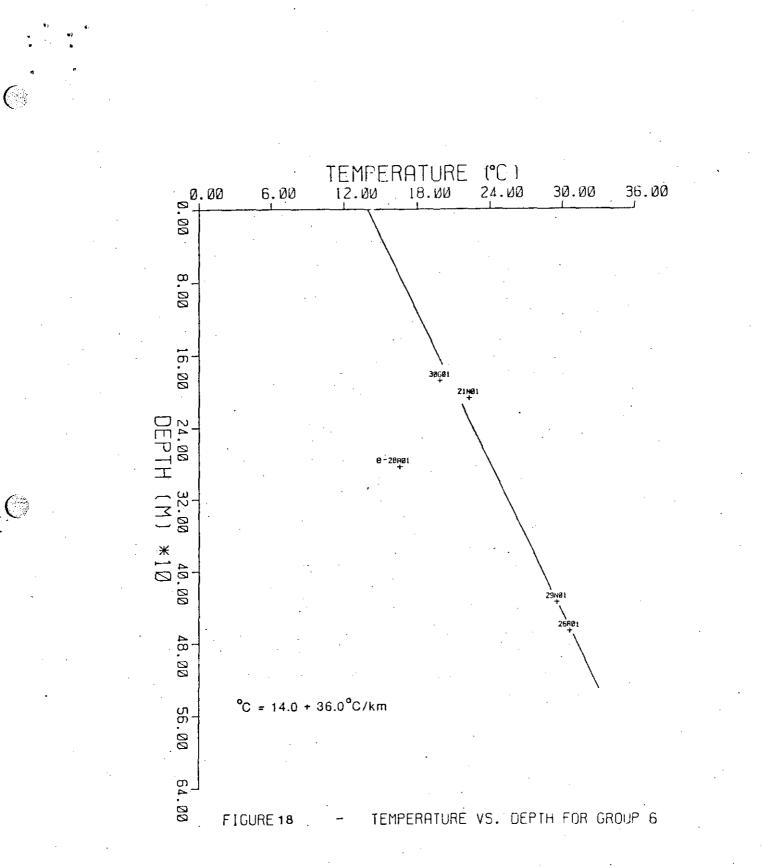
(


C

12c

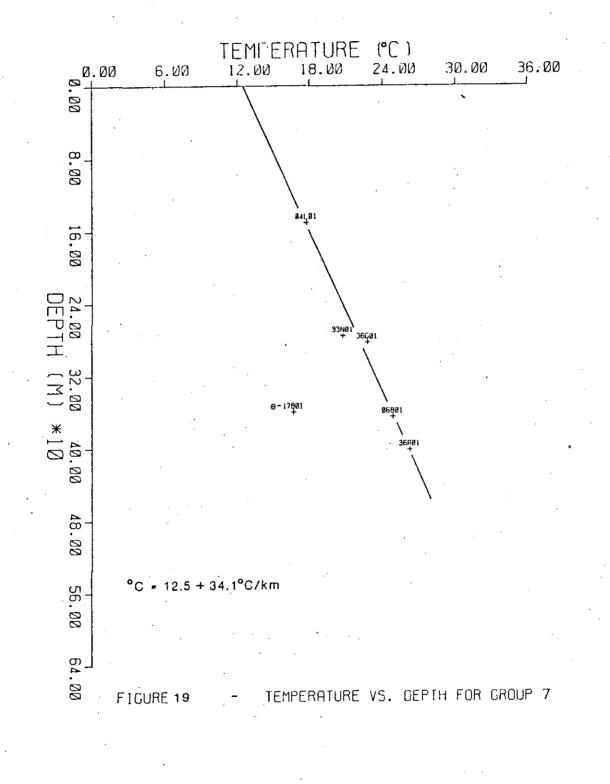
12d

C



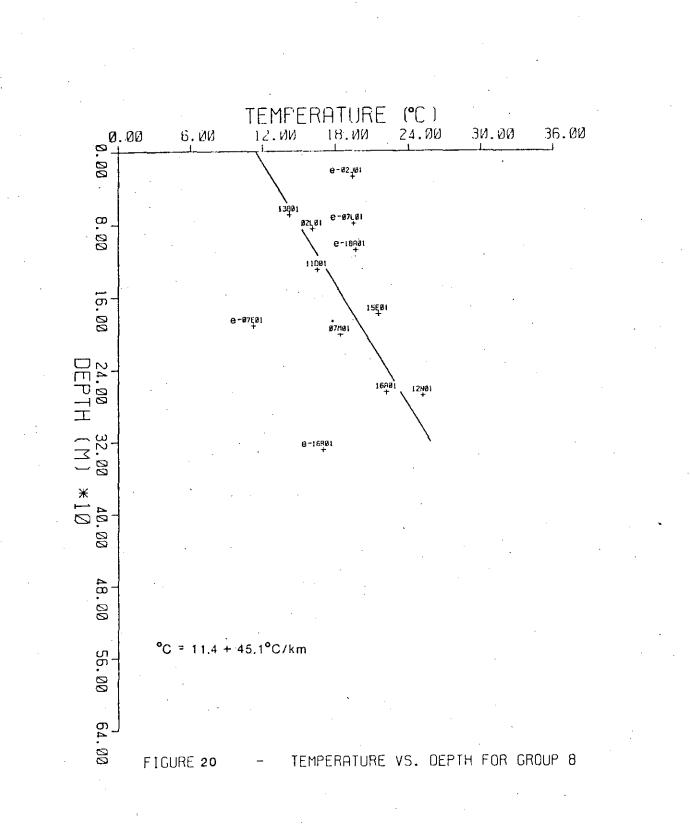
(

(:

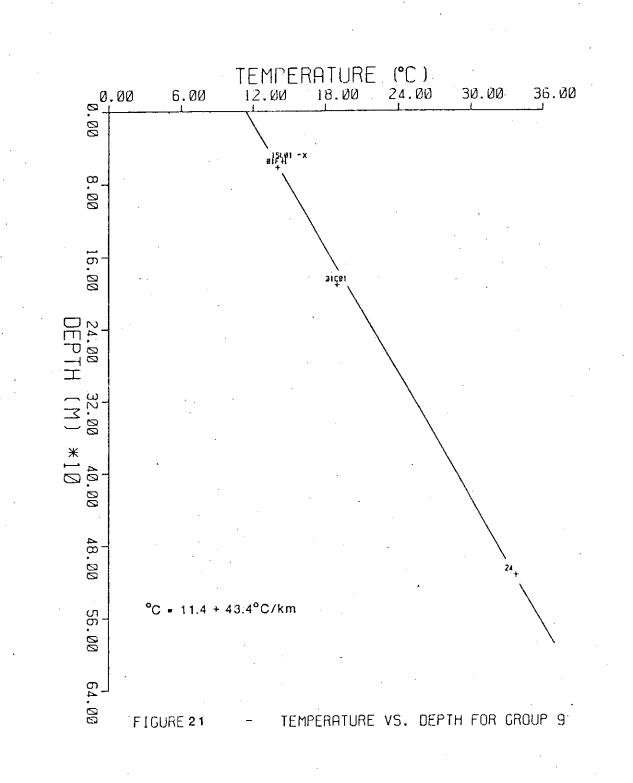

 \bigcirc

12e

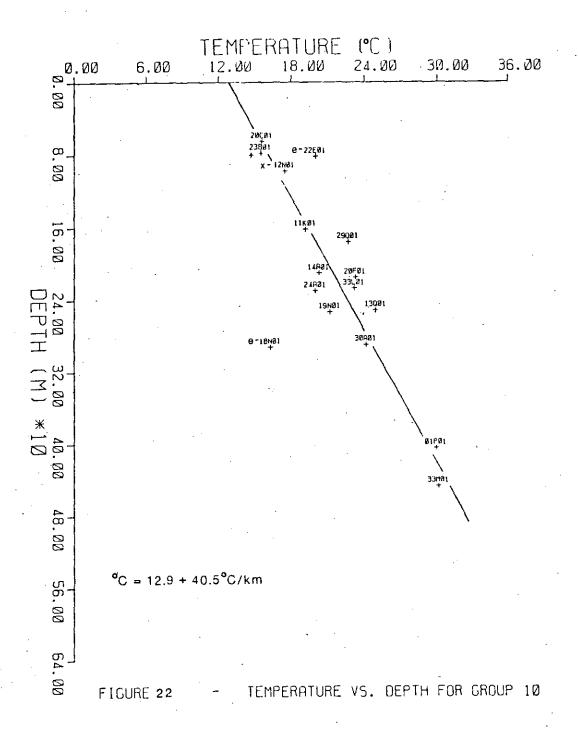
٩


12f

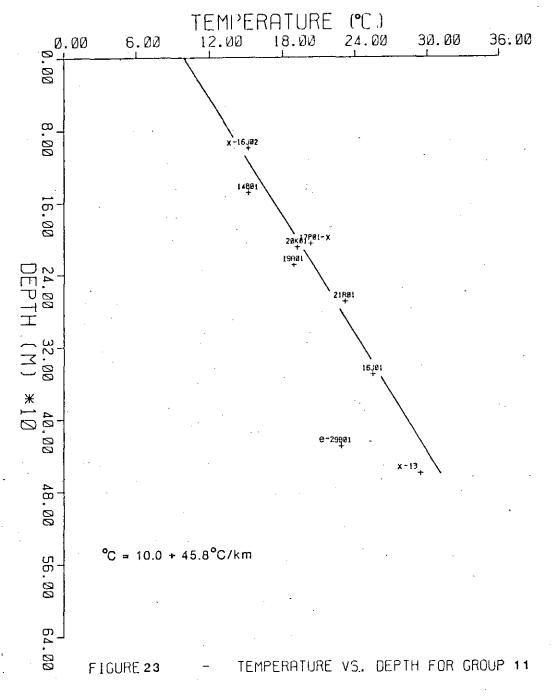
(


Ċ

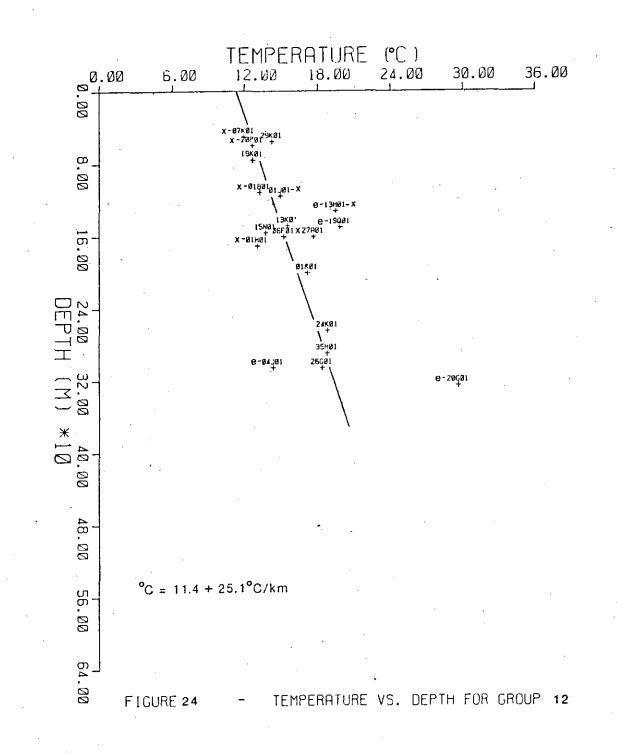
12g


(

12h

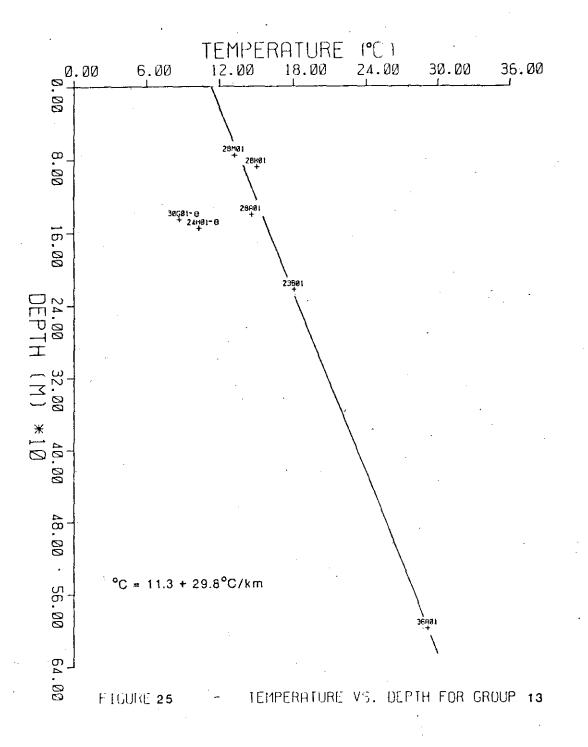

Ċ

12i

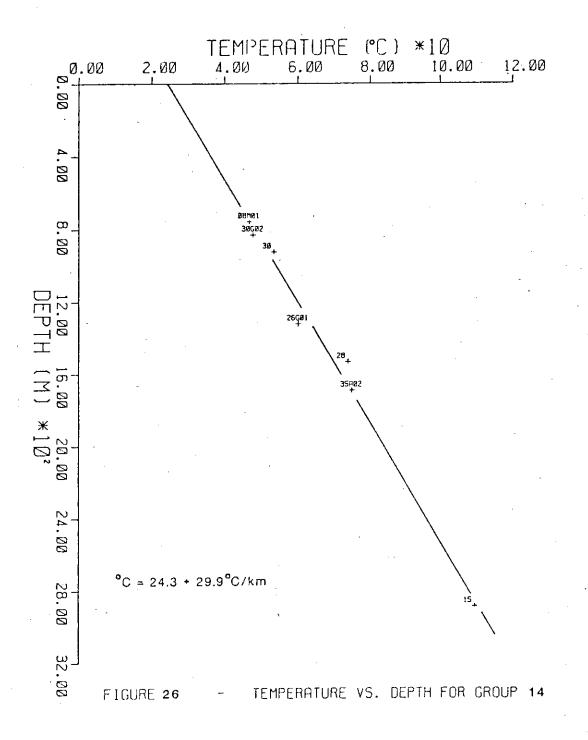


(P

12j



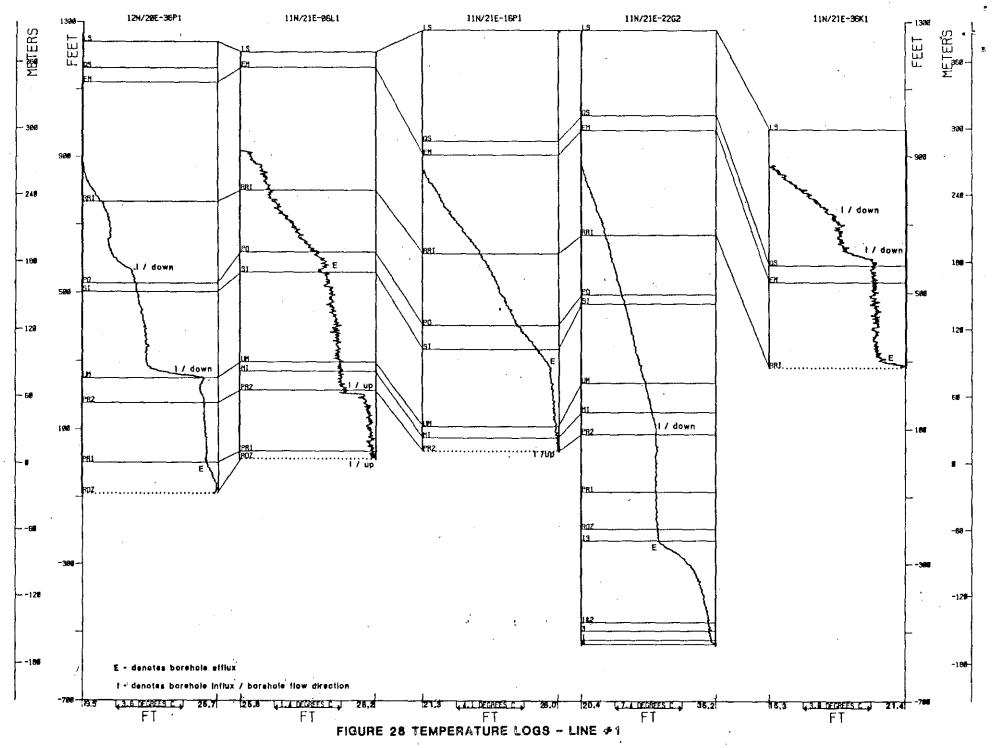
12k

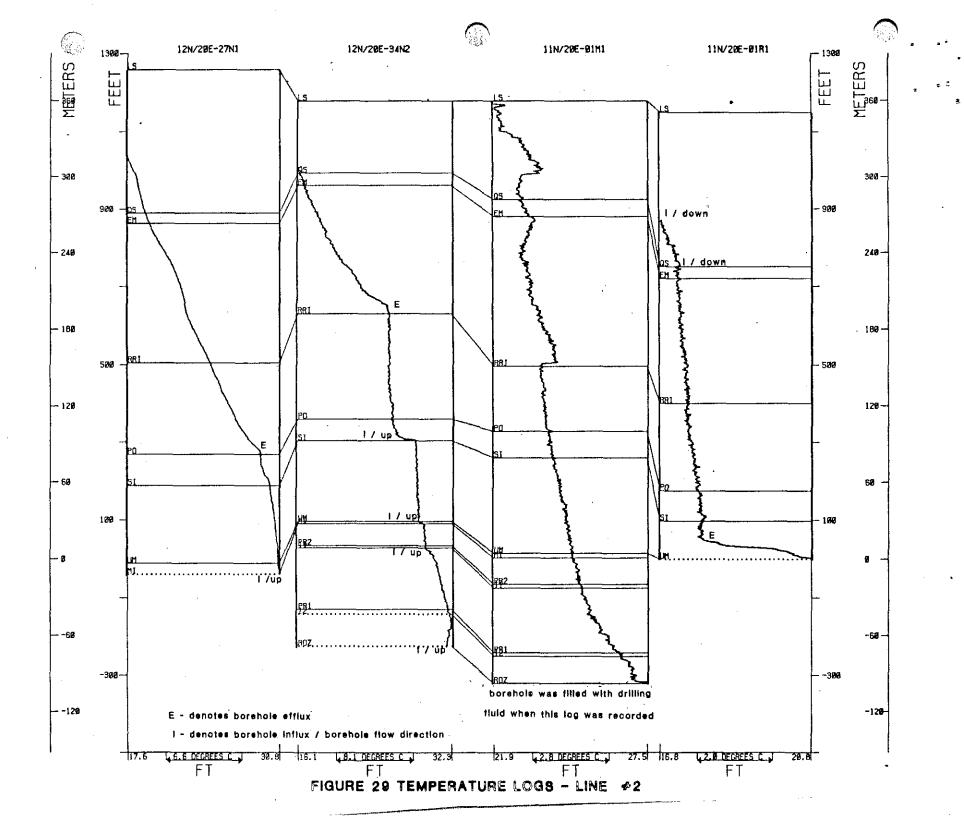

(

12L

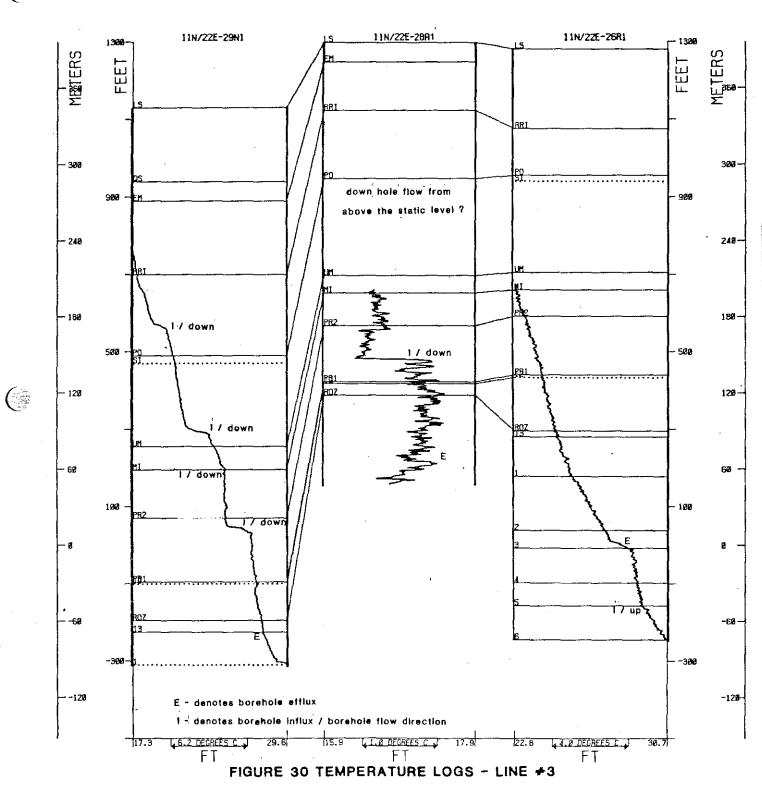
Ĉ

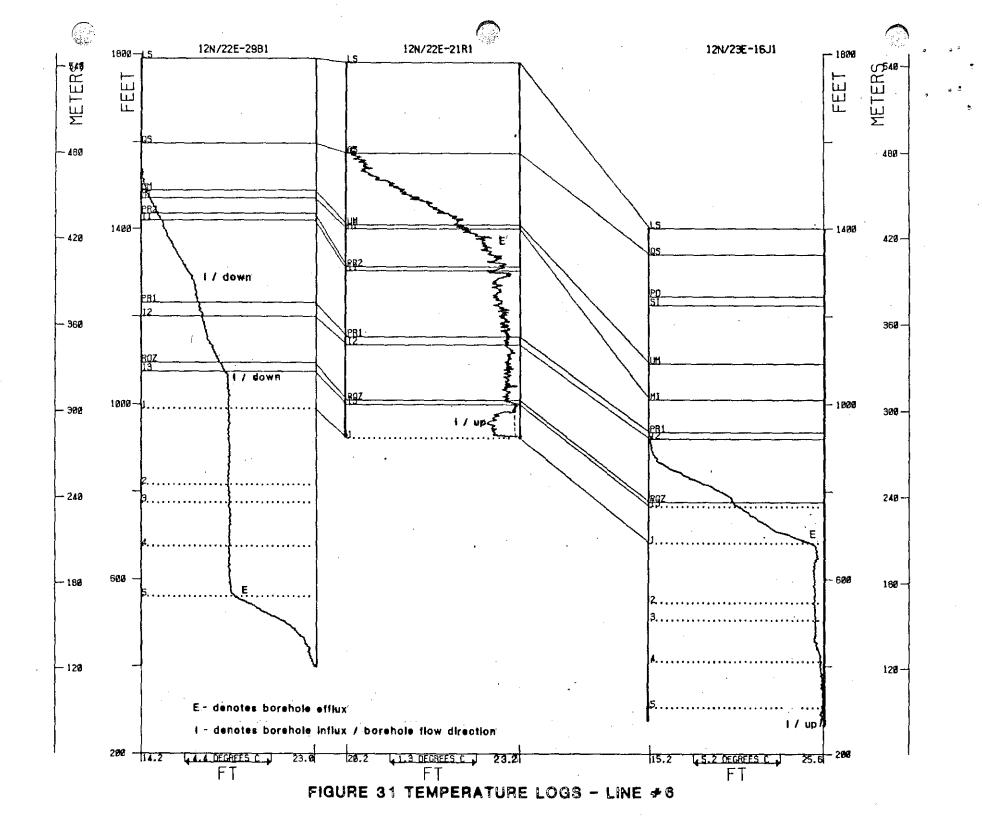
12m

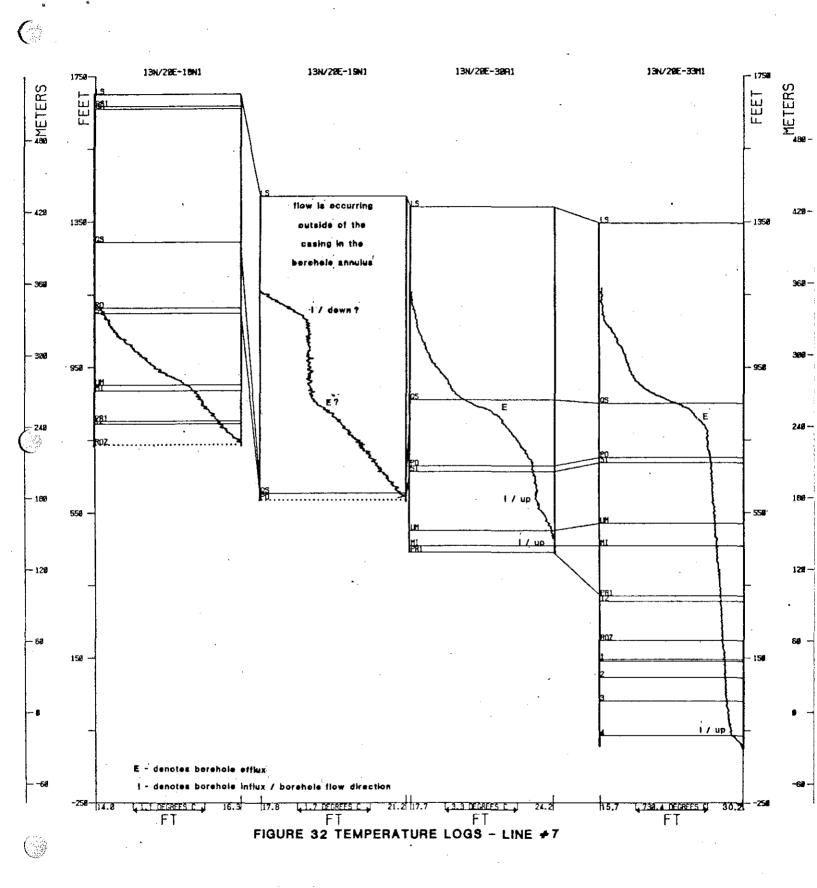

(


C

 $\left(\right)$


12n





12p

12q

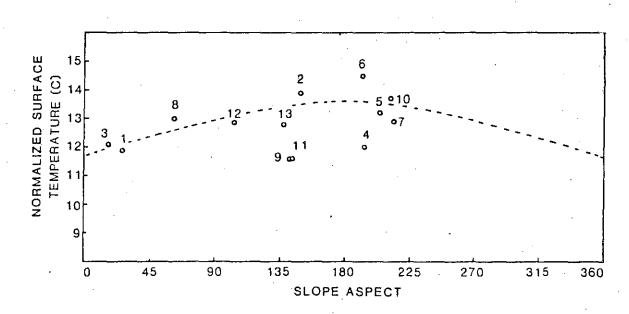
12s

Well Data Group	Geothermal Gradient (°C/km)	Land Surface Temperature (°C)	Depth to the 20°C Isotherm (m)
1	38.7	11.8	212
2	33.7	14.0	179
3	52.2	12.6	142
4	46.9	12.0	171
5	40.0	13.0	175
6	36.0	14.0	167
7	34.1	12.5	220
8	45.1	11.4	191
9	43.4	11.4	199
10	40.5	12.9	176
11	45.8	10.0	219
12	25.1	11.4	343
13	29.8	11.3	292
14 (deep wells)	29.9	24.3	2532*

Table 1. Geothermal Gradients, Land Surface Temperatures, and Depths to the 20°C Isotherm

*depth to the 100° C isotherm

()


 $\left(\begin{array}{c} & \\ & \\ & \end{array} \right)$

5, 6, 10, and 11 were analyzed to determine whether the geothermal gradients obtained by the BHT regressions could be used to predict aquifer temperatures. The results of this analysis are summarized in Table 2 and indicate that the BHT regression equations do provide a reasonable estimate of aquifer temperature. Exact correspondence between the measured and predicted temperatures should not be expected, because the accuracy and quality of the temperature data vary and because of the large areas considered in the well data groups.

The BHT's of several of the wells that were analyzed plot below the line that represents the geothermal gradient of the well data group (for example, wells 11N/20E-1R1, 11N/22E-22G2, and 12N/20E-36P1 for well data group 5). In all but one case, the borehole flow direction in these wells was downhole, and the downhole flow from a higher level to the well bottom would result in the colder than normal temperatures. It should be noted that the recorded temperature at the zone of influx of the downhole flow corresponds to the predicted temperature as given by the regression equation for the depth of the influx zone. The one exception, well 13N/20E-18N1 of well data group 10, was interpreted as having uphole flow, but the discrepancy may be caused by a poor quality temperature log.

Projected Land Surface Temperatures and Slope Aspect

The relationship between the projected land surface temperature and the land surface slope aspect of the well data groups was also investigated. Land surface temperatures were normalized to a 305m (1000ft) elevation according to a lapse rate of 7°C/km and plotted vs. the land surface slope aspect of the well data groups (Figure 33). Inspection of Figure 33 indicates that the land surface temperature is related to slope aspect for the majority of the well

િ

FIGURE 33 SLOPE ASPECT VS. NORMALIZED SURFACE TEMPERATURE

14a

12N/22E-21R1

268.1

22.8

Location	"Aquifer" Depth (m)	Measured Temperature (C [°])	Predicted Temperatures (C [°])	Borehole Flow Direction	"Aquifer" Identity	Pump Test Temperature (C°)
11N/20E-1R1	85.3 120.4	17.0 17.5	16.4 17.8	down down	QS QS	·
11N/21E-6L1	304.8 364.8	27.6 28.2	25.2 27.6	up up	PR Roza	·
11N/21E-16P1	377.9	28.0	28.1	up	PR	
11N/21E-22G2	352.0	28.5	27.1	down	PR	
11N/21E-36K1	76.2 115.8	18.0 20.2	16.0 17.6	down down	QS QS	
11N/22E-26R1	438.0	28.5	29.8	up	FS	
11N/22E-28A1	195.1	16.4	21.0	down	MI	
11N/22E-29N1	173.7 257.8 285.0 335.3	19.6 22.8 23.7 25.9	20.3 23.3 24.3 26.1	down down down down	PO UM MI PR	
12N/20E-27N1	393.2	30.7	30.4	up	MI	
.12N/20E-34N2	266.7 332.2 349.0 402.3 428.2	25.6 28.1 28.9 32.3 32.0	24.5 27.6 28.4 30.9 32.1	up up up up up	SI/UM UM/MI PR PR Roza	27.2
12N/20E-36P1	204.2 301.7	21.7 25.0	21.2 25.1	down down	PO PR	27.8

22.3

up

FS

 \cap

15

....

Location	"Aquifer" Depth (m)	Measured Temperature (C°)	Predicted Temperatures (C°)	Borehole Flow Direction	"Aquifer" Identity	Pump Test Temperature (C°)
12N/22E-29B1	153.3 196.0 220.7	16.7 17.5 19.4	17.0 19.0 20.1	down down down	PR Roza FS	17.8
12N/23E-16J1	349.0	25.6	26.0	up	FS	-
13N/20E-18N1	275.8?	16.0	24.1	up -	PR/Roza	
13N/20E-19N1	108.2	- 18.9	17.3°	down	QS	
13N/20E-30A1	· 253.0 280.4	23.5 24.1	23.1 24.3	up up	UM MI/PR	
13N/20E-33M1	429.7	29.0	30.3	up	FS	

Table 2. Measured and Predicted "Aquifer" Temperatures (cont.)

______,

data groups. Well data groups 4, 6, 9, and 11 do not show a good fit to the curve, and the reason for these exceptions is uncertain. Possible explanations include differences in vegatation, land use, irrigation, and whether the area lies in a recharge or discharge portion of the groundwater flow system.

Mean elevation, slope aspect, and normalized land surface temperature are given in Table 3. Mean slope angle was similar for all of the well data groups and averaged about 2°.

Chemical Geothermometers

The geochemistry of ground water can provide an indication of the maximum temperature that the water was subjected to while underground. Chemical data were compiled for 16 springs and 32 wells that are located in the Yakima region. The locations of these springs and wells are shown in Figure 10.

Predicted source temperatures were calculated according to the Na-K-Ca method of Fournier (1977). The predicted source temperature is given by equation (3):

$$\log\left(\frac{Na}{K}\right) + \beta \log\left(\frac{\sqrt{Ca}}{Na}\right) = \frac{1647}{\sigma_{C} + 273} - 2.24$$
(3)

Calculated source temperatures for the spring waters range from 6°C to 137°C. Calculated source temperatures for the well waters range from 14°C to 222°C. Chemical concentrations and calculated source temperatures for the springs and wells are summarized in Tables 4 and 5, respectively.

Well Data Group	Projected Land Surface Temperature (°C)	Mean Elevation of Well Data Group (ft.)	Slope Aspect of Well Data Group (°)	Normalized Land Surface Temperature (°C)
1	11.8	1047	28	11.9
2	14.0	983	149	14.0
3	12.6	722	18	12.1
4	12.0	1012	194	12.0
5	13.0	1209	207	13.4
6	14.0	1220	192	14.5
7	12.5	1202	214	12.9
8	11.4	1757	62	13.0
9	11.4	1110	143	11.6
10	12.9	1356	211	13.7
11	10.0	1764	142	11.6 •
12	11.4	1707	104	12.9
13	11.3	1683	138	12.8

Table 3. Mean Elevation, Slope Aspect, and Normalized Land Surface Temperatures for Well Data Groups 1-13

()

()

Location	Name	Sample Collection Date		emical [ality × K		Recorded Temperature (°C)	Predicted Source Temperature (°C) ¹	Data Source ²
7/11-18	Gotchen Creek Spr.	9/15/72	1.48	0.38	0.10	3.0	85	· C
7/12-1	Bacon Creek Spr.	9/16/72	25.66	0.31	0.17	6.0	98	С
7/12-4M		6/10/74	1.26	0.15	1.67	6.1 to 8.0	9	· A
7/12-28A	McCumber Spr.	4/3/74	1.26	0.38	1.07	5.6	37	A
7/13-33Q		4/24/74	1.74	0.15	2.50	8.6	6	А
8/12-15G	Bup Spr.	6/13/74	1.30	0.18	1.32	4.8 to 5.0	16	А
8/12-27L		7/15/74	1.22	0.61	1.42	6.3	44	A
9/12-35B	• • •	6/13/74	1.57	0.23	1.37	5.6 to 6.3	23	А
9/13-18P		9/12/74	65,25	4.09	24.20	12.2	84	А
10/11-19L		7/15/74	0.35	0.15	0.52	2.9	17	Α
11/12-24L	Soda Spr.	8/15/74	56.55	0.56	29.94	9.5	23	А
11/13-3E		9/05/74	1.35	0.66	1.32	4.5	49	А
11/13-4K		9/05/74	43.50	0.90	0.67	13.8	137*	A
12/25-29A		9/12/60	3.13	0.43	5,49		21	D
14/18-3	Mulford Spr.	11/19/48	5.65	1.48	7.98	15.0	. 51	D
16/17-32	Mallotite Spr.	11/19/48	7.39	1.10	2.99	17.0	64	D

Table 4. Chemical Data for Springs in Yakima County, Washington

¹*indicates that $\beta = 1/3$; otherwise, $\beta = 4/3$

²Data source:

A) Cline, R. D., 1976

C) Schuster, J. F. et al., 1978

D) Van Denburgh, A. S., and Santos, J. F., 1965

.

Location	Name	Sample Collection Date		mical lity × K		Recorded Temperature (°C)	Predicted Source Temperature (°C) ¹	Principal Aquifer	Data Source ²
7/23-36	Chesley (DNR)	10/17/77	34.36	3.66	1.97		209*	100 GP	E
7/23-36	Chesley (DNR)	3/30/78	26.10	3.81	2.17		222*	at ==	E
8/24-2J	City of Prosser #2	10/30/59	18.70	3.07	3.49	18.9	105/217*	basalt	D
8/24-2H	City of Prosser #3	10/30/59	23.49	2.51	4.24	17.2	96/194*	basalt	D
8/24-2Q	City of Prosser #4	5/11/61	20.01	2.56	3.99	15.6	96/202*	basalt	D
9/22 - 12H	Pride	5/05/61	7.39	1.89	11.98	16.1	53	gravel?	D
10/20-3N	City of Toppenish #2	1/26/39	2.96	0.49	5.49	13.9	23	gravel	D
10/20-9A	City of Toppenish #6	10/19/59	8.26	1.05	3.24	20.6	62	sand, gravel	D
10/22-30	Snipes Mt.	6/13/75	11.87	1.74	5.99		68		E
12/16-13D	Herke	8/30/51	4.35	0.46	3.99		30	basalt	В
12/16-17J	Mondor	8/30/51	2.44	0.95	2.50		52	alluvium	В
12/17-16D	Brown	10/21/59	7.39	0.82	3.24	15.6	53	basalt	D
12/17-16R	Borton	4/18/52	3.13	0.79	2.99	17.2	46	basalt	В
12/18-5G	Anderson	8/29/51	8.26	1.36	5.74		58	alluvium	В
12/18-5J	Richwine	8/29/51	6.96	1.43	5,99		57	alluvium	В
12/18/11E	Schreiner	8/30/51	4.18	0.82	7.49		34	Ellensburg	В
12/20-16	Gangle (DNR)	6/14/74	3.87	1.28	6.74		46	·	E
12/20-36	Cheyne (DNR)	10/05/79	3.00	2.09	1,40		120/185*		E
12/23-13B	Wright	5/05/61	4.78	0.74	6.99	16.1	34	_ =	D
13/19-31J	Yakima Farmers Supply	8/29/51	5.22	1.23	8,48		44	cemented grave	1 B
14/18-12D	Knopp	11/22/48	10.00	0.74	10.48		33	gravel	D
14/18-13R	Barnheart	11/19/48	26.97	1.23	14.97		48		D

Table 5. Chemical Data for Wells in Yakima County, Washington (cont.)

Location	Name	Sample Collection Date		mical lity × K	· · ·	Recorded Temperature (°C)	Predicted Source Temperature (°C) ¹	Principal Aquifer	Data Sourcel
14/19-19G	Larson	5/05/61	25.23	1.61	20.96	12.2	49	sand?	D
14/19-28B	U.S.A.	9/14/60	8.26	0.95	3.74	20.0	56	basalt	D
14/19-28F	U.S.A.	10/05/55	13.05	1.13	8.48	15.0	50	basalt?	D
14/19-28NE ¹ 4	U.S.A.	10/05/55	8.70	1.18	4.24	17.2	60	basalt	D
15/17-13C	Cameron	11/22/48	10.00	1.28	2.99	12.8	71	sand, basalt	D
15/17-36	Wenas (DNR)	9/14/79	14.79	1.54	2.50		86		E
15/18-33P	Kershaw	11/22/48	5.65	1.02	5.74		47	sand	D
16/14-1J	U.S.F.S.	5/04/59	19.57	0.18	20.96		-3/75	basalt	D3
16/14-1R	U.S.F.S.	11/04/59	3.44	0.33	6.49		14	sand, gravel	D
16/17-19E	Green	11/19/48	3.83	1.23	3.99		55	sand	D

¹*indicates that $\beta = 1/3$; otherwise, $\beta = 4/3$

²Data source:

B) Foxworthy, B. L., 1962

D) Van Denburgh, A. S., and Santos, J. F., 1965

E) W.S.U. Soil Testing Lab - Water Sample Analysis, various dates

³poor data?

Summary

The Yakima region of south-central Washington possesses a low temperature geothermal resource (i.e., greater than 20°C) within the depth range already penetrated by domestic and irrigation water wells. The geothermal gradients developed by the regression analysis appear capable of predicting the temperature-depth distribution and can be used as a guide for future development. Future research will be aimed at expanding these findings to other areas within the Yakima region and on explaining the variation in the geothermal gradients from one area to another.

References

Bentley, R. D., 1977, Stratigraphy of the Yakima basalts and structural evolution of the Yakima ridges in the western Columbia Plateau: Geology Excursions in the Pacific Northwest, Geological Society of America Annual Meeting, Seattle, Wash.

Bentley, R. D., Anderson, J. L., Campbell, N. P., and Swanson, D. A., 1980, Stratigraphy and structure of the Yakima Indian Reservation, with emphasis on the Columbia River Basalt Group: U. S. Geological Survey Open File Report 80-200.

Blackwell, D. D., 1980, Heat flow and geothermal gradient measurements in Washington to 1979 and temperature-depth data collected during 1979: Washington State Dept. of Natural Resources, Division of Geology and Earth Resources Open File Report 80-9.

Campbell, N. P., 1976, Geologic map of the Yakima area: Washington State Dept. of Natural Resources, Division of Geology and Earth Resources Open File Report 76-11.

Campbell, N. P., 1977a, Geology of the Selah area, Yakima County, Washington: Washington State Dept. of Natural Resources, Division of Geology and Earth Resources Open File Report 77-7.

Campbell, N. P., 1977b, Geology of the Snipes Mountain area, Yakima County, Washington: Washington State Dept. of Natural Resources, Division of Geology and Earth Resources Open File Report 77-8.

Cline, R. D., 1976, Reconnaissance of the water resources of the upper Klickitat River basin, Yakima Indian Reservation, Washington: U. S. Geological Survey Open File Report 75-518.

Crosby, J. W., III, Anderson, J. V., and Kiesler, J. P., 1972, Geophysical investigations of wells in the Horse Heaven Hills area: Washington State University, College of Engineering Research Report 72/11-24.

Diery, H. D., and McKee, B., 1969, Stratigraphy of the Yakima Basalt in the type area: Northwest Science, vol. 43, p. 47-64.

Fournier, R. O., 1977, Chemical geothermometers and mixing models for geothermal systems: Geothermics, vol. 5, p. 41-50.

Foxworthy, B. L., 1962, Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington: U. S. Geological Survey Water Supply Paper 1598.

Konicek, D. L., 1975, Geophysical survey in south-central Washington: Northwest Science, vol. 49, p. 106-117.

Myers, C. W., and Price, S. M., 1979, Geologic studies of the Columbia Plateau - A status report RHO-BWI-ST-4, Rockwell Hanford Operations, Richland, Washington. Robbins, S. L., Burt, R. J., and Gregg, D. O., 1975, Gravity and aeromagnetic study of part of the Yakima River basin: U. S. Geological Survey Professional Paper 726-E.

Schmincke, H. U., 1967a, Fused tuff and peperites in south-central Washington: Geological Society of America Bulletin, vol. 78, p. 319-330.

Schmincke, H. U., 1967b, Stratigraphy and petrography of four Upper Yakima Basalt flows in south-central Washington: Geological Society of America Bulletin, vol. 78, p. 1385-1422.

Schuster, E., 1980, Geothermal energy potential of the Yakima Valley area, Washington, in Proceedings of the Geothermal Symposium, R. G. Bloomquist, ed.: Washington State Energy Office, Olympia, Washington.

Schuster, J. E., Blackwell, D. D., Hammond, P. E., and Huntting, M. T., 1978, Heat flow studies in the Steamboat Mountain-Lemei Rock area, Skamania County, Washington: Washington State Dept. of Natural Resources, Division of Geology and Earth Resources Information Circular 62.

Smith, G. O., 1901, Geology and water resources of a portion of Yakima County, Washington: U. S. Geological Survey Irrigation Paper 55.

Swanson, D. A., 1967, Yakima basalt of the Tieton River area, south-central Washington: Geological Society of America Bulletin, vol. 78, p. 1077-1110.

Swanson, D. A., Anderson, J. L., Bentley, R. D., Camp, V. E., Gardner, J. N., and Wright, T. L., 1979a, Reconnaissance geologic map of the Columbia River Basalt Group in eastern Washington and northern Idaho: U. S. Geological Survey Open File Report 79-1363.

Swanson, D. A., Wright, T. L., Hooper, P. R., and Bentley, R. D., 1979b, Revisions in stratigraphic nomenclature of the Columbia River Basalt Group: U. S. Geological Survey Bulletin 1457-H.

Swanson, D. A., Wright, T. L., and Zietz, I., 1979c, Aeromagnetic map and geologic interpretation of the west-central Columbia Plateau, Washington and adjacent Idaho: U. S. Geological Survey Geophysical Investigations Map GP-917.

Van Denburgh, A. S., and Santos, J. F., 1965, Ground water in Washington, its chemical and physical quality: Washington State Division of Water Resources Water Supply Bulletin 24.

Washington State University Soils Testing Lab, 1974, 1975, 1977, 1978, 1979, Water sample analysis.

Appendix A

6

(

Symbols Used on Figures 2 through 8 and 13 through 26 $\,$

Symbols Used on Figures 2 through 8

િ

(

QS	Quaternary sediments and Ellensburg Formation
EM	Elephant Mountain Basalt Member
RRI	Rattlesnake Ridge Member
PO	Pomona Member
SI	Selah Member
UM	Umatilla Member
MI	Mabton Member
PR2	Upper Priest Rapids Member
I1	Unnamed interbed, Ellensburg Formation
PR1.	Lower Priest Rapids Member
12	Quincy Diatomite?
ROZ	Roza Member
13	Squaw Creek Member
1-6	Frenchman Springs Member

Symbols Used on Figures 13 through 26

temperature data that was excluded from the least squares regression analysis

not a bottom hole temperature

. ∙e

Х

(Càr

Appendix B

Well Locations and Bottom Hole Temperatures from Wells in the Yakima Region

Sourc	e ¹ TT/RG-SEC	LATLON	Vepth (ft.)	Name	Elevation (ft.)	Bottom Hole Temperature (°C)
3	07N/19E-10C01		390.4			14.4
3	07N/19E-14N01		420.0			14.2
1	07N/22E-23B01	460458 1200103	990.0	Sharpe, Jack	2105.0	23.4
1	07N/23E-36R01	460232 1195159	805.0	Chesley (DNR)	950.0	19.2
1	07N/24E-08D01	460644 1195101	1091.0	Horrigan Farms	1450.0	22.5
1	07N/25E-23F01	460440 1193908	1249.0	Palmer, Marvin, #2	840.0	18.9
1	07N/25E-35M01	460254 1193939	1008.0		793.0	18.1
1	07N/25E-36F01	460305 1193804	867.0	Barber #2 (DNR)	753.0	17.2
1	07N/25E+36N01	460237 1193829	840.0	Paterson Test Well (DOE)	730.0	21.9
1	07N/26E-05B01	460750 1193520		Moon, John	1130.0	22.0
1	07N/27E-36A01	460323 1192229	1209.0	Horse Heaven Test Well (DOE)	1325.0	26.3
3	08N/22E-01L01		1079.0			23.0
1	08N/22E-11J01	461144 1200108	530.0	Flower, Bill	758.0	21.9
1	08N/24E-01J01	461235 1194506	1250.0	Prosser Municipal Well	730.0	25.2
1	08N/27E-29Q01	460836 1192731	725.0	Smith, Tom	1492.0	19.6
3	09N/21E-26E01		968.0			28.0
4	09N/21E-27R01		114.8			22.0
3	09N/22E-11H01		544.6			20.3
4	09N/23E-23L01		1148.4			16.0
1	09N/23E-22J01		1409.0	Grandview City	837.0	21.2
1	09N/25E-06B01		1197.0	Prosser Experiment Station	1270.0	24.9
1	09N/27E-25M01		1057.0	79-07 (DNR)	850.0	21.6
1	09N/28E-34H01	461325 1191714	890.0	Bauder, Milo	740.0	21.1
1	10N/23E-04L01	462252 1195701	493.0	Yakima Valley College	1200.0	17.8
2*	10N/16E-26G01		442.9	Lawrence		16.9
4	10N/17E-14D01		114.8			22.0
1	10N/23E-17B01	462135 1195749	1180.0	Stout, Bud/Golob, Don	950.0	16.7
4	10N/17E-23G01		698.9			20.3
4	10N/17E-26H01		1000.7	·		23.8
4	10N/17E-27P01		1509.3			26.0
4	10N/17E-28C01		879.3		,	22.4
. 4	10N/17E-35C01		803.8			21.2
3	10N/18E-05P01		662.8			20.6
4	10N/18E-31N01 10N/20E-03E01		1043.4 800.6	· · · · ·		23.8 14.8
т			000+0			74.0

Source TT/RG-SEC LATLON Upth (ft.) Name Elevation (ft.) Bottom Hole Temperature (°C) 4 10N/20E-09401 839.9 22.6 3 10M/22E-25K01 1223.7 22.6 1 10W/22E-25K01 1316.0 Evans, Bill 220.0 1 10W/22E-25K01 462429 120014 1360.0 22.8 1 10W/22E-25K01 461841 119234 77.5 5Naw, O. B. 1050.0 26.3 1 10W/25E-25Q01 461812 1194152 904.0 J & R Orchards 1310.0 20.8 1 10W/25E-27Q01 462430 1204550 1091.0 Pace, M. B. 1100.0 25.0 4 11W/17E-01K01 1174.6 24.2 24.2 24.2 25.5 25.5 25.6 25.6 4 11W/17E-16K01 764.5 20.3 16.4 11W/17E-16K01 764.5 26.4 20.8 21.6 4 11W/17E-16K01 764.5 26.7 15.1		· .	. ·					Q .	
Source TT/RG-SEC LATLON (ft.) Name (ft.) Temperature (°C) 4 10N/20E-04601 1023.7 22.6 3 10N/22E-25K01 1574.9 20.5 4 10N/22E-36601 462429 1200114 1316.0 Evans, Bf11 1220.0 26.3 1 10N/22E-36601 461843 1195243 922.0 White, John 1180.0 22.8 1 10N/25E-33001 461812 1193234 757.0 Shaw, O. B. 1050.0 16.7 1 11N/16E-25001 462430 1204550 1091.0 Pace, W. B. 1100.0 25.0 4 11N/17E-01K01 11774.6 24.2 24.2 24.2 24.2 4 11N/17E-16K01 967.6 25.5 26.4 27.2 4 11N/17E-16J01 764.5 23.0 19.7 4 11N/17E-16J01 52.5 26.4 18.0 4 11N/17E-16J01 52.5 26.4 18.4 <t< th=""><th></th><th></th><th>•</th><th></th><th>-</th><th></th><th></th><th></th><th></th></t<>			•		-				
Source TT/RG-SEC LATLON (ft.) Name (ft.) Temperature (°C) 4 10N/20E-04601 1023.7 22.6 3 10N/22E-25K01 1574.9 20.5 4 10N/22E-36601 4612429 1200114 1316.0 Evans, Bf11 1220.0 26.3 1 10N/22E-36601 461843 1195243 928.0 White, John 1180.0 22.8 1 10N/22E-33001 461812 1194155 904.0 J & R Orchards 1310.0 20.8 1 10N/26E-7201 461812 1194255 1091.0 Pace, W. B. 1100.0 25.0 4 11N/16E-25001 462430 1204550 1091.0 Pace, W. B. 1100.0 25.0 4 11N/17E-0601 1177.6 544.0 25.5 25.2 24.2 4 11N/17E-16K01 1967.6 25.5 25.5 26.4 4 11N/17E-16J01 764.5 18.4 18.0 41.1 4 11N/17E-16J01 52.5 26.4 18.7					•				-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sourc	e TT/RG-SEC	LATLON		Name				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	З Л								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		469490 1900114				1000 0		
1 10N/25E-33N01 461812 1194155 904.0 J & R Orchards 1310.0 20.8 1 10N/26E-27001 461911 1193234 775.0 Shaw, O. B. 1050.0 16.7 1 11N/16E-25001 462430 1204550 1091.0 25.0 21.4 4 11N/17E-01K01 1174.6 24.2 24.2 4 11N/17E-03601 987.6 25.2 4 11N/17E-16K01 990.9 31.6 4 11N/17E-16K01 990.9 31.6 4 11N/17E-16K01 902.3 19.7 4 11N/17E-30P01 902.3 19.7 4 11N/18E-09N01 400.3 23.0 4 11N/18E-1601 764.5 26.4 3 11N/18E-30J01 340.2 18.0 4 11N/18E-30J01 340.2 18.0 11N/18E-10P01 764.5 18.7 3 11N/18E-10P02 751.3 18.7 3 11N/18E-10801 462801 1201603 1500.0 20.8 1	1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4				luves no er		1100-0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
4 11N/17E-03G01 987.6 25.2 4 11N/17E-16K01 990.9 31.6 4 11N/17E-16K01 764.5 20.8 4 11N/17E-30P01 902.3 19.7 4 11N/17E-30P01 902.3 19.7 4 11N/18E-09N01 400.3 23.0 4 11N/18E-17C01 626.7 17.7 4 11N/18E-30J01 340.2 18.0 3 11N/18E-30J01 340.2 18.0 4 11N/19E-10P01 764.5 18.4 11N/19E-10P02 751.3 20.8 3 11N/20E-01N01 462801 1201603 150.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-01R01 462558 1201503 1099.0 Soost Brothers 1005.0 28.0 1 11N/21E-06L01 462757 1201425 195.0 Dahl, Ted <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
4 11N/17E-30P01 902.3 19.7 4 11N/18E-09N01 400.3 23.0 4 11N/18E-17C01 626.7 17.7 4 11N/18E-26G01 52.5 26.4 3 11N/18E-30J00 340.2 18.0 4 11N/19E-10P01 764.5 18.4 4 11N/19E-10P02 751.3 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462751 1201518 151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-01R01 462751 1201518 151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-01R01 462751 1201518 151.0 Lynch, Bob 1600.0 19.8 1 11N/20E-01801 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05801 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06001 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
4 11N/18E-26G01 52.5 26.4 3 11N/18E-30J01 340.2 18.0 4 11N/19E-10P01 764.5 18.4 4 11N/19E-10P02 751.3 18.7 3 11N/19E-15A01 588.0 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1100.0 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-06A01 462801 1201503 1095.0 Soost Brothers 10060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4							۲	23.0	
3 11N/18E-30J01 340.2 18.0 4 11N/19E-10P01 764.5 18.4 4 11N/19E-10P02 751.3 18.7 3 11N/19E-15A01 588.0 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462830 1201212 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-05B01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 33.0 33.0 1 11N/21E-16P01 462607 120120 1248.0 Ramsier (DNR) 1275.0 28.0 1									
4 11N/19E-10P01 764.5 18.4 4 11N/19E-10P02 751.3 18.7 3 11N/19E-15A01 588.0 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 1 11N/21E-06Q01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 1 11N/21E-17A01 895.7 Garretson 24.8 24.8 1199.0 21.2					x				
4 11N/19E-10P02 751.3 18.7 3 11N/19E-15A01 588.0 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 1 11N/21E-07A01 1673.3 Clyde 33.0 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 1 11N/21E-17A01 895.7 Garretson 24.8 33.0	-		· · · ·						
3 11N/19E-15A01 588.0 20.8 1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 33.0 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR									
1 11N/20E-01M01 462801 1201603 1500.0 Johnson, Forrest 1170.0 27.5 1 11N/20E-01R01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 1 11N/21E-07A01 1673.3 Clyde 33.0 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 24.8 1 11N/21E-20M01 462533 1201308 625.0<					ų. ⁻				
1 11N/20E-01R01 462751 1201518 1151.0 Lynch, Bob 1150.0 20.8 1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 1 11N/21E-07A01 1673.3 Clyde 33.0 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24.8 24	ĩ		462801 1201603		Johnson Forrest		1170 0		
1 11N/20E-06A01 462830 1202121 595.0 Peters, Charles 1060.0 19.8 1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	-1								
1 11N/20E-13R01 462558 1201503 1095.0 Soost Brothers 1005.0 28.0 1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	1					·			
1 11N/21E-05B01 462822 1201305 1243.0 Weatherly, Bob 1460.0 28.5 1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	1	•				-			
1 11N/21E-06L01 462757 1201425 1195.0 Dahl, Ted 1210.0 28.2 1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	1	11N/21E-05B01	462822 1201305	1243.0	Weatherly, Bob				
1 11N/21E-06Q01 462747 1201408 1288.0 Dahl, Ted 1230.0 28.4 2 11N/21E-07A01 1673.3 Clyde 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	1	-	462757 1201425	1195.0	Dahl, Ted				
2 11N/21E-07A01 1673.3 Clyde 33.0 1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	1			1288.0	Dahl, Ted			28.4	
1 11N/21E-16P01 462607 1201210 1248.0 Ramsier (DNR) 1275.0 28.0 2 11N/21E-17A01 895.7 Garretson 24.8 1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	2		· • ·					33.0	
1 11N/21E-20M01 462533 1201308 625.0 Hanrahan, Pete 1090.0 21.2	1		462607 1201210				1275.0	28.0	
	2		100500 1001000				A		
1 11N/21E-21BUI 402554 12UII43 910.0 AMDrose, A) 12bU.U 26.4	1 1			625.0	Hanrahan, Pete				
1 11N/21E-22G01 462544 1201035 997.0 Sandlin, Jerry 1220.0 23.0	1 1					•	1260.0	26.4	

N N

Sourc	e TT/RG-SEC	LATLON	Vepth (ft.)	Name	Elevation (ft.)	Bottom Hole Temperature (°C)
				• •		
1	11N/21E-22G02	462539 1201032	1815.0	Sandlin, Jerry, #2	1275.0	35.2
1	11N/21E-22K01	462533 1201025	1048.0	Best, Peter	1235.0	24.6
1	11N/21E-34C01	462413 1201040	570.0	Slagg, L.	1000.0	18.6
1	11N/21E-36K01	462341 1200751	700.0	Gay, Harry	975.0	21.4
2	11N/22E-21N01		679.2			22.3
1	11N/22E-26R01	462429 1200114	1530.0	Evans, Bill	1280.0	30.7
1	11N/22E-28A01	462449 1200345	930.0	Kershaw, R.	1297.0	16.6
1	11N/22E-29N01	462426 1200604	1425.0	Rowe Farms	1130.0	29.6
1	11N/22E-30G01	462443 1200632	617.0	de La Chapelle, Charles	1160.0	19.9
1	11N/22E-30G02		2720.0	de La Chapelle, Charles	·	47.8
1	11N/22E-15		9480.0	Rattlesnake Hills #1		110.0
1	12N/16E-12N01		881.9			25.2
2	12N/16E-13B01		229.7			14.2
1	12N/16E-15E01	463146 1204853	588.0	White, Hirum	1886.0	21.5
1	12N/16E-18A01		355.0	Meyer, C.		19.7
3	12N/17E-02L01		278 . 9			16.1
1	12N/17E-02J01		89.9			19.4
3	12N/17E-07L01		260.2			19.5
1	12N/17E-07E01	463250 1204519	628.0	Gilbert, Craig	1704.0	11.2
1	12N/17E-07M01	463230 1204505	661.0	Bates, K. P.	1680.0	18.4
2	12N/17E-11D01		426.5			16.5
4	12N/17E-16A01		869.5			22.2
4	12N/17E-16R01		1079.4			17.0
2	12N/18E-01F01		203.4			14.0
2	12N/18E-26R01		603.7	Douglas		18.8
4	12N/18E-27L01		1000.7			23.6
4	12N/18E-27J01		1020.4			29.6
4	12N/18E-31R01		1571.6			22.2
4	12N/18E-32J01		1174.6			25.2
3	12N/18E-32G02		1243.5			27.9
4	12N/18E-33A01		951.5			25.6
1	12N/18E-33B01	462930 1203358	1060.0	Mt. Adams Feed #3	1143.0	28.0
4	12N/19E-01P01		1325.5			30.0
1*	12N/19E-27H01	463004 1202513	553.0	Stepniewski, Stan	1120.0	19.5
1	12N/19E-28J01	462949 1202619	300.0	Sunnyside Dam	920.0	16.8

-

 $\underline{\omega}$

•

.

Source_TT/RG-SEC	LATLON	Vepth (ft.)	Name	Elevation (ft.)	Bottom Hole Temperature (°C)
<pre>1 12N/20E-13Q01 1 12N/20E-16D01 1 12N/20E-27N01 3 12N/20E-27E01 2* 12N/20E-31J01 1 12N/20E-34N02 1 12N/20E-34N02 1 12N/20E-36P01 2 12N/21E-16R01 1 12N/21E-17L01 1 12N/21E-20D01 1 12N/21E-20D01 2* 12N/22E-13 3 12N/22E-14B01 2 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-20K01 1 12N/22E-16J02 2* 12N/23E-16J02 2* 12N/23E-16J02 2* 12N/23E-16J02 2* 12N/23E-16J02 2* 12N/23E-16J01 1 12N/24E-05A01 1 13N/17E-28B01 2 13N/18E-01F01 3 13N/18E-12A01 2* 13N/18E-15L01 4 13N/18E-24 2 13N/19E-11K01 2* 13N/19E-12N01</pre>	463121 1201534 463205 1201959 462933 1201833 462843 1201834	(ft.) 1235.0 505.0 1300.0 1341.9 360.9 899.0 1410.0 1338.0 771.0 1551.0 472.0 1032.0 1509.3 488.9 689.0 886.0 1411.0 1551.0 328.1 675.9 753.0 834.0 560.0 91.9 659.5 180.5 1683.0 531.5 319.9	Charron, Sebastian Gangl (DNR) Logan, Wilbur Brooks Estes, Marvin Estes, Marvin Cheyne Road Well (DNR) DNR Martinez, D. Martinez, Daniel T., #1 Griswald, Port Changala Martinez Marley Orchards Changala, Steven Blackrock #1 (DNR) Taggares Ranches Tramel, J. D. C-6 (DOE) Silvercove		$\begin{array}{r} \hline \text{Temperature (°C)} \\ 27.6 \\ 22.0 \\ 30.8 \\ 27.5 \\ 17.1 \\ 25.1 \\ 32.3 \\ 25.7 \\ 25.1 \\ 28.5 \\ 21.4 \\ 24.3 \\ 29.5 \\ 15.2 \\ 19.2 \\ 23.2 \\ 22.9 \\ 25.5 \\ 15.2 \\ 20.3 \\ 18.9 \\ 23.0 \\ 13.9 \\ 8.4 \\ 24.8 \\ 14.4 \\ 33.9 \\ 19.2 \end{array}$
2* 13N/18E-15L01 4 13N/18E-24 2 13N/19E-11K01		180.5 1683.0 531.5	Creamery Well Hill Terrace Heights Watkins		24.8 14.4 33.9

 \bigcirc

.

Source	e_TT/RG-SEC	LATLON	Vepth (ft.)	Name	Elevation (ft.)	Bottom Hole Temperature (°C)
2	13N/19E-24A01		754.6			20.0
4	13N/19E-31C01		626.7			19.0
1	13N/20E-18N01	463632 1202239	958.0	Riebe, John	1700.0	16.3
1	13N/20E-19N01	463533 1202241	831.0	Sundquist Fruit	1060.0	21.2
2	13N/20E-20C01		213.3	Coppornal1		15.6
2	13N/20E-20F01		705.4	Champoux		23.3
-3	13N/20E-29D01		577.5			22.7
1	13N/20E-30A01	463521 1202150	949.0	Yergen, Reginald	1390.0	24.2
1	13N/20E-33L01	463410 1201950	745.0	Coombs, Bruce	1375.0	23.2
1	13N/20E-33M01	463406 1202002	1464.0	Coombs, Bruce, #2	1345.0	30.2
2*	13N/21E-12D01		147.6		101010	11.7
1	13N/21E-34H01	463415 1201021	1020.0	Martinez, Daniel T., #2	2320.0	21.2
1	13N/22E-13P01	463117 1200032	1696.0	Changala, Steven, #2	1710.0	30.7
â	13N/26E-35A02	(0011) 1200002	5550.0	ARH DC-1	1/10.0	75.0
1	13N/27E-26G01		4343.0	DC-6		60.2
2	14N/15E-29M01		219.8	Troutlodge		13.6
2*	14N/16E-01B01	-	364.2	Englund		13.3
2*	14N/16E-01H01			Huck		13.1
2*	14N/16E-01J01		377.3			15.0
2	14N/16E-01K01	,	656.2	Shearer		17.2
1	14N/16E-13K01	464206 1204604	485.0	Keller Fruit & Cold Stor. #2	2010.0	,
1	14N/16E-24K01	464114 1204607	868.0	Keller Fruit & Cold Stor. #1	2100.0	15.6
4	14N/17E-04J01	104114 1204007	1000.7	Kerrer Fruit & Cold Stor. #1	2100.0	18.8 14.4
2×	14N/17E-06F01		525.0	Perham		15.3
2*	14N/17E-13H01		433.1	Murray		
1	14N/17E-15N01	464154 1204150		Majnarich, Frank	1955.0	19.5
2	14N/17E-19K01	404104 1204100	246 1	Knutson	1900+0	13.8
2	14N/17E-19Q01		492.2	Mansperger		12.7
2*	14N/17E-20P01		196.9	Dardon		19.9 12.7
1	14N/17E-26G01	464026 1203956	1002.0	Allen, Bruce	1740.0	
1	14N/17E-27A01	464041 1204042		7. stanbaugt U	1900.0	18.4
1	14N/17E-35H01	463943 1203936		Hargrave, Hugh	1750.0	17.7
	14N/18E-07K01	-000-0 IC00930	164.1	Murray	1/00+0	18.8
1	14N/18E-20G01	464122 1203609		Zirkle, William H.	1620 0	12.0
2	14N/18E-29K01	TOTICE 1203003	180.5		1620.0	29.7 14.3

. .

Sourc	e TT/RG-SEC	LATLON	Depth (ft.)	Name	Elevation (ft.)	Bottom Hole Temperature (°C)
1	14N/19E-16N01	464144 1202753	-880-0	Roche Fruit Company	1290.0	22.3
4	14N/19E-28C01	404144 1202700	600.4	Roche Fruite company	1230.0	21.0
2*	14N/20E-16B01		95.1	Yakima Firing Center #2	•	12.1
3	14N/20E-20N01		602.1	Tak ma i ni mg cencer #2		17.0
1	14N/31E-08M01		2487.0	Rathbun		46.8
2	15N/17E-02K01		295.3	Picatti		15.8
2	15N/17E-23B01		728.4	Day		18.1
. 2	15N/17E-24H01		508.6	Day		10.3
2	15N/17E-36A01		1962.0	Wenas (DNR)		29.2
2	15N/18E-28A01		459.3	McNeilly		14.6
2	15N/18E-28R01		288.7	McNeilly		15.0
1	15N/18E-30G01	464551 1203708	478.0	Boyd, John	1540.0	8.7
2	15N/18E-28M01		246.1	Young	201010	13.2
1	15N/19E-22L01	464615 1202610	400.0	Burbank Creek (USGS)	1400.0	24.3
ī	15N/19E-22P01	464608 1202543	1289.0	Larson Fruit	1440.0	31.5
1	15N/24E-28		5034.0	DH-5	,	74.0
- 1	15N/28E-30		3032.0	DH-4		53.5
2	16N/16E-24N01		574.2	Dept. of Game and Fish #2		17.8
2	16N/17E-29H01		393.7	Dept. of Game and Fish #1		13.1
2*	16N/18E-03F01		557.8	Kummer #1		14.7
2	16N/18E-04J01		131.2	Kummer #2		10.3
1	16N/19E-28C01	465109 1202729	1018.0	Umtanum Creek (USGS)	1400.0	29.0
2	16N/21E-33P01		337.9	Yakima Firing Center		13.1
2	17N/18E-34E01		229.7	Kunner		11.3

- 1 Data Sources: 1 = W.S.U. Geological Engineering Section 2 = S.M.U. Dept. of Geological Sciences 3 = U.S.G.S. 4 = others * = Not a bottom hole temperature

 $\frac{\omega}{4}$

C

Well Data Groups Used in the Bottom Hole Temperature Regression Analysis

.

10N/16E-26G0110N/18E-05P0108N/22E-01L0111N/19E-10P0110N/17E-14D0111N/16E-25Q0108N/22E-11J0111N/19E-10P0210N/17E-23G0111N/16E-34F0109N/21E-26E0111N/19E-15A0110N/17E-26H0111N/17E-01K0109N/21E-27R0111N/20E-06A0110N/17E-27P0111N/17E-0260109N/22E-11H0112N/19E-27H01	Group 1	Group 2	Group 3	Group 4
10N/17E-28C01 11N/17E-03G01 12N/19E-28J01 10N/17E-35C01 11N/17E-16K01 12N/20E-27N01 10N/18E-31N01 11N/17E-16J01 12N/20E-27E01 11N/17E-30P01 12N/20E-31J01 12N/20E-31J01 11N/18E-09N01 12N/20E-34N01 12N/20E-34N01	10N/17E-14D01 10N/17E-23G01 10N/17E-26H01 10N/17E-27P01 10N/17E-28C01 10N/17E-35C01	11N/16E-25Q01 11N/16E-34F01 11N/17E-01K01 11N/17E-02G01 11N/17E-03G01 11N/17E-16K01 11N/17E-16J01 11N/17E-30P01 11N/18E-09N01 11N/18E-7C01 11N/18E-26G01 11N/18E-26R01 12N/18E-26R01 12N/18E-27J01 12N/18E-32J01 12N/18E-32J01 12N/18E-32G02 12N/18E-33A01	08N/22E-11J01 09N/21E-26E01	11N/19E-10P02 11N/19E-15A01 11N/20E-06A01 12N/19E-27H01 12N/19E-28J01 12N/20E-27N01 12N/20E-27E01 12N/20E-31J01

(_____) (_____)

36

 \bigcirc

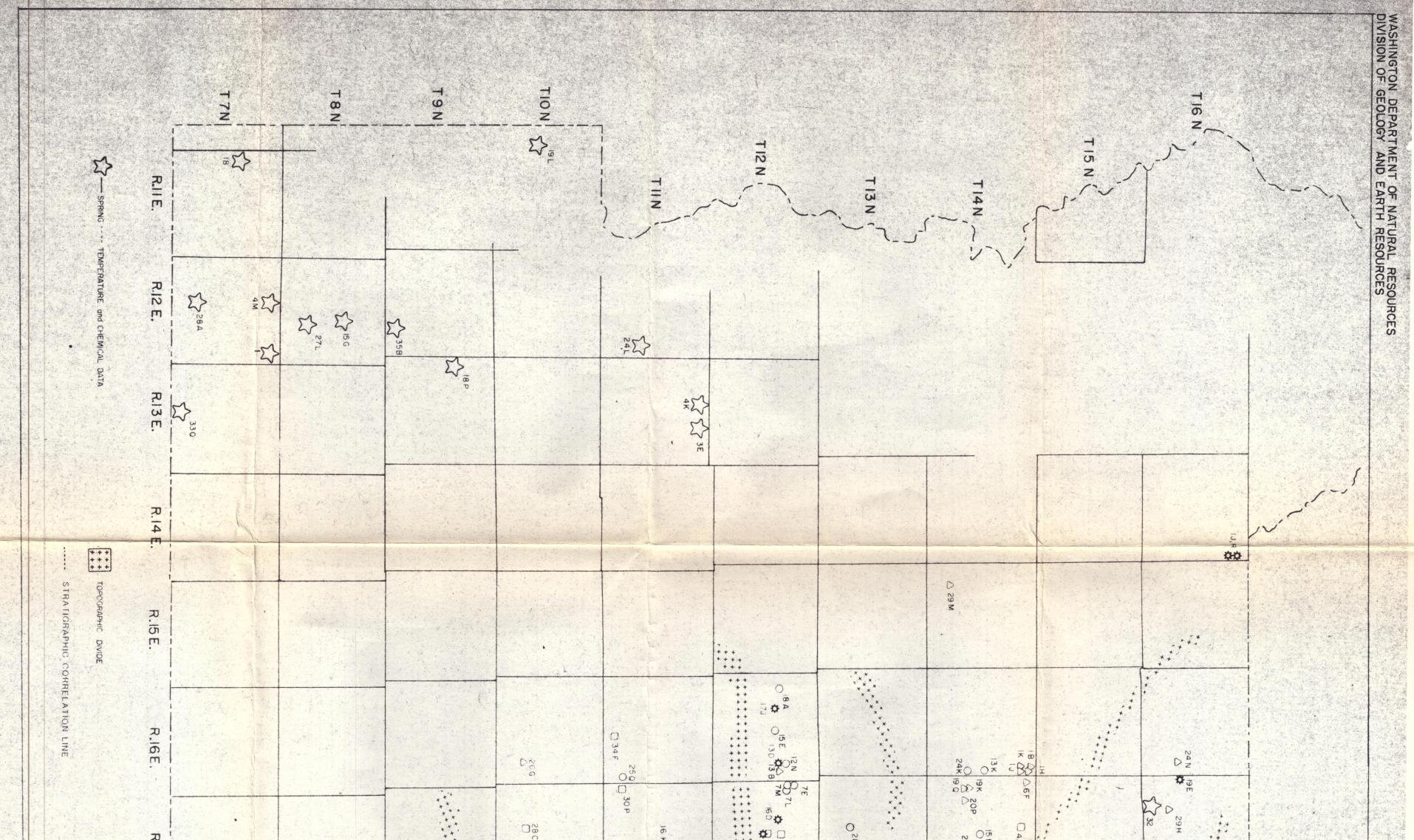
11N/20E-01M01 11N/22E-21N01 09N/25E-06B01 12N/16E-13B01 11N/20E-01R01 11N/22E-26R01 10N/23E-04L01 12N/16E-15E01 11N/20E-13R01 11N/22E-28A01 10N/23E-17B01 12N/16E-18A01 11N/21E-06L01 11N/22E-30G01 10N/23E-36A01 12N/17E-02L01 11N/21E-06Q01 11N/22E-30G01 10N/23E-36G01 12N/17E-02L01 11N/21E-06Q01 11N/22E-30G01 10N/23E-36G01 12N/17E-02L01 11N/21E-07A01 12N/17E-07L01 12N/17E-07L01 12N/17E-07L01 11N/21E-16P01 12N/17E-07M01 12N/17E-07M01 12N/17E-07M01 11N/21E-20M01 12N/17E-11D01 12N/17E-11D01 12N/17E-16R01	Group 5	Group 6	Group 7	Group 8
11N/21E-36K01 11N/21E-05B01	11N/20E-01M01 11N/20E-01R01 11N/20E-13R01 11N/21E-06L01 11N/21E-06Q01 11N/21E-16P01 11N/21E-17A01 11N/21E-22M01 11N/21E-22G01 11N/21E-22G02 11N/21E-22K01 11N/21E-34C01 11N/21E-36K01	11N/22E-21NO1 11N/22E-26RO1 11N/22E-28AO1	10N/25E-33N01 09N/25E-06B01 10N/23E-04L01 10N/23E-17B01 10N/23E-36A01	12N/16E-12N01 12N/16E-13B01 12N/16E-15E01 12N/16E-18A01 12N/17E-02L01 12N/17E-02L01 12N/17E-07L01 12N/17E-07E01 12N/17E-07M01 12N/17E-11D01 12N/17E-16R01 12N/17E-16A01

 \mathbb{O}

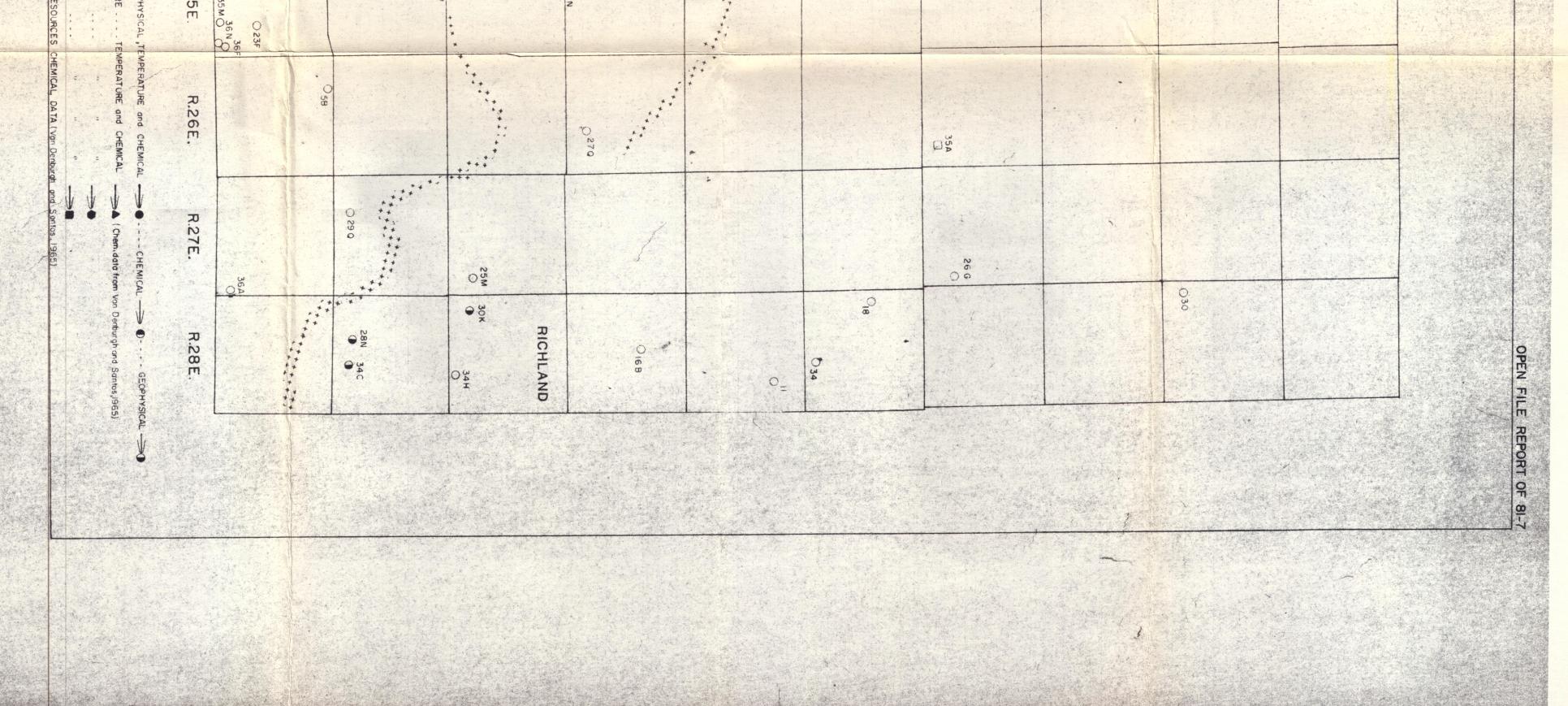
Group 9	Group 10	Group 11	Group 12
12N/18E-01F01 13N/18E-15L01 13N/18E-24 13N/19E-31C01	13N/19E-13Q01 12N/19E-01P01 13N/19E-11K01 13N/19E-12N01 13N/19E-14A01 13N/19E-22E01 13N/19E-23B01 13N/19E-23C01 13N/19E-24A01 13N/20E-18N01 13N/20E-19N01 13N/20E-20F01 13N/20E-20F01 13N/20E-20F01 13N/20E-30A01 13N/20E-33L01 13N/20E-33M01	12N/22E-14B01 12N/22E-20K01 12N/22E-29B01 12N/23E-16J01 12N/23E-16J02 12N/23E-17P01 12N/23E-19A01 12N/22E-13	14N/16E-01B01 14N/16E-01H01 14N/16E-01J01 14N/16E-01K01 14N/16E-13K01 14N/16E-24K01 14N/17E-04J01 14N/17E-04J01 14N/17E-13H01 14N/17E-13H01 14N/17E-19K01 14N/17E-19K01 14N/17E-20P01 14N/17E-26G01 14N/17E-25H01 14N/18E-07K01 14N/18E-20G01 14N/18E-29K01

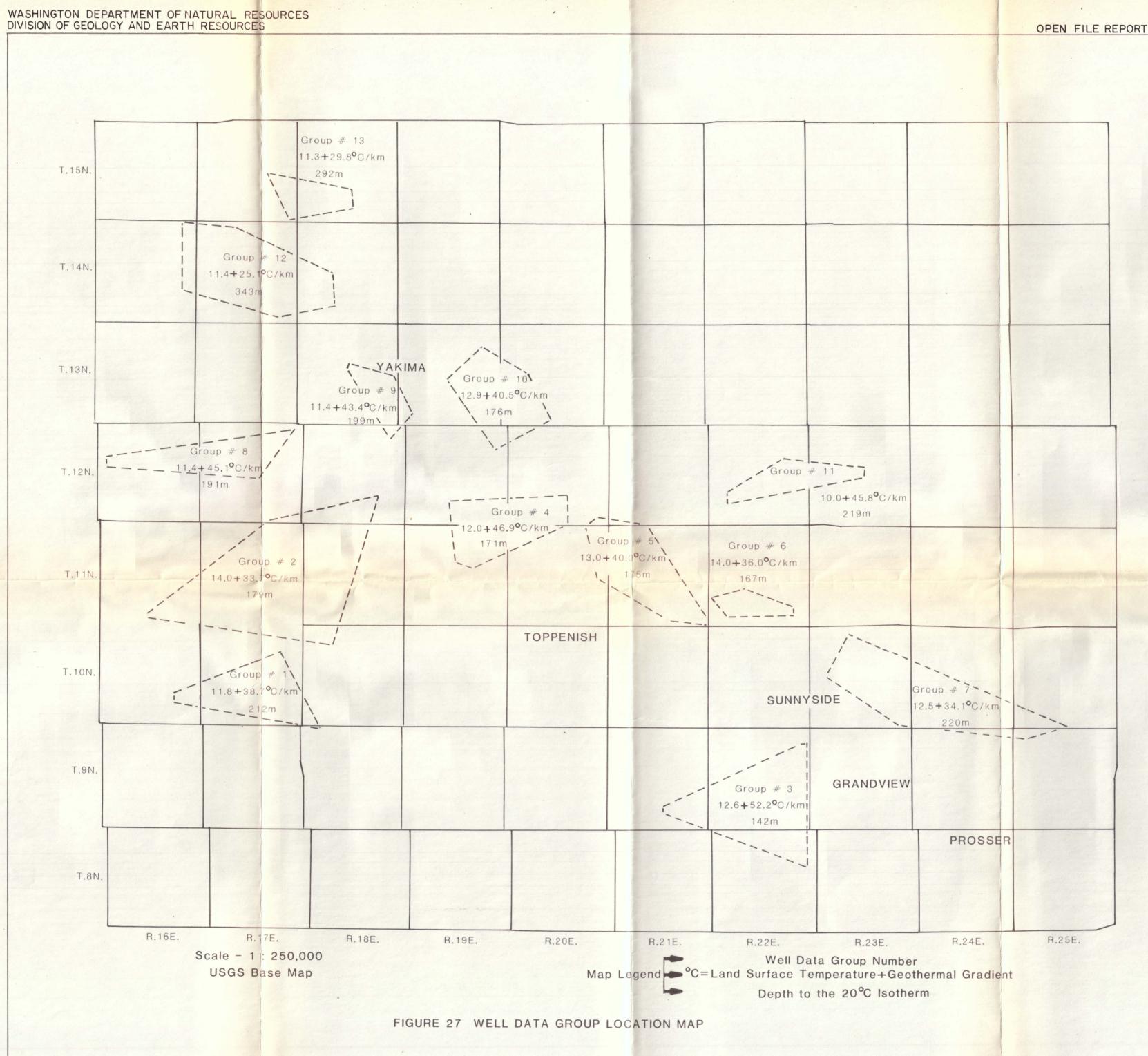
Gr

13 13 13

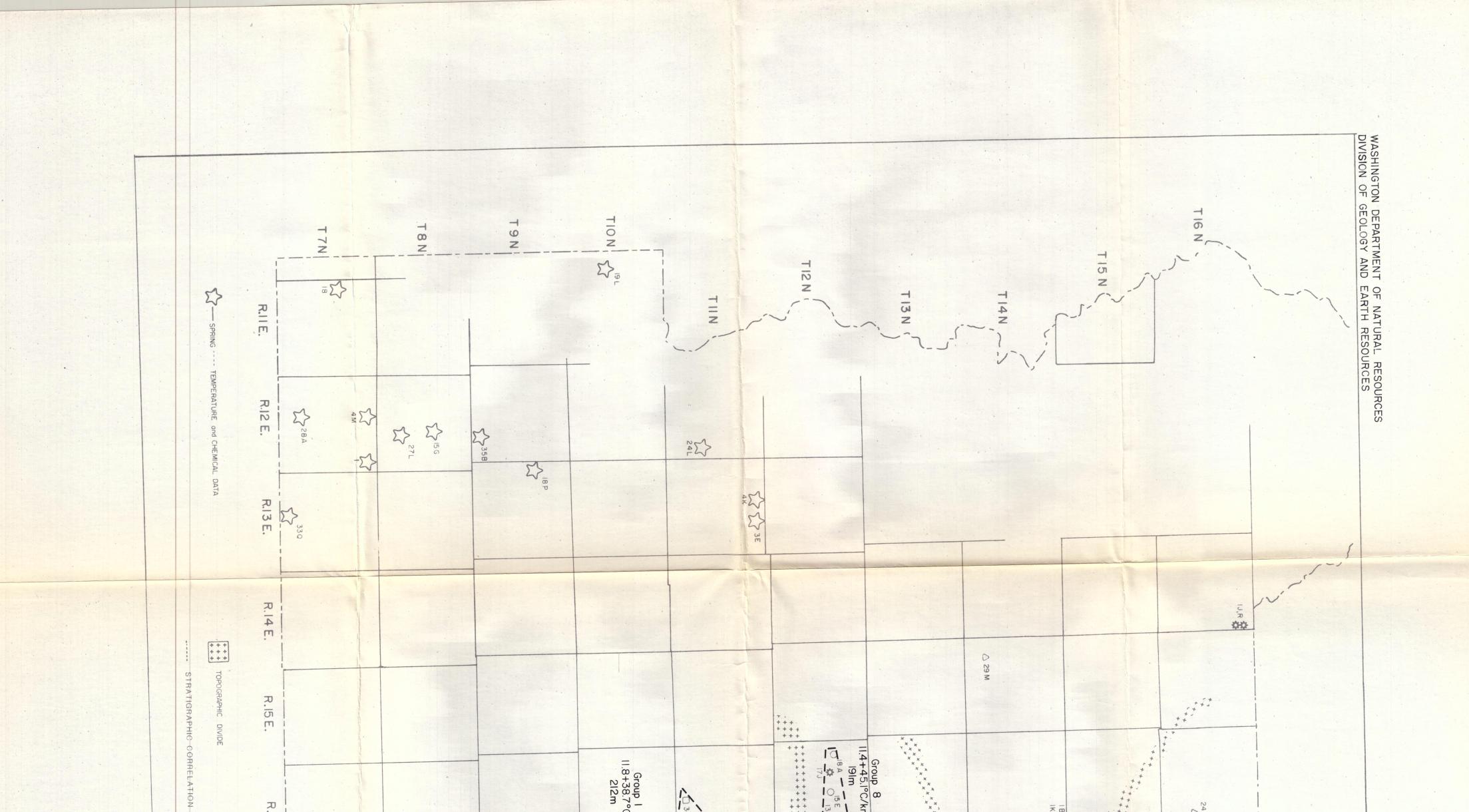


á


Group 13 (Group 14
15N/17E-24H01 15N/17E-36A01 15N/18E-28A01 15N/18E-28R01 15N/18E-30G01	11N/22E-30G02 13N/26E-35A02 13N/27E-26G01 14N/31E-08M01 15N/24E-28 15N/28E-30 11N/22E-15


39

- ĝ


	R.17E.				140 28с 26н 27р () 35 с			0 28 8	27A 266 35HO	D 2x 13C 238 D D 24H 36 A	
FIGURE 10	States and the second				O ₂ b	0 30 J 0 26 G	* 56, J * * * * * * * * * *	Dr	۲۵۲۲، ۲۰۰۲، ۲۵۵۵ ۲۵۲۵ (۱3R ۲۵۲۵ (۱3R	30 G 28A 28M D 28R 33P	
- SPRING A	R 19	O ioc O i4N				66 15 15 15 10 12		IF Δ If K IIK	0.16 N 28 A, B, C, F	22L 822P	0 ²⁸ C
WELL us	σ				4 G SE,N 9 A TOPPENISH	GA LINE # 22	PLINE #4 160 13.0 15.0	200 200 200 200 200 200 LINE #	O 20N		
LOCATION MAP -				26E	Ĩ.	6L 058 0060 LINE 4 200 218 0000 218 00000 34	11 0 20 F	 			033P
	R.22E.				SUI	36K 029N	5 20x 21R	I I I I I I I I I I I I I I I I I I I			
	R.23E. ○ w.s.u den	O 238	EO OF	GRANDVIEW	04L 25K 25K 366		48 17P 16J1,2 0.0.00 16J1,2 #6 #6				
D S.M.L	R.24E. DATA SOURCE OPHYSICAL and TEMPERATI		PROSSER		362	++ ++ 	₩ \$	* *** / *** *** ** ** ** ** ** ** ** ** ** **		083	
U. TEMPERATURE	- WELLS			0 7 C 68	0 3 3 N		A62				

WASHINGTON DEPARTMENT OF NATURAL RESOURCES

OPEN FILE REPORT OF 81-7

LINE R. ITE. R.ISE. R.I	FIGURE 27A HAR SHOWING LOCATIONS OF WELL DATA GROUPS WITH RESPECT TO THE LOCATIONS OF SPRINGS AND WELL MAD SHOWING LOCATIONS OF SPRINGS AND WELL MAD S	
R.2IE. R.2ZE. R.23E. R.23E. R.24G 0.236 BATA SOURCE - WELLS a+Geothermal Gradient Isotherm Map (2°SHEET) Map (2°SHEET) Contractions Con	LS	
SF R.26E. R.27E. R.28E. TEMPERATURE and CHEMICAL -> • • • • • • • • • • • • • • • • • •		OPEN FILE REPORT OF 81-7