A HYDROGEOCHEMICAL STUDY
OF THE THERMAL WATERS
OF ALCOVA, SARATOGA,
AND DOUGLAS, WYOMING

bу

Frank Dellechaie

TABLE OF CONTENTS

		Page
INTROD	UCTION	1
GEOLOG	Y OF THE ALCOVA AREA	8
CHEMIS	TRY	11
CONCLUSION		
FIGURE	S	•
1.	Location of Alcova Hot Spring	3
2.	Location of Saratoga Hot Springs	4
3.	Location of Douglas Hot Spring	5
4.	Geologic map of the Alcova, Wyoming area	9
5.	Geologic map of Wyoming	10
TABLES	₹	
1.	Chemical analysis of three thermal springs in eastern Wyoming	12
2.	Gibbs Free Energies of various hypothetical minerals in Kcal/mole	14
PLATES		
1.	Alcova Hot Spring	6
2.	Saratoga Hot Spring	6
3.	Douglas Hot Spring	7

INTRODUCTION

Amax has conducted studies on the economic feasibility of heating greenhouse complexes geothermally. These studies demonstrate that geothermal heating with some reasonable constraints is more economical and ecologically sound than alternative energy sources. The constraints mentioned include finding a hot water source at depths less than 1000 feet and utilizing the hot water near the well.

Geothermal space heating has a long and resounding history of success. Japan, Iceland, the United States and many other countries have used low ionic strength hot water for this purpose with great success. The Amax geothermal files contain case histories that are available for inspection.

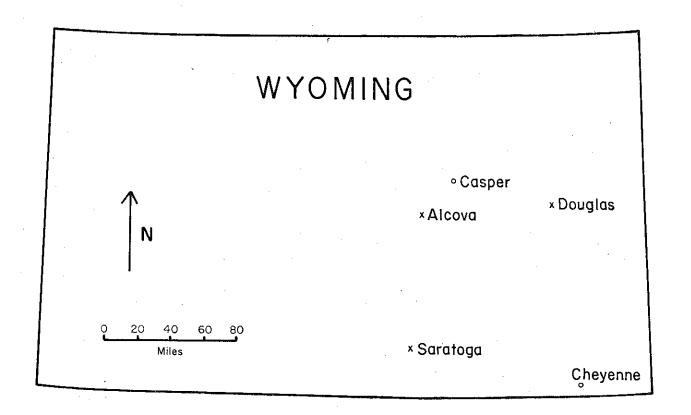
Bill Long suggested that a demonstration geothermal greenhouse be erected in eastern Wyoming. The writer initiated a hydrogeochemical and geological reconnaissance of three hot springs in eastern Wyoming. They were Saratoga, Alcova and Douglas Hot Springs. This report proposes the development of Alcova Hot Spring for a low temperature geothermal heating system on the following grounds:

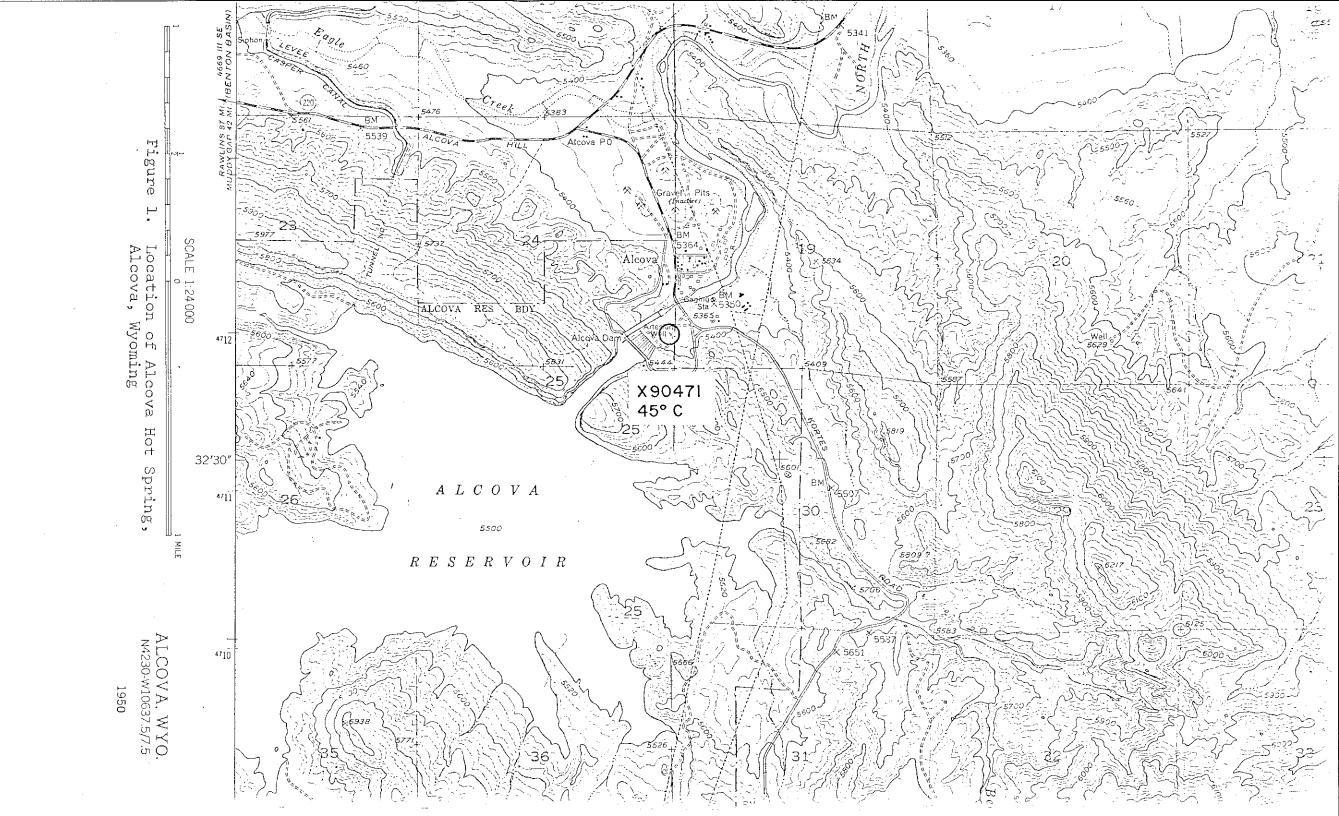
1. Water Chemistry:

Low ionic strength waters are available in large volumes.

2. Temperature:

The fluid temperatures are suitable for space heating.


3. Depth:


Hot water should be found at depths less than 1000 feet and perhaps at less than 500 feet.

4. Probable success:

A shallow well in the vicinity of the Alcova power dam produces hot water and indeed has heated a large twin turbine generating house for about 25 years.

The geographic locations of Alcova, Saratoga and Douglas
Hot Springs are shown below and on Figures 1, 2, and 3. Plates
1, 2, and 3 are pictorial descriptions of the same springs.

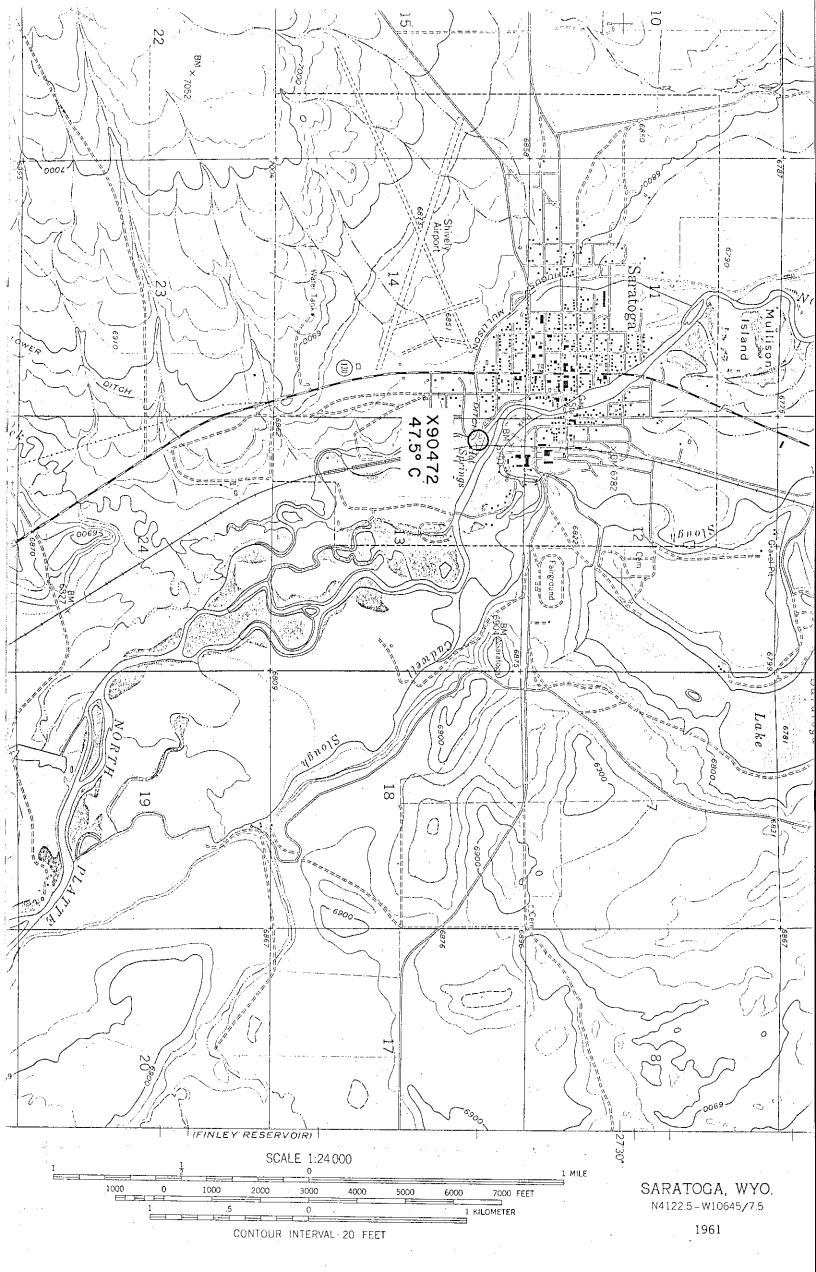
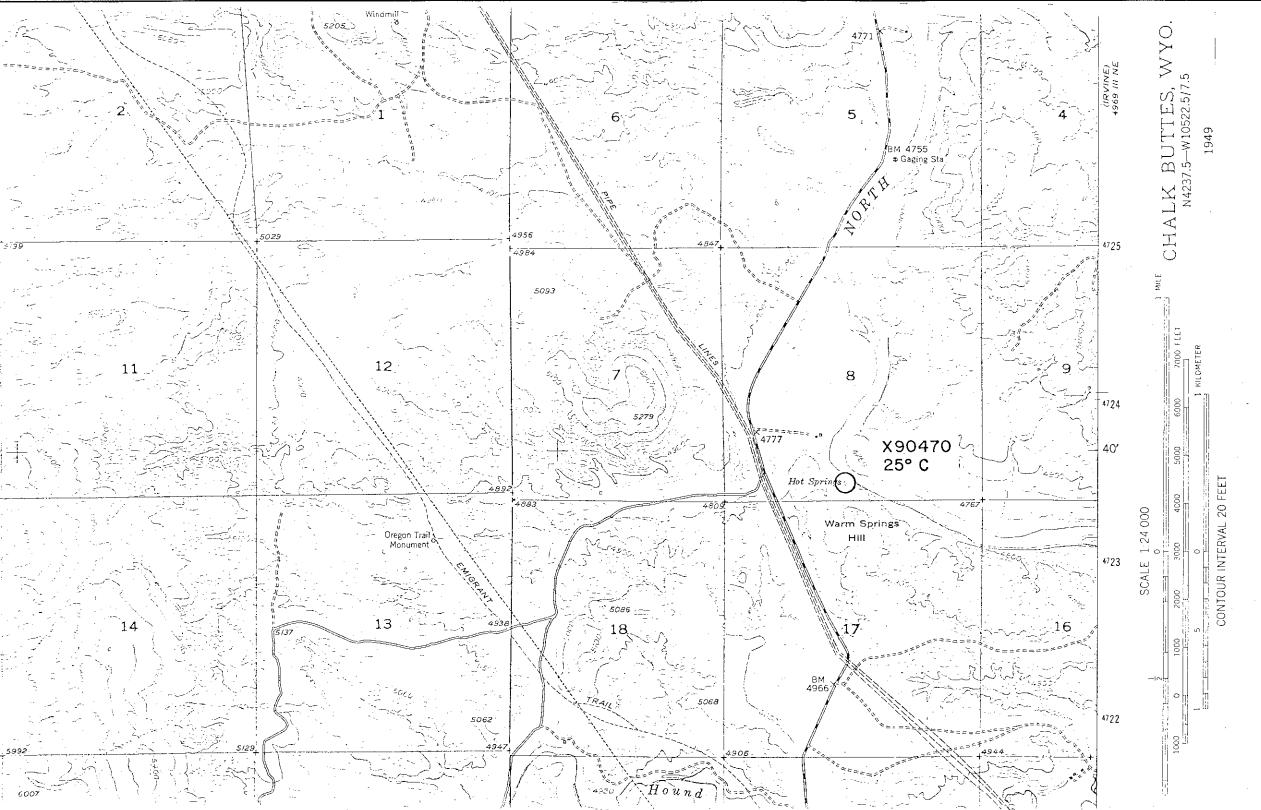



Figure 2. Location of Saratoga Hot Springs, Saratoga, Wyoming.

gure 3. Location of Douglas Hot Spring, Douglas, Wyoming

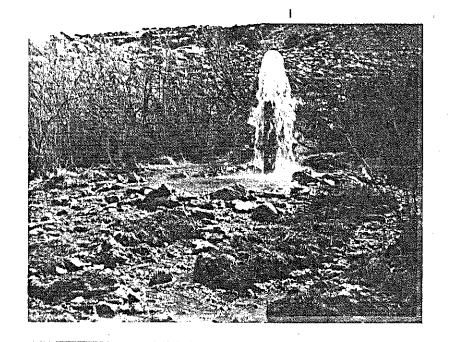


Plate 1. Alcova Hot Spring looking east. $T = 45^{\circ}C$

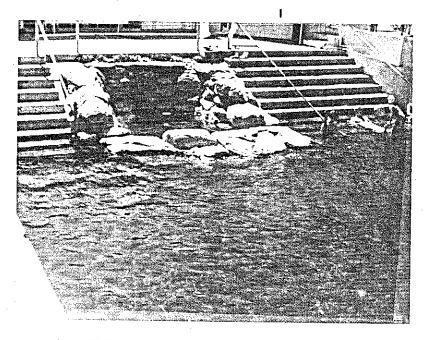


Plate 2. Saratoga Hot Spring looking south. $T = 47.5^{\circ}C$

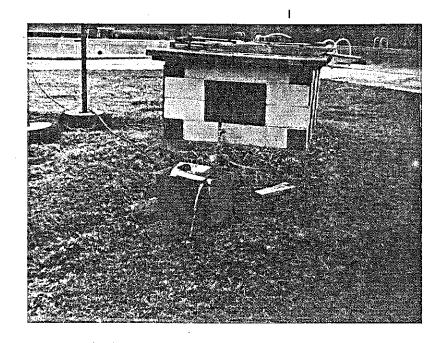


Plate 3. Douglas Hot Spring T = 25°C

GEOLOGY OF THE ALCOVA AREA

The writer was limited to a two hour visit to the Alcova area and was able to determine that thermal water issues out of the Chugwater Formation as seen in Figure 4. The Chugwater Formation is a sequence of Triassic red shale and siltstone. Local sources have stated that thermal springs were present in the vicinity of the earth-filled dam and in the canyon now filled by the reservoir. This means that the impermeable dolomite and red shales of the Phosphoria Formation (see Figure 5) also transmit hot water. Therefore, local faulting may play an important role in transmitting thermal fluids.

The hot well drilled by the Bureau of Reclamation over 25 years ago is no deeper than 500 eet. The writer feels that probability favors finding hot water at similar depths. Nonetheless, a study of the local geologic cross section and faulting should be conducted before any well is drilled.

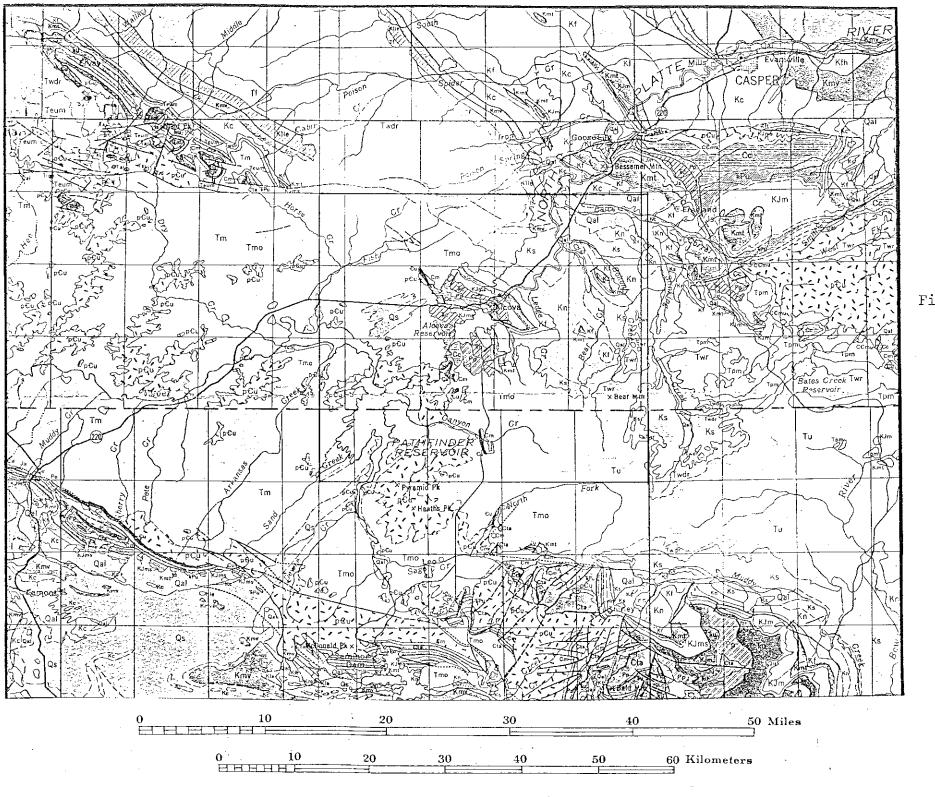


Figure 4. Geologic map of the Alcova, Wyoming area.

INTERIOR

DEPARTMENT

GEOLOGIC

TES

NITED

Cody shale

Gray soft marine shale with many lenticular sandstone beds and some bentonite beile

Niobrara formation Light-colored limestone and gray to yellow, speckled limy

Frontier formation Gray shale and sundstone; Wall Creek sandstone member at top

Frontier formation Mowry and Thermopolis shales

Mowry and Thermopolis shales

Movey shale is black and gray, weathers silvery gray, hard, contains thin bentonite bests and obundant sich scales, underlain by bluek soft Ther-mopolis shale with Muddy mindatons member 50 to 200 feet above base

Cloverly formation

Light-gray to brown sandstone with black shale partings; thert public conglomerate in

Cloverly and Morrison formations

Cluverly formation is light-gray sandstone and lenticu-lar theret peoble conglomerate interbedded with variegated bentomitic claystone; the un-derlying Morrison formation consists of dally variegated etherms chrystone with nod-ular limestone and gray silty sandstone lenses

Sundance formation

Greenish-gray glauconitic

sandstone and shale under-

tain by red and gray non-glaveonitic sandstone and

Chugwater formation

Red shale and red siltstone

Triassic and post-Forelle Permian

rocks

formation and gyp-num, red shale, and

dolomite beda equiva-

lent to the Phospharia

formation of areas to

the northwest

near base

with thin gypsum partings

Morrison formation

Green viliceous claystone with limestone nodules and sitty gray sandstone lenses

Cloverly Morrison and Sundance formations

Jurassic rocks undivided

Includes Sundance formation and Nugget sandstone

Triassic and Permian

rocks, undivided

tion and red siltstones and gypsum beds equiva-

lent to the Dinwoody and

Phosphoria formations of

areas to the west

Includes Chaguater Includes Chaguater forma-

Triassic rocks, undivided Includes Jelm and Chagwater formations

Forelle limestone and Satanka shale

Forelle limestone is gray, slab-by, hard, crinkled; Satanka shale is red, soft, sandy

Casper formation

Gray and tan thick-bedded sandstone, underlain by in-terbedded sandstone and pink and gray limestone

Carboniferous rocks, undivided Includes Tensleep eandstone, Amsden formation, and Madi-

son limestone

formation Cherty gray and lavender dotamite inter-bedded with red shale and gypsum

Phosphoria

Permian rocks undivided

Hartville formation

In descending order; red and white sand-stone, year dolonite and limestone, red shale, and red and gray sundstone

Madison limestone

Blue-gray massive cavernone charty limestone and dolomite; arkone mandstone present in places at base may be of Cambrian

Tensleep sandstone and

Amsden formation

Gray nundstone and thin

limestone and delemite beds; basel part contains

red and green shale: Dar-

win sandstone member at

Cm

Guernsey limestone Bine-gray massive

cherty limestone and dolomite. Locally includes dolomite and sandstone of Devontien age

Madison limestone and Cambrian rocks, undivided

Cambrian rocks, undivided Chiefly thin-bedded glauconitie eandstone and quartrite

CAMBRIAN

ORDOVICIAN

CHEMISTRY

The waters of all three springs seen in Table 1 have near neutral pH. Low temperature hot water systems are indicated by high levels of Cl, F, Ca and Mg. Hot water systems are also indicated by values that are greater than unity for the Cl/SO_{4} and Cl/F ratios. The waters of the three springs may be described as follows:

Spring name	Water	type	Inferred age			
Alcova H. S.	$SO_4 > Cl > HCO_3$	Na>Ca>Mg>K	Middle			
Saratoga H. S.	SO ₄ >C1>HCO ₃ .	Na>Ca>K>Mg	Oldest			
Douglas H. S.	so ₄ >HCO ₃ >Cl	Ca>Na>Mg>K	Youngest			
Alcova and Saratoga Hot Springs are not remarkably different						
even though Saratoga Hot Spring contains almost twice as many						
dissolved solids.						

Quartz and Na-K-Ca subsurface temperatures seem realistic and indicate that thermal water has probably not been diluted with cold meteoric water. Subsurface temperatures probably do not exceed 100°C and in the case of Alcova and Douglas Hot Springs maximum temperatures are only slightly higher than the spring temperatures.

Table 1. Chemical analysis of three thermal springs in eastern Wyoming. Units are mg/l unless otherwise noted.

	Alcova	Saratoga	Douglas
	Hot Spring	Hot Spring	Hot Spring
	X90471	X90472	X90470
pH (field) Cl F HCO3 CO3 SO4 SiO2 Na K Ca Mg Li B NH3 H2\$ TDS T°C Flow (gpm)	7.50 230 2.3 87 0 340 34 170 9.5 160 22 0.2 <1.0 0.04 <0.05 1061 45 300	7.51 540 6.0 62 0 580 72 480 22 150 11 <1.0 0.01 0.90 1931 47.5 50	7.42 60 1.1 159 0 220 30 78 7.6 100 25 0.1 <1.0 0.01 <0.05 686 25 5
TSiO ₂ °C	85	120	79
TNa/K °C	124 *	108	181*
TNa-K-Ca °C	59	99	54
Cl/SO4	1.8	2.5	0.7
Cl/F	53.6	48.2	29.2
CL/HCO3	4.5	1.5	0.6
Cations mg/l Anions mg/l	17.5 15.1	29.9	10.6

^{*} Does not reflect true subsurface equilibrium conditions.

Solution mineral equilibria studies of Alcova Hot Spring indicate that waters were last in equilibrium with the minerals listed in Table 2. This silica-carbonate mineral suite fits the geologic environment in that the springs issue out of the Chugwater Formation of Triassic red shale and siltstone with some calcite cement.

Equilibria studies also indicate by virtue of the very small ΔG values seen in Table 2 that the waters are only slightly saturated with the minerals listed. Therefore, pipe scaling and other problems associated with mineral precipitation should be minimal. This is born out by the dearth of problems in the space heating system at the Alcova power house in over 25 years of utilizing thermal water.

Table 2. Gibbs Free Energies of various hypothetical minerals in Kcal/mole. Positive values indicate saturation, O indicates equilibrium and negative values indicate undersaturation.

Alcova Hot Spring X90471

Mineral Name	Chemical Formula	ΔG
Aragonite Calcite Chalcedony Dolomite Quartz Talc Tremolite	CaCO ₃ CaCO ₃ SiO ₂ (Ca, Mg)(CO ₃) ₂ SiO ₂ Mg ₃ (Si ₄ O ₁₀)(OH) ₂ Ca ₂ Mg ₅ (Si ₈ O ₂₂)(OH) ₂	0.19 0.26 0.13 0.08 0.66 6.39 6.52

CONCLUSION

The Alcova, Wyoming area exhibits high potential for low temperature geothermal development. The following meritorious points are noted:

- 1. Waters have low ionic strength and are not saturated to any degree with ions.
- 2. Temperatures of 45 to 60°C should be achieved at depths less than 1000 feet and probably less than 500 feet.
- 3. The quantity of hot water should be near unlimited.
- 4. The area is on Highway 220 only 30 miles from Casper, Wyoming.
- 5. Federal land may be available in the area of interest.

The following work should be undertaken:

- l. Determine local faulting and the geologic cross sections in several days of geologic mapping.
- 2. Determine the land status in the vicinity of the power dam.
- 3. Acquire meteorological records for the Alcova-Casper area to determine the number of blue sky days and average winter conditions.

The following positions should be taken assuming that the preceding work returns favorable results:

- 1. Acquire a suitable land position depending on the size of the greenhouse complex.
- 2. Drill a well.
- 3. Design the space heating system to accommodate fluid temperatures found and greenhouse geometry.
- 4. Build the complex or entice a second party to build the structure utilizing Amax hot water.