4. WESADOWN DRAWNE COODDINAND CHU

January 1983

NEVIN SADLIER-BROWN GOODBRAND LTD.

by

Geological Survey of Canada

۶.....

Prepared for

1982 TEMPERATURE GRADIENT DRILLING ON SHOVELNOSE CREEK AT MOUNT CAYLEY, SOUTHWESTERN BRITISH COLUMBIA

Report on

..

Suite 401 - 134 Abbott St., Vancouver, B.C. Canada V6B 2K4 (604) 683-8271

Report on

1982 TEMPERATURE GRADIENT DRILLING ON SHOVELNOSE CREEK AT MOUNT CAYLEY, SOUTHWESTERN BRITISH COLUMBIA

Prepared for

Geological Survey of Canada

bу

John F. Reader, B.A.Sc., P.Eng.

Stuart A.S. Croft

10

NEVIN SADLIER-BROWN GOODBRAND LTD.

January 1983

GEOLOGISTS AND ENGINEERS

.....

PECTABLISTS IN MINERAL AND GEOTHERMAE RESOURCE EXPLICITATION.

TABLE OF CONTENTS

Page

1.	SUMMARY	1
2.	INTRODUCTION	1
	 2.1 Terms of Reference 2.2 Location, Access and Topography 2.3 Geologic Setting 2.4 Previous Work 	
3.	DRILLING	4
4.	CORE GEOLOGY	5
	4.1 Introduction4.2 Core Lithology4.3 Alteration and Mineral Precipitates4.4 Structure	. •
5.	TEMPERATURE	8
б.	HYDROGEOCHEMISTRY	9
7.	DISCUSSION	10
8.	REFERENCES	12
	APPENDIX	Following Text
	Appendix A - Hole Summary Sheets Appendix B - Drill Logs - Shovelnose One - Shovelnose Two Appendix C - Recommendations for Future Drilling Methods at Mt. Cayley	

TABLES

Table 1 - Hydrogeochemistry of Shovelnose 2 Water

 ${\mathcal X}^{*}$

. •

F	I	G	U	Ŕ	E	S	
---	---	---	---	---	---	---	--

Figure	1		Location Map 1982 Cayley Drilling:
			Shovelnose Site
Figure	2	-	Location Map, Mount Cayley Area
Figure	3		Temperature Profile and Graphic Log,
			Shovelnose One
Figure	4		Temperature Profile and Graphic Log,
			Shovelnose Two
Figure	5		Final Temperature Traverse and
			Graphic Log, Shovelnose Two

ş

1. SUMMARY

During August-September, 1982, Nevin Sadlier-Brown Goodbrand Ltd. on behalf of the Geological Survey of Canada, managed a helicopter-supported, geothermal gradient drilling program at the Mount Cayley Volcanic Complex in southwestern British Columbia. The drill site was located at elevation 1540m in the upper reaches of Shovelnose Creek which drains the southeastern side of the Complex.

Using diamond drilling equipment, one hole (Shovelnose One) was abandoned at 516' (157.3m) when rods were stuck in the hole during cementing to alleviate severe hole conditions. After moving the rig by hand, Shovelnose Two was completed uneventfully to 1500' (457.3m).

The holes penetrated a quartz diorite of the Coast Plutonic Complex cut by at least three stages of volcanic intrusion. Numerous dykes of dacitic and andesitic composition are visible throughout the core. Alteration and precipitate assemblages are typical of extensive hydrothermal activity similar to that at the Meager Creek volcanic complex to the north.

The highest temperature measured was 48.9°C at total depth in Shovelnose Two. Measured gradients display the influence of a warm water flow which enters the hole at 835' (254.6m). A background thermal gradient of approximately 95°C/km is interpreted from the bottom hole temperatures.

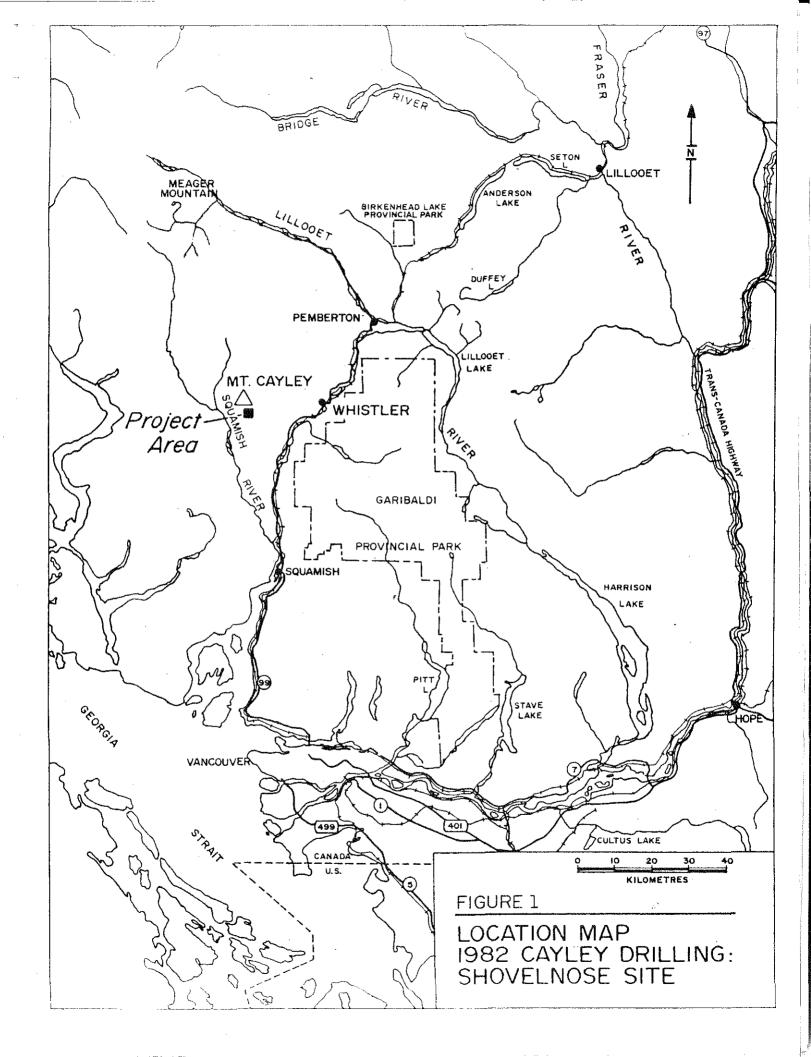
Water from the flowing zone was sampled at the surface and is seen to be highly saline with Na^+ , Cl^- , Mg^{++} , $HCO_3^$ being the dominant ions. A clear, colourless, non-flammable gas observed bubbling up the well is assumed to be dominantly carbon dioxide. Geothermometer estimates are variable with the most encouraging being the quartz conductive model which yields temperatures of 85.3°C and 115.7°C in two samples. Chalcedony precipitation and surface groundwater dilution probably yield a lower estimate of equilibrium temperatures.

2. INTRODUCTION

2.1 Terms of Reference

Nevin Sadlier-Brown Goodbrand Ltd. was engaged by the Geological Survey of Canada under Department of Supply and Services Contract Serial Number OSB82-00238, to manage helicopter-supported drilling operations and conduct thermal studies of a borehole at Mount Cayley in southwestern British Columbia. The scientific authority was Dr. J.G. Souther of the Geological Survey of Canada. Nevin Sadlier-Brown Goodbrand Ltd. selected a diamond drilling contractor, and provided a geologist and support for management of mobilization and demobilization, drill supervision, core logging and downhole temperature surveying. This final report summarizes the work performed and results obtained under this contract.

Measurement units in this report are in metric with the exception of drillhole depths which were reported by the driller in feet (metric equivalents are presented in brackets).


2.2 Location, Access and Topography

The drill site is situated in the upper Shovelnose Creek drainage, one kilometre southeast of Wizard Peak, a dacite pile which is part of the Mount Cayley volcanic complex in southwestern British Columbia (Figure 1). The site is at treeline at elevation 1540m (5050') on the eastern bank of Shovelnose Creek.

From Vancouver, the Mount Cayley area is north 40km on Highway 99 to Squamish and about 50km on well maintained logging road to Shovelnose Creek in the Squamish River valley (Figure 2). Access to the drill site is by helicopter, a distance of 7km northwest from the staging point at Mile 33 on the Squamish Main logging road. The vertical lift by helicopter is 1450m.

The topography in the area is extremely rugged. Peaks range in elevation to nearly 2400m (8000') and maximum relief is about 2300m (7700'). Uplift has in places, left isolated blocks of the gently undulating Eocene erosional surface (between approximately 1200m (4000') and 1800m (6000')) amidst rugged peaks of the glacially sculptured Coast Mountains. Drainage is immature and stream courses are commonly structurally controlled.

The Mount Cayley edifice has a topography typical of the Garibaldi Belt volcanics. The large domes and piles of extrusive rock have afforded erosional protection to the underlying basement while uplift and glaciation have greatly oversteepened the slopes on the volcanics. The effect is to produce rugged ramparts of volcanic rock with near vertical faces.

2.3 Geological Setting

Basement rocks of the Coast Mountains are mainly of plutonic origin emplaced primarily in the late Upper Cretaceous with compositions ranging from diorite through quartz monzonite. About fifty percent of the Coast Plutonic rocks are comprised of quartz diorite and granodiorite (Roddick and Hutchinson, 1974). Lenses of metamorphosed sediments and volcanics which predate the plutonic activity generally occur in long steeply dipping lenses usually trending north-northwest. These rock types form the basement stratigraphy in the immediate vicinity of Mount Cayley.

Associated with the placement of the Coast Plutonic Intrusives are several stages of volcanic activity. In southwestern British Columbia the latest activity is represented by the Cenozoic Garibaldi Volcanic Belt of which the Mount Cayley assemblage is a member. Extrusive rocks at Mount Cayley vary in composition from basalt to rhyodacite with the bulk being dacite. Endogeneous and exogenous, domes, piles, and flows are all visible in the project area.

The drill site is situated on the eastern contact of the main volcanic pile and quartz diorite basement. Several stages of volcanic activity are visible from the site and numerous porphyritic dykes were observed in the quartz diorite in the upper Shovelnose Valley.

2.4 Previous Work

In 1974, Nevin Sadlier-Brown Goodbrand Ltd. (NSBG, 1974) under contract to B.C. Hydro and Power Authority included the central Garibaldi Belt in a geothermal study of southwestern British Columbia. An aerial infrared scan was flown over the Mt. Cayley Complex at this time.

Studies focusing on the geothermal potential of the Mt. Cayley area by Energy, Mines and Resources, Canada (EMR) began during the late 1970's. In the fall of 1977, two shallow diamond drill holes were completed in the Squamish valley on the western flanks of the Mt. Cayley Volcanic Complex. Geothermal gradients of 52.2 and 66.1°C/km were encountered, indicating the potential of a high-temperature thermal reqime in this study area (Lewis, 1977). Subsequently, three more holes have been drilled (Souther, personal communication). Two diamond drill holes in the vicinity of Turbid and Shovelnose Creeks (Cayley 1 and Cayley 2) both indicate geothermal gradients of about

- 4 -

100°C/km. A fifth hole, drilled during the autumn of 1981 on Brandywine Creek east of the Mt. Fee Complex, shows a gradient of about 50°C/km (Souther, personal communication).

Souther (1980) conducted detailed geological mapping in the central Garibaldi Belt. Several volcanic centres were identified along the north-south trending Squamish-Cheakamus Geological mapping outlined the complex volcanic divide. stratigraphy in the Cayley area. The study discovered two groups of thermal springs within the Mt. Cayley Complex ranging in temperature from about 18°C to 40°C. In addition, a dipole-dipole, DC resistivity survey was performed in the higher elevations over plutonic basement rock adjacent to the Mt. Cayley volcanic centrès (Souther. personal communication).

3. DRILLING

Iron Mountain Drilling Ltd. was selected as the diamond drill contractor for the project. A Longyear Super 38 was moved from the Squamish Main logging road to the site on August 23, 1982 with drilling commencing the following day. The hole was designated Shovelnose One (SN-1).

SN-1 was collared with BW casing (73.0mm O.D.) to 20' (6.1m) and drilling to depth followed with BQ-equipment (60mm hole dia). The penetration rate was exceptional with over 60m drilled in each of the first two days. Drilling was then brought to a virtual halt in highly altered and fractured quartz diorite. Binding and squeezing of the drill rods threatened to break the string and cementing was attempted several times to stabilize the hole.

Each cement job was unsuccessful and little cement was encountered when the hole was redrilled, It was suspected that the fractured rock was taking the cement plug. At 516' (157.3m) a slurry of high-early-strength cement was placed at the bottom of the hole. The drill rods were pulled off bottom 200' (61m) and flushed until clean water appeared at The following morning the drill string surface. was discovered stuck in the hole. After considerable effort the hole was abandoned with seven drill rods and a core barrel Traces of cement were observed on one of the unrecovered. recovered rods.

The drill was moved approximately one metre northeast in order to drill a parallel hole. NQ drilling equipment was brought in to the site. The second hole, Shovelnose Two, was

- 5 -

collared with NW casing (88.9mm O.D.) to 30' (9.2m) and cemented. Drilling proceeded with NQ (75.7mm hole dia.) to 630' (192.1m) then was reduced to BQ to a total depth of 1500' (457.3m). Very blocky ground was encountered at similar depths to SN-1 but a mixture of bentonite and organic polymer mud in this zone sufficiently stabilized the hole so that no cementing was required.

4. CORE GEOLOGY

4.1 Introduction

As expected, SN-1 and -2 display considerable similarity in lithology, alteration, precipitates and structure. Good correlation between rock types was noted with the exception that the depth of intersection of distinct dykes and structures are slightly shallower in SN-1 indicating steeply dipping structure trending roughly northwest. Steeply dipping dykes mapped at surface also trend northwest. It is considered that binding in SN-1 may have been caused by drilling along steeply dipping fractures.

The following descriptions of the core will concern the general bore intersection with hole-specific comments added where substantial differences exist.

4.2 Core Lithology

Shovelnose core comprises moderately to strongly altered quartz diorite intruded by numerous dykes of varying size and composition. The quartz diorite exhibits a uniform, medium-grained texture with equant feldspar and quartz grains 1-2mm in diameter. In thin section, strongly zoned plagioclase grains are sheared and exhibit some intergrowth. Both feldspar and recrystallized quartz are sutured along grain boundaries indicative of a more recent phase of alteration. Ten to twenty-five percent of the plutonic rock is composed of secondary biotite crystals in books 2 to 5mm in diameter. Biotite distribution and alteration is strongly affected by fracturing and shearing. Foliation in the quartz diorite is generally weak but at times becomes intense near dykes or breccia contacts.

Hypabyssal intrusions into the quartz diorite are numerous and range in composition from andesite to dacite. Three distinct volcanic rock types and at least three different intrusive phases are easily identified. A lavender to medium-grey, hornblende, feldspar, porphyry dacite, most

- 6 -

prominent in the first 150m of the hole, exhibits anhedral phenocrysts of feldspar and minor quartz(?) ranging in size from 0.5 to 2mm in an aphanitic groundmass. Hornblende occurs in sparse lathes to 2mm length. Dacite dykes are generally 3 to 5m (10 to 15') in apparent thickness and contact relations are often obscure due to the intensity of fracturing and alteration in these zones. Angular, pebble-sized inclusions of both plutonic and volcanic fragments are common, particularly towards dyke margins. Dacite intrusions are generally more intact, and exhibit a lesser degree of alteration than other dykes. The dacite is part of a later phase of volcanism as evidenced by crosscutting relations with an earlier andesite dyke at 216' (65.8m) in SN-1.

A medium to dark grey, fine-grained andesite is present numerous dykes ranging in apparent width from 0.5 to 4.5m (2 to 15!) and often occuring in swarms. The andesite typically contains small altered hornblende phenocrysts within a uniform aphanitic groundmass. Contact relations are unclear because of the incompetent nature of the rock. 1

A third intrusive of minor extent is a dark grey-green, aphanitic andesite.

Additionally, numerous breccias occur throughout the core suggesting a violent intrusive character. Breccias consist of sand to pebble-sized angular fragments of kaolinized dacite and quartz diorite. Breccia dykes often occur in zones of weakness, such as on the border of other dykes and in shear zones and range in size from 2cm to several metres. The most notable of these breccias is seen at 941' to 952' (286.9-290.2m). Here a coarsely brecciated dacite (3cm clasts) is intensely bleached to a chalky white colour.

4.3 Alteration and Mineral Precipitates

_

Rock in the Shovelnose drill holes exhibits various phases of alteration. The earliest alteration consists of secondary biotite which pervades the bulk of the core, most commonly in the quartz diorite and locally in older volcanic dykes. The biotite is present in books to 5mm diameter which are deformed around other grains to conform with the continuous fabric of the core.

A regional weak propylitic alteration variably affects all of the mafics present. The secondary biotite exhibits

- 7 -

chloritic fringes, and hornblende in the plutonic rock is largely replaced by chlorite. Buff to olive clays are found on most fractures throughout the hole. Additionally, feldspars exhibit weak sausseritization in most grains.

A pervasive argillic alteration (kaolinite) has replaced most plutonic feldspars to a moderate degree. Interstitial clays are common throughout the quartz diorite. Pervasive argillic alteration occurs in dykes to a lesser and more variable degree. Localized zones of strong silicification have flooded the rock at 1063'-1210' (324.1-368.9m). The core contains extensive fine-grained quartz and some salmon pink k-feldspar.

Near zones of dyke contact or brecciation intense alteration commonly reduces the core fabric entirely to clay and quartz grains. Numerous zones of broken rock where core recovery is poor (at 400'-540', 122.0-164.6m) may be attributed to the washing of the clay fraction. Return flow from the drill casing often displayed a milky colour suggesting clay washing.

Precipitates are common on most fracture surfaces. Clay coatings predominate throughout the hole with a carbonate-clay or clay-hematite-magnetite assemblages occurring locally. Some zones, spacially associated with dykes, exhibit a nondescript black coating in thicknesses to 5mm cutting across the core. This black mineral is probably a manganese oxide; (ie. psilomane, pyrolucite, wad). Gypsum and carbonate also occur as scaley coatings.

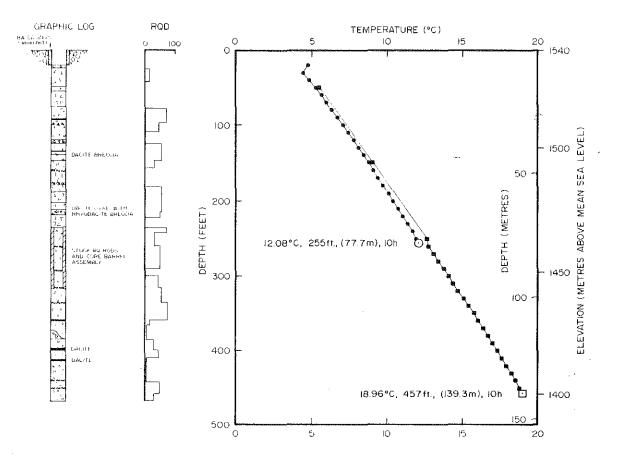
Primary vein minerals consist of carbonates, epidote and quartz. Carbonates occur as cryptocrystalline coatings and rarely as macro-crystalline fillings, both usually in or near volcanic dykes. Epidote and quartz are present locally, and usually in association with carbonate-clay precipitates, sericitic alteration, silicification of the wall rock and sericite on fractures. Epidote can occur in small crystals lining open spaces, or as broad (5-10cm) zones of flooding sometimes with a quartz centre and silicic wall alteration to locm width.

Sulphides are notably lacking with the exception of extremely fine-grained, disseminated pyrite, often in cubes and occurring periodically throughout the core.

- 8 -

4.4 Structure

Intense tectonic activity and repeated intrusions have resulted in a complex structural pattern in the Shovelnose core. Fracturing is highly disordered with only a few distinct joint sets identifiable. In a number of zones, ragged sub-vertical fractures cut the core. More common however, are "broken zones" consisting of closely spaced (1-3cm) randomly oriented fractures. These zones are typically present in the vicinity of hypabyssal intrusions though long sections of quartz diorite are similarly affected.


Foliation is only weakly developed except near zones of alteration and shearing, where a gneissic texture is developed. Attitudes are difficult to determine but are usually at moderate angles to the core axis.

5.0 **TEMPERATURES**

Downhole temperature traverses were conducted at the end of the twelve hour period between drilling shifts. Each traverse overlapped the previous one at 50' (15.2m) intervals and surveyed the newly drilled hole at 10' (3.1m) intervals (Figures 3 & 4). Upon reaching total depth and after a 14 hour stabilization period, the entire hole was surveyed at 10' (3.1m) intervals (Figure 5).

Downhole temperatures were measured with a thermistor-based transducer read with a resistance bridge both on loan from the Earth Physics Branch of EMR. The tool was run inside of the drill rods except for the last 2m where the bit was lifted off bottom to allow an undisturbed bottom hole temperature measurement. The data quality is good although flow in the hole resulted in a few unsteady measurements.

A major upward fluid flow from about 835' (254.6m) is observable in the final traverse. Minor flows out of the formation are evident throughout the hole. Bottom hole temperatures, which most accurately represent the undisturbed rock temperature and therefore the insitu thermal gradient, display two distinct gradients. The upper gradient is 105°C/km and the lower is 87°C/km with the inflection at the main source of warm water inflow (835', 254.6m). This observation reflects the effect of a warm water flow travelling transverse to the bore over a lengthy period of time. The flow acts as a heat source and serves to raise and

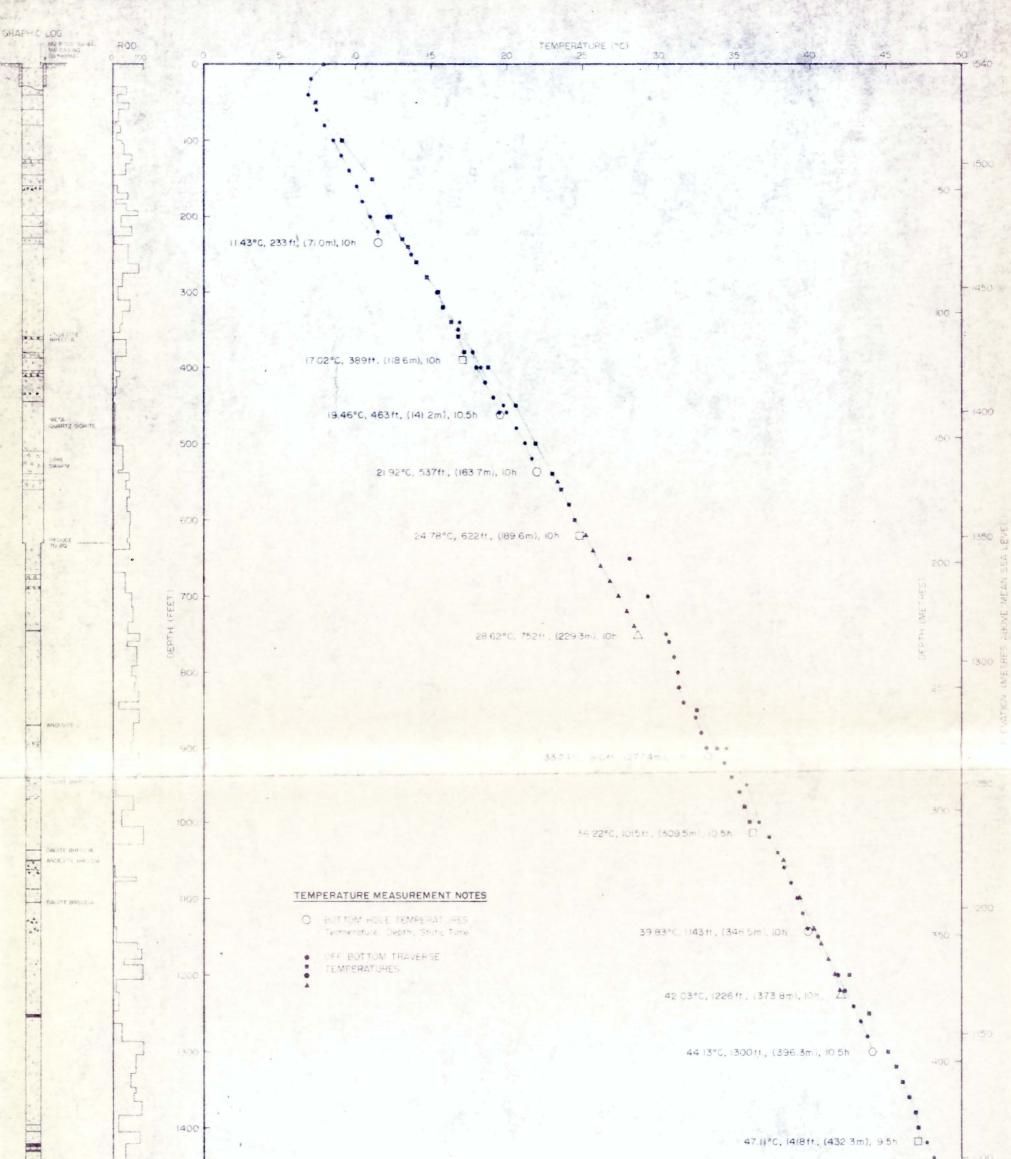
<u>LEGEND</u>

LITHOLOGIES

- OVERDURDEN Recent allovione
- $\overbrace{ \{ v \in V \\ v \in V \} }^{[n] (V)} ANDESITE (1 Medium grey hornblende porphyry dykes.)$
 - ANDESITE 2 Dark grey-green aphanitic dykes
- QUARTZ DIORITE medium to coarse grained plutonic rock exhibiting minor foliation; extremely variable alteration

TEMPERATURE MEASUREMENT NOTES

- O BOTTOM HOLE TEMPERATURES Temperature, Depth, Static Time
- OFF-BOTTOM TRAVERSE
- TEMPERATURES


STRUCTURES

	Sharp Contact
~~~~	Fault
$\sim \sim \sim \sim \sim$	Shear or Shear Zone
A*A*4*	Breccia

### FIGURE 3

### TEMPERATURE PROFILES AND GRAPHIC LOG – SHOVELNOSE ONE

t.



#### 5 . 48 90°C, 1485ft. (452.7m), 19h 🔿 1500 25 30 35 40 0

### LEGEND

### LITHOLOGIES

## OVERBURDEN - Pecent onluvium

DACITE - Medium grey furnibiende feidspar porphyry dykes, locally brecciated

ANDESITE 1 - Medium grey hornblende Li porphyry dykes.

ANDESITE 2 - Dark grey-greet aphanitic dykes



OUARTZ DIORITE - medium to coarse grained Dilutoric rock exhibiting minor foliation, extremely variable alteration

### STRUCTURES


Gradational Contact mmm Fourt wwww Shear or Shear Zone

ATA4 Breccia

60

### FIGURE 4

TEMPERATURE PROFILES AND GRAPHIC LOG -SHOVELNOSE TWO



25

45

50

40

### LEGEND

### LITHOLOGIES

OVERBURDEN - Recent alluvium

DACITE - Medium grey hornblende feldspar porphyry dykes, locally brecciated

ANDESITE 1 - Medium grey hornblende porpnyry dykes

ANDESITE 2 - Dark grey green aphanitic dykes

QUARTZ DIORITE - medium to coarse grained plutonic rock exhibiting minor taliation , extremely variable alteration

### STRUCTURES

- 10

5

Sharp Contact
 Gradational Contact
 Foult
 Shear or Shear Zorie
 Breccia

FIGURE 5												
FINAL TEMPERATURE	TRAVERSE											
AND GRAPHIC LOG -												
SHOVELNOSE TWO												

- 9 -

lower the gradients respectively, above and below the flowing layer (Lewis, 1977). The true gradient lies between the two values, probably near 95C/km (T. Lewis, Pers.Comm.). This gradient is about three times the globally averaged gradient.

### 6.0 HYDROGEOCHEMISTRY

40

During the early stages of drilling SN-2, the hole produced minor quantities of water. As drilling progressed, traces of a colourless, non-flammable gas began to effervesce out of solution and the outflow increased.

At 917' (279.6m) the flow rate stabilized at 1-2 L/min and gas was bubbling constantly from the hole. Sample 54 was recovered from the top of the casing after a 12 hour static period during which no hole disturbance took place.

The hole continued to produce water and gas at similar flow rates until T.D. at 1500' (457.3m). Sample 34 was taken 16 hours after the hole was completed. The measured pH was between 6.5-7.0 and the conductivity was 3400 µmhos (measured at the time of sampling).

The sampling treatment is summarized as follows:

Cations - 245ml, 40µ filter, 5ml HNO₃ acid added Anions - 250ml, 40µ filter SiO₂ - 20 ml sample, 40µ filter, 180ml distilled water added

The results of two suites of analyses with applicable geothermometer calculations are shown in Table 1.

Of immediate interest is the concentration of sodium and chloride ions which is exceptionally high for thermal water from the Garibaldi Belt. High carbonate can be considered indicative of the presence of carbon dioxide gas.

The Na-K-Ca geothermometer appears to be influenced by high Mg and after incorporating an Mg correction (after Fournier and Potter, 1979) yields temperatures of 32.2 and 37.5°C close to the temperature of the inflow to the borehole (31.5°C). This suggests that the fluid may be in equilibrium with the rock in the bore. However until a source for the Mg be determined, the validity of either can of these geothermometers is in question. The quartz conductive model for the SiO₂ geothermometer yields temperatures of 85.3°C and 115.7°C possibly indicating a more encouraging past

						TABLE 1 - HYDROGEOCHEMISTRY OF SHOVELNOSE 2 WATER Chemical Geothermometer Results (°C)															
Sample No.	Hole Depth	Ca	Hg	Na	ĸ	Fe	Mn	Sr	Li	Cs	HCO3	F	C1	\$0 ₄	\$10 ₂	TDS	Quartz Conductive	Chalcedony	Na-K-Ca	Na-K-Ca-Mg	Na/L:
SN2-34	1500' (457.3m)	272	105	780	32.4	175	1.52	1.94	., <b>1.06</b>	<0.05	2317	0.36	685	88.3	66.6	0.2721	115.7	85.3	140.6	37.5	97.£
5N2-54	917' (279.6m)	311	135	880	37.6	432	1.95	}.86	1.24	<0.05	2613	0.18	810	106	37.6	0.2601	B9.1	56.4	142,6	32.2	99.8

ĩ.

and the second second

.

4

All results reported as ppm.

R. Kellerman Geochem Lab University of Waterloo

 $\Sigma_{j}$ 

Ϊ,

#### - 10 -

temperature. Fluid dilution may be suppressing the silica-indicated temperatures. The chalcedony equilibria geothermometer suggests temperatures of 56.4°C and 85.3°C although deposition of chalcedony was not observed in the core. This geothermometer may also yield conservative results due to dilution. Reasonable correlation with the conductive silica temperatures is achieved with the less understood Na/Li geothermometer which yields 97.6 and 99.8°C (Fouillac and Michard, 1981). Rock lithium content, however, can produce erratic results with this method.

High iron content can be explained by the presence of the drill rods in the hole during sampling. A rusty tinge to the water was noted especially after long equilibrium times. Other impurities from the drilling process should be minimal as little mud or cement was used in SN-2.

### 7. DISCUSSION

The Shovelnose core penetrates a typical quartz diorite of the Coast Plutonic Complex. The unit is characterized in the immediate area of the drill site by pervasive secondary biotite and a minor to moderate degree of hydrothermal alteration consistent with the proximity to units of the Mount Cayley volcanic complex. Three distinct phases of volcanic dyke intrusion can be recognized in the drill site vicinity and in the core.

Lateral flow of warm water at a depth of about 835' (254.6m) has disturbed the temperature gradient in the hole. A gradient of 95°C/km is assumed to approximate the pre-flow gradient. This gradient is similar to drill hole results from near the base in slope on Shovelnose Creek and Turbid Creek (Souther, pers.comm.). Comparable gradients have been measured at the Meager Creek volcanic complex to the north, near the edges of the near surface convective hot zones. There is a striking similarity between the observed Cayley phenomena and Meager Creek data in regard to both geology and temperature.

Upflow of water in Shovelnose 2 suggests the intersection of the source water of Shovelnose (and possibly Turbid Creek) warm springs. The water chemistry of both SN-2 and Turbid Creek springs are anomalously high in magnesium, the source of which is probably common but as yet undetermined. The elevation of the water flow is approximately 4000' AMSL (1220m) and, since the hydraulic gradient can be expected to be generally downslope, it is reasonable to expect that the thermal waters are emanating from under the Wizard Peak - Mt. Cayley pile. Since the granitic terrane distal from the volcanic activity is massive and virtually unfractured, the shattered zone through which the extruded rock rose is proposed as a likely conduit for rising thermal fluids.

The location of such a conduit is uncertain due to the considerable distance through which fracture controlled flow can be expected to move freely. Since the observed thermal water is at 4000' (1220m) elevation the source area must be higher in elevation limiting the target area. A detailed structural examination may assist in this search.

____

- 12 -

### 8. REFERENCES

- Brosinsky, R., personal communication, 1982, Iron Mountain Drilling Ltd., Merrit, B.C.
- Fouillac, C. and Michard, G., 1981: Sodium/Lithium Ratio in Water Applied to Geothermometry of Geothermal Reservoirs, Geothermics, Vol. 10, No. 1, p. 55-70.
- Fournier, R.O. and Potter, R.W., II, 1979: Magnesium correction to the Na-K-Ca chemical geothermometer. Geochemica et Cosmochimica Acta Vol. 43, p. 1543-1550.
- Lewis, J.F., 1977: Preliminary Field Report of Drilling Near Mt. Meager and Mt. Cayley Volcanic Centres - 1977. Geothermal Service of Canada, Division of Seismology and Geothermal Studies, Earth Physics Branch, Department of Energy, Mines and Resources, Open File Report 77-
- Lewis, T.J. and Beck, A.E., 1977: Analysis of Heat-Flow Data-Detailed Observations in Many Holes in a Small Area. Tectonophysics, Vol. 41, p. 41-59.
- Lewis, T.J., personal communication 1982, Earth Physics Branch, Pacific Geoscience Centre, Sydney, B.C.
- Nevin Sadlier-Brown Goodbrand Ltd., 1974: Investigation of Geothermal Resources in Southwestern British Columbia. Unpublished report to B.C. Hydro and Power Authority, 3 Volumes.
- Roddick, J.A. and Hutchinson, W.W., 1974: Setting of the Coast Plutonic Complex, British Columbia. Pacific Geology 8, p. 91-108.
- Souther, J.G., 1980: Geothermal Reconnaissance in the Central Garibaldi Belt, British Columbia. In: Current Research, Part A, Geological Survey of Canada, Paper 80-1A, p. 1-11.
- Souther, J.G., personal communication 1982. Geological Survey of Canada, Vancouver, B.C.

......

۰, ۲

## Appendix A - Hole Summary Sheets

ţ

.

• •

CELEBRA CUBRARS

WELL: SHOVELNOSE ONE

GENERAL LOCATION: Upper Shovelnose Valley COORDINATES: 5 550 470m N, 481 050m E DATE COLLARED: August 24, 1982 DATE COMPLETED: Abandoned September 2, 1982 COLLAR ELEVATION: 5,050 feet (1540m) TOTAL DEPTH (TD): 516 feet (157.3m) BEDROCK DEPTH: 8 feet (2.4m) WATERTABLE DEPTH: --

TEMP AT TD: not measured HIGHEST TEMP RECORDED: 18.96°C @ 457 feet (139.3m) TEMP GRADIENT AT BOTTOM: 110°C/km

CASING:	Type	I.D.	Depth	Cemented?
	BW	2 3/8" (6.030m)	20 feet (6.lm)	Yes
WELL BORE BELOW CASING:	Bit Size	<u>Dia.</u>	Depth Interv	val
	BQ	2.36" (5.99cm)	0-516ft. (15	57.3m) w ⁵¹
LINER:	Туре	<u>I.D.</u>	Depth	- Perforation Interval
	NONE			

WELLHEAD (cap, valves, liner hanger or sleeve, etc.):

NONE

DIP TESTS:

Depth

Angle I

Instrument

NONE

NOTES: 70 feet (21.3m) BQ rods and a BQ core barrel assembly stuck between 235 feet (71.6m) and 317 feet (96.6m). Probably stuck in cement and hole consequently abandoned.

		OKTELLIG DUMBAN				
WELL: SHOW	ELNOSE TWO					
GENERAL LOCATIO	ON: Upper S	Shovelnose Valle	У			
COORDINATES:	5 550 4	470m N.	481 050m	Е		
DATE COLLARED:	Septemb	per 4, 1982				
DATE COMPLETED:	Septemb	oer 17, 1982				
COLLAR ELEVATIO	)N: 5,050 f	feet (1540m)				
TOTAL DEPTH (TE	): 1,500 f	eet (457.3m)				
BEDROCK DEPTH:	8 feet	(2.4m)				
WATERTABLE DEPT	Н:					
TEMP AT TD:	48.90°C	:				
HIGHEST TEMP RE	CORDED: 4	8.90°C @ T.D.				sa ana
TEMP GRADIENT A	T BOTTOM: 8	7°C/km				•
CASING:	Туре	I.D.	Depth	Cemented?		³
	NW	3.5"	30 feet	Yes		;
		(8.89cm)	(9.lm)			
WELL BORE BELOW CASING:	Bit Size	Dia.	Depth Interval		4	
	NQ	2.98"	0-630 feet (192	.lm)		
	DO	(7.57cm)				
***	BQ	2.36" ( ⁵ 0 ^{99cm)}	630 feet (192.1	N. Contraction of the second s		
LINER:	Туре	<u>1.D.</u>	Depth	Perforation	incerval	
					1	

NONE

WELLHEAD (cap, valves, liner hanger or sleeve, etc.):

NONE

DIP TESTS:

Angle

Depth

Instrument

NONE

NOTES:

Step-off nole from Shovelnose One. About 3 feet (lm) northeast of the second structure of the second structure struc

### Appendix B - Drill Logs

5 °

Shovelnose One Shovelnose Two

ł

.

EVINS	ADLIE		JWN G	OODBRAND LTD.		s/s/.	:/e/		//	12	11	DIAMOND DRILL LOG SHEET HOLE_SHOVELNOSE #1 SHEET	0r
ROM	TO	UH 7	ROD	DRILLING COND	18/3	[[]]	3/ /	1	/5/	¥3/	//\$	GEOLOGIC LOG	ATES
20	.0		0	BW casing set		ÍŤ	Ĩ		T	ŤÍ	<b>N</b>	D-24 Blotite QUARTZ DIORITE; Epidote clays are common extremely broken, fissile. between quartz grains.	ATES
	30	95	-25- 16	to 20';attempt to cement to 37' is unsuc- cessful.	ſ						17 2	4-49 Dark grey aphanitic DACITE Clay is common throughout. dyke is intensely fractured Biotite, hornblende are most fracture "crackled". Remnant hornblende entirely chloritized.	
30											22	(± biotite) has been strongly chloritized. Rock is soft, friable. Contact attitudes are unclear. Volcanic intrusive is	
40	40		-43-									weakly magnetic.	
		95					-				5		
50	50_		0	   -···· · · · · · · · · · · · · · · · ·							1 1 1	>-55 Intensely altered QUARTZ     Extensive secondary blotite       DIORITE is fractured, friable.     occurs in books 2-5mm in       Uniform texture in equant     diameter. Feldspar is re-       quartz grains 2mm in diameter.     placed by clays, epidote.       Veinlets containing biotite(?)	· · ·
60	60	95	0.	n an			· · · ·	-			152	throughout, -76 Feldspar porphyry Epidote and clays are common DACITE. Fracturing and/or in and around fractures, fracture fill shearing is intense throughout. Mafics have been moderately Dacite contains fissile crypto- chloritized and generally	
70	_70		<b></b>	·····				-	- 		103	crystalline volcanic dykes are fringed by red-pink	
	80		  -78-									Contacts with quartz diorite are jagged, attitudes unclear (though lower contact roughly follows micro yeining).	
80	. 90	95	. 71.									-92 QURTZ DIORTE is intensely Secondary biotite in books altered though somewhat more 2-3mm diameter occurs clay on fract intact. Uniform texture is throughout. regularly interupted by thin shear zones containing thin.	
90			- ·							-	4 2 2 2 2 2 2	Shear Zones containing thin, dark veinlets. 2-94 Dark grey aphanitic	

л Т л

a first of the state of the

一時、1915年、1月1日に、1月1日日の日本

NEVIN S		1-8RC	WN G	ODBRAND LTD.	H			RAPI		OG IPITAT			ET HOLE SHOVELNOSE #1 5				
			LLING			4/3/	s/ / .	[]/./	5	$\langle / /$	GEOLOGIC LOG						
FROM	то	%	ROD	DRILLING COND.	-18/s/2	1/3	////	12/3	[]3]	11:	2	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES			
100			1100	DITIELING COND.	<b>/ / / /</b>	ŤŤ	ff7	47	<del>77</del>	f fa	101	120 OUARTZ DIORITE.Brecciated		Clay and trace carbonates			
100	110	95	47							1		ingular volcanic and basement ragments. Texture becomes ratiable below 105'; some	feldspars. Mafics are chlor- itized and secondary biotite is common throughout.	are present as coatings on			
110			-110							1 1 2 1 1	f ≕	iner grained phases apparent.	Moderate to strong epidote flooding in vicinity of shear zone.	silvarieu zones.			
120	<u>120</u>	95	-125-							≤ 0	120 d d n	-125.5 Fine grained medium - ark grey ANDESITE. Some rem- ant hornblende blades occur ir ryptoorystalline matrix.		Carbonates and gypsum coat fracture faces.			
130	140		53							1 		5.5-159_QUARTZ DIORITE.Rock is woderately fractured,intensely litered. Texture is variable and foliation is weak. Dark hicroveinlets occur throughout	throughout. Chlorite is present in microveins and as replacement of mafics.	Clay and minor gypsum are present on most fracture faces.			
140		95	148 -							47 11 13	1 2 N 1 - 9	Thinyolcanic_breccia_dykes 2-3cm thick intrude at 136', 440', and 148'. Dykes generally kaolinized.	portions of rock.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
150			31 -							1	↓ = 	120 )					
160	160											-179 Lavender-dark grey		Clay and minor gypsum occur			
. 190	170	95	0							Z: V		porphyritic DACITE is intensea shattered, cut by several shears. Feldspar and quartz(? crystals are anhedral ranging in size from 0.5-2mm.	Epidote is common around more prominent fractures. Chlorit after hornblende is present throughout.	on fracture īaces. e			
170	150		U .							1	7						

--

		00	ILLING	106	7.5/	5/4/	c/3/	11	1.1	14	w/ 1	/ /3	254		
ROM	TO	10 M	ROD	DRILLING COND.	12/3	////		[];	([])	(s/s)	7/,	15	LITHOLOGY STRUCTURE	GEOLOGIC LOG	PRECIPITATES
180					<u>ry z</u>	ŤŤ	řŕ	17	77	77	ŕk	N .		Fine veinlets of chlorite	Trace magnetite and fine
190		95	-182 ⁰									, //    = // [№]	intensely altered, moderately fractured. Lower contact with dyke is 35° to c.a.	occur throughout. Secondary biotite and epidote replace all original mafics.	pyrite cubes present on fracture faces.
190	190												188-202.5 Fine grained medium 1 D grey DACITE dyke. Texture is uniform throughout; contains fine chlorite after hornblende in grey groundmass. Contacts	Epidote forms in alteration envelopes around some fractures and in fractured areas where it occurs in irregular patches, Mafics	Calcite and epidote are common as fracture filling.
	200		55								11	. –	are sharp , texture is	are chloritized; rock is	
200	210	95										 	unchanged. 202.5-212 Medium grained altered S QUART2 DIORITE. Uniform texture throughout. Rock is soft, frighle, fracturing is moderate.	2-4mm diameter. Minor chlorite and epidote	Trace magnetite, gypsum on fracture faces. Chlorite (1 epidote) common.
10	220		- 215-							•••	1-1-1		212-218 DACITE dyke containing D extensive chlorite after mafics is intruded and brecciated by later aphanitic REVODACITE(7)		Epidote thinly coats fractum faces.
220	230	95	-222-					· · · · ·				/ //	dyke. 219-219 QUARTZ DIORITE.	eldspars are replaced by epidote at dyke margins.	Chlorite is common on fracture faces. Some minor Gypsum present.
230	240		-236-	valleryDinkkii vuok aiku käisellinkii käisellinkii kontrevan						••••	1	1	Foldspar and quarts(7) crystals up to 2mm diameter. Dyke contains numerous small inclusions. 236-359 Altered QUARTZ DIGRITE. S		
240	250	95	-242	ŧ		• • • • •			ет 			- H	Rock is sheared locally, contains microveins with chlorite.	throughout; particularly near fractures and microvein Epidote common near fracture and bordering mafics near shears.	
250	260		259									#	. И	fild kaolinization at 250-251	, ,

					/			GRA			)G PITATI	• T. w/		
EVIN S		-BRO	WN G	OODBRAND LTD.		77	7.7	77.	$\overline{77}$	77	777	78.5 DIAMOND DRILL LOG SHE	ET HOLE SHOVELNOSE #1 5	SHEET4 OF7
		DRI	LLING	LOG	<b>T</b> el\$1.	1/2/	\$//			e/e/		~~	GEOLOGIC LOG	
FROM	то	*	ROD	DRILLING COND.	<b>78/</b> 8/8/	14		5/ /	49	1	[]\$	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
260	270	95					· · · · ·				**	236-359 QUARTZ DIORITE. Rock is moderately fractured, locally sheared. Texture is uniform medium grained throughout.	Mafics are entirely chloritize and are generally rimmed by minor epidots. Large secon- dary biotite crystals (2-5mm diameter) occur	d. Gypsum becomes a prominant precipitate on fracture faces forming thin encrus- tations. Sparse pyrite and minor magnetice occur in
270	280		51								11 = 4 ×		throughout.	fractures. Massive, micro- crystalline chlorite occurs on most fractures, veinlets
280		95									#			
290	290		-290-		▋▌┟┼	ŧ.ŀ	Į-Į-	U	44-	- <b> </b> -				
2,00	300		0 						· · · · ·	•	- 11 - 11 - 11	Quartz diorite is locally broken vuggy. Open space filling	•	
300	310	95									- N - M		Clay alteration is common	-
310			-316									t 	around fractures associated with shears and broken zones	
320	320	95	53								- 11 1			
330	330		336 73	1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B Quartz diorite becomes more	5	Minor epidote flooding along fractures.

.....

vat

.

EVIN 5	AULIER			DOBRAND LTC	·.	1:*/.	h.b.	3/1	15	11	1	11	8°)	DIAMOND DRILL LOG SHEET		HEET OF 7
			LLING			/3/	14	17	5/8/	- /8/	<i>31</i> ,	18	21		GEOLOGIC LOG	
ROM	то		ROD	DRILLING CON	D. <u>/</u> */	44	77	44	1/ / 4	22	14	1-1-	7	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
340	350	95										N # N # N #		-359 QUARTZ DIORITE. Rock is M. moderately fractured, cut by numerous microveins. Texture is uniformly medium grained hroughout, with coarse	afics, feldspars completely altered to chlorite,epidote. Fresh secondary biotite persists.	Gypsum coats most fracture surfaces,
350			·73·									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		iotite grains.		
	_360		-360								_	20	35	-361 Dark, fine-grained		Gypsum and epidote fill
360		95	17									<u>مر ۱</u> ۱ =		NDESITE dyke. Sharp, even upper and lower contacts at 0° to c.a. Some parallel		fractures at 10° to c.a.
			-366-			11					•	1		flow?) banding.		
	370		_			Ιŀ				· [· ]		1 K		-374 Shattered QUARTZ DIORITE EN	pidote, chlorite replace	Gypsum, chlorite, minor
370			8		- 11	IT.	11	i.r	111	11	<b>†</b> -	-7			mafics and feldspars.	clay in fractures.
												W 11		ake rock very friable. Some	Secondary biotite throughout	• 4 ⁵⁵
												44	1.	ub-vertical foliation		та,
					- 21		1.				1.	3	9	intrusion stress related?)		
	_180				_							<u>4.P</u>	32	-385 Alternating ANDESITE-		Shattered andesite dyke is
380		95										~~~~		ACITE dykes and shattered, or sheared QUARTZ DIORITE.	· · · · · · · · · · · · · · · · · · ·	healed with calcite,gyps Chlorite is common on
	390		386-									N		ykes are generally brecciated nd contain extensive precipi- ates. Quartz diorite is		fractures, where present.
390			- 30				T	LT.				4		gritty", intensely altered.	<ul> <li></li></ul>	perintika di anterappan mengan, nagran nan nyo myo appang 100,000 dili disendi takadi atta
	1							H.	ĺ.,	1.		Ľ.,			ore prominent fractures	Gypsum coats fractures
							1.1	11.				\$ 11			contain epidote flooding	throughout.
						. J.		1.			.   .	<u> </u>			with minor hematite present,	··· ·· · · ·
	_400		200-		_[[	U+	44-	<b>↓</b> ↓	. 斗	4		<u>'' v</u>			bounded by 5-15cm argillic	Epidote.chlorite.gypsum in
400		95	46							_		1	,	all by DACITE(?) breccia.	envelopes. Secondary biotite persists.	-
	410		• • • •					-			-  -	4 12 14		tely fractured, alteration	econdary biotite is common; epidote,chlorite are sparse. Boderate angillic alteration	Gypsum present on fracture faces.
410			410						11	1.1		127	]	ALENALLY SUPERIOLL CHILLEASPOL.		••••••••••••••••••••••••••••••••••••••
[		[					11.					11	412	-414 DACITE dyke. Ct	hlorite after hornblende is	
	1		3			II.[.									predominant.	

. ....

IEVIN S	SADLIER-BROWN GOODBRAND LTD. DRILLING LDG				Ľ	F.	TERA				og ipita 77			ET HOLE SHOVELNOSE #1	SHEET 6 OF 7
					-[%	/5/4	/9/	/ /å	//	leta	$\langle / \rangle$	12	s/	GEOLOGIC LOG	
FROM	то	**	ROD	DRILLING COND.	-1 <i>8/\$</i> /2	14	¶/	14	/3/	93/	//.	55	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
420	430	95	3								1	× = =	414-470 QUÁRTZ DIORITE.Nedium grained texture is consistent throughout. 425-440 Quartz diorite becomes extremely broken. intensely	Secondary biotite throughout. Chlorite,epidote present throughout. Moderate hematit	Gypsum present throughout on fractures.
430	440		· · · · ·					· · · · · ·	· · · · ·		- N	× = = = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	altered.	staining in clays near base of broken zone. Some pink k-feldspar is present.	<b></b>
440	450	95	-442- 				, .  				- 4	"	Quartz diorite becomes more intact.	Epidote,chlorite are present as replacement minerals throughout.	Minor epidote along fractures
450	460		459		-							Ţ	Rock becomes broken; near		
460	470		29 467.			  	· · · ·					哘	vertical fracturing is present.		Magnetite, hematite occur in sinuous, sub-vertical veine 1-3mm thick.
470		30		Recovery is poor; rods sticking. Persists to TD			· - · ·			-		א ק ר	470-485 Highly altered and severely sheared DACITE. Where present, intact rock contains fine grained biotite and	470-485 Extreme kaolinization has occurred within volcanic matrix.	470-485 Precipitates are obscure because of broken nature of rock. Clay is present along entire
480	4B0 490	25	··· 0				- • • • • • • • • • • • • • • • • • • •				. 1	7 = 2	-feldspar within a buff-white cryptocrystalline matrix. Fragments of quartz diorite 1-Jmm diameter occur through- out comprising 30-504. 485-996. Strongly sheared OUARTZ.	485-502 Medium to coarse grained feldspars are almost entirely kaolinized. Trace sericite is present.	485-500 Clay is present with minor gypsum on fracture/ shear faces.
490	500	<b>50</b> 65									h	* * * *	NOSSING STONGLY SAMATEL QUARTZ. DIORITE.	BULLELE IS DESCRIT.	

-198

,						Å	ALYE			Рніс Др	REC	OG IPIT/	ATES		
NEVIN	SADLIE			OODBRAND LTD.	{	1.1.	]5]5		/	]]	6	//	1	783 DIAMOND DRILL LOG SHEET HOLE SHOVELNOSE 11 SHEET 7 OF	7
FROM	то	DR V	ROD	LOG	-18/2	1/2/1	]\$]	1	3/1		/3/	"//	15	GEOLOGIC LOG	
500	510	65 85	0	DRILLING COND					, 4/			<b>ス</b> 一人	1 = %	496-515.5 Purple-dark grey META- QUARTZ DIORITE. Weak foliation       502-515.5 Weak to moderate argillic alteration (with hornblende. Rock is competent weak propylitic?) is       500-515.5 Minor cla gypsum present on faces.	y and
510		90		515.5 Hole is lost (cemented rods in).						•	•		۱. ال	outlines are hazy suggesting lization.	· · · · · · · · · · · · · · · · · · ·
	520			rods in).			ľ	1_		ĽÌ.		_			
															. <del>1. <i>1. 1</i></del>
												• • •			
			·					-    			   		~		
					·····										

f

•

-

 $e^{i \sigma^{2}} = \theta_{1}^{2}$ 

····.

.**

-		D_ 80	NUN C	OODBRAND LTD.	,	H	77	77	77	77	7		성화 DIAMOND DRILL LOG SHEET	HOLE SHOVELNOSE #2	HEET 1 OF 19
EVIN	SADLIE				/	1/4/	[]]]	9/ I	15		[]	[]]	S DIAMOND DRILL LOG SALLT		
		******	ILLING		-téls	1/	$\langle z/z \rangle$	1	el e	-/5	13/	113	× <u>/</u>	GEOLOGIC LOG	
ROM	то	-*	RQD		144	(4/4	27	4	//	17.	44	1	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
0	6			Triconed with 4" bit-good progress.								0000	Overburden ~ assorted boulders of base- ment and volcanics.		
6	30			NW casing set and cemented to 30'	· · · ·								QUARTZ DIORITE basement cut by volcanic dykes.		
30	40	80	-30	5. F						  			30-35 Near vertical, irregular contact between QUARTZ DIORITE and grey, fine grained DACITE. 35-41 Grey, fine grained DACITE.	30-35 Moderate-high argillic alteration, moderate propylitic alteration.	<ul> <li>30-35 Clay precipitate on a fractures, buff coloured.</li> <li>35-41 Clay-carbonate precipitate on fractures.</li> </ul>
40	50	90	13							· · · ·			moderate foliation at $-60^{\circ}$ to c.a. although variable.	41-47 Minor propylitic and argillic alteration. 47-48.5 Trace propylitic.	41-47 Clay precipitate (buf coloured) 47-48.5 Clean fracture surf
50	60	90	-51 					· · · · · · · · · · · · · · · · · · ·					Foliated, biotite QUARTZ DIORITE, 20% quartz, 60% feldspar, 20% mafics - especially blebs and books of secondary biotita to lcm	alteration of original mafic minerals, trace argillic.	precipitate on all fractu
60	70	85	20									× 4 > ×	49.5-50 Small dacite dyke. 60-80.5 Medium grey, hornblande, 6 feldspar porphyry DACITE. Randomly oriented hornblande blades to lom length. Upper	50-80.5 Secondary biotite blebs pervasive. Trace chlorite alteration pervasive.	60-80.5 Hematite pervasive throughout core. Clay (yellow-green) present on most fractures. Some vein
70	80					- - - -							contact broken.	·····	epidote to 2mm thick.
		90	76.5			-						7	Rather broken with various fracture angles, Crystal outlines hazy throughout.		•

.__ ._

EVIN	SADLIE	R-880	WN GO	DODBRAND LTD.		T	ацте 77	77	71	77	77		783/	DIAMOND DRILL LOG SHEE	T HOLE SHOVELNOSE 12 S	HEET OF19
		DR	ILLING	LOG	1	13/3	/5/\$	1/	8		1/2/	///	83/-	······································	GEOLOGIC LOG	
ROM	то	Υ.	RQD	DRILLING COND.	78/3	/8/8	14	[[8	/8/	/4	//	15	6/	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
80	90	90	80.5 25						~		 	N # N	. QU 1.m 95	-126 Variably foliated MARTZ DIORITZ. Core competenc proves with depth. -103 Zone permeated with ne, volcanic, veinlets associ-	80.5-126 Nearly all original mafics gone.Moderate argil- lic alteration throughout. Removes only the plagioclass faldsparts a light green	80.5-126 Bands of biotite in some places to 5cm thick. Crusty yellow mineral with mamillary texture coats some fractures no fizz
90	100	70	-91										at an mi at	ed with zones of fine precci d stockwork of unknown dark neral (psilomane?) and hem- ite. Broken core through is zone.		(dolomite?). Minor quartz veining. Pervasive hematite in small blebs and on fractures.
100	110	80	100,5 31 105 <del></del>					· · ·	-	·	• • •	-*				Some epidote, minor clay precipitate on most fractur
110	120	95	38									*				
120	130	95	-126- 60								┿╍┠┿ ┝╼╶┠╸ ┝╴╴┠ ┝╴╸┝ ┝╶╴┝		- 126- po	-131 Dark grey hornblende, orphyry ANDESITE-fine grained webocrysts and very hard	126-131 Quite fresh.	126-131 Mild carbonate fizz i yellow-green clayey precipi tate Which appears on all
											· · ·	7	gr fi 7	coundmass. Breaks along very ne hairline fractures. In section of QUARTZ DIORITE 128.5m.		hairline fractures.
130	140	95	-131-			· · ·	· · ·			• •		11 - 11 - 11 - 11	DI to	-146 Medium grained QUART2 CORITE, upper contact at 45° b c.a. Lower contact broken. mogeneous with poorly deve- uped variable foliation.	131-146 Trace pervasive argillic, moderate propylit- ic (chloritization of original mafics). Secondary higtite blebs are guite	131-146 Green to buff clayey precipitate on most fractur no fizz, possible MnO on ma fractures. Trace magnetite.
140	150	70	146_	146-160 Poor Core recovery due to broker								* = /	= 10 .iu at	Ccm section of cemented,med- um-grained volcanic breccia t 142m. -160 Feldspar, hornblende? orphyry DACITEquite broken	fresh. 146-160 No visible hornblende phenocrysts leftonly	146-160 Green to buff clay or

						E	ALTE!		YAPH N Z		LOG CIPITA	TES		
EVIN	SADLIE	R-BR(	OWN G	OODBRAND LTD.		//	1. ls	//	[]	11	11	$\langle \rangle_{c}$		SHEET OF9
		DR	NLLING			11	3/17	//	\$/3/	18/	\$7.	$ \tilde{z} $	GEOLOGIC LOG	
FROM	то	%	ROD	DRILLING COND.	18/3/	\$/\$	12/	13	[[]]	10	11	36	LITHOLOGY STRUCTURE ALTERATION	PRECIPITATES
150	160	70	υ.									<u> </u>	with considerable secondary pseudomorphs of (chlorite? biotiteupper and lower con- tacts brokenpossible weak slightly altered. Feldspar foliation in biotites. Dark guite fresh.	Hematite stain pervasive in the core. Very thin quartz veneer on some fractures.
160	170	85	160- 15 169-	and the second								= 11 = 1	160-163 QUARTZ DIORITE 160-163 As above. 163-165 Volcanic-basement breccia163-165 Matrix moderately clasts to 4cm diameter.General-altered to clay. 1y angular and of various composition.	160-163 As above.
170	180	90	. 50 								17 =	ج ج	165-199 Medium grained QUARTZ DIORITE. Variably foliated (weak). Periodic thin, breccia filled dykes of light and dark grey volcanics up to low thick. alteration from 165-169m.	
180	190	95	-10-	5			 					. * 1	D Broken in some zones. 182-182.5 Grey hazy volcanic dyke. Probable dacite as per 146-160m.	Trace magnetite throughout. Buff-green clay precipitate on most fractures. Thin veneers of silica on some fractures.
190	200	95	-191					• • • • • • •				4	D	Some fractures coated with black precipitate, very fin grained mafic since chlori- tized or Mn oxide-hardness 3-4- not mometite.
200	210	95	28				+ + + + + + + + + + + + + + + + + + +				· · · ·	א ר ר	199-213.5 Fine grained, medium grey volcanic dyke. Visible hornblende needles and blotchy fine white feldspar crystals. Probable DACITE. Lower contact	- 199-213.5 Minor clay-carbonat precipitate on most fractur some carbonate veining near
210	220	85	213.5 63										at 70° to c.a. 213.5-228 QUARTZ DIORITE as in 165-169m. Small volcanic dykes frequent, 1cm-10gm thick. 213.5-228 As per 165-169'.Tra of sericite? very fine flash crystal faces on altered fracture surfaces.	ce213.5-228 As per 165-169'.
220	230	<del>8</del> 5	226				, , , , , , , , , , , , , , , , , , ,					<u> </u>	ower contact at 45° to c.a. 226-237 Feldspar porphyry DACITE. 228-237 Felatively fresh excep Very broken dyke. Medium grained chloritized mafic minerals	t 228-237 Epidote,chlorite,Mn oxides on most fractures.

. •

					/	ALT			HIC PRE		TATES	T. ut
	SADLIEF	i-BRC	WN G	DODBRAND LTD.	_2	77.	[]	77.	17/	1//	$\overline{77}$	B DIAMOND DRILL LOG SHEET HOLE SHOVELNOSE #2_ SHEET OF 19
			LLING			/9/6	1/	2/3	). 	\$//	152	GEOLÓGIC LOG
FROM	TO	*	ROD	DRILLING COND.	[[]]]	ΖΖ	44	$\mathbb{Z}$	114	4	136	LITHOLOGY STRUCTURE ALTERATION PRECIPITATES
230	240	85	3 217.1				1 ( ) 1 ( ) 1 ( ) 1 ( )			· · ·	> > ≥ = %	with nearly completely weath- ered mafic phenocrysts of biotite? (of secondary origin) Some remnants of hornblende needles_similar_to_146-160m.
240	250	90	-249-								"	237-360 Homogeneous QUARTZ DIORITE silicification. Bematite Variable fracture intensity but red hue throughout fabric generally quite competent, of the core. Homogeneous medium grained 237-260 Generally moderate smally wing and micro barcod
250	260	90	51								₩ ₩ 	biotite as the predominant original mafics. Trace dark mineral. Some Wn oxides argillic alteration of feldspars. Local silicifi- cation and sericite on many fractures, sepecially those not frequent. Chlorite on
260	270	95	-263. ! 									associated with epidote. some fractures.
270	260	95	-275-					 	i 		*	274-312 Core is moderately broken274-312 Somewhat higher level throughout this zone. of argillic alteration accompanies broken zone.
280	290	90	_30_							,  	14 14 15 17 17	4 ) I
290	300	90	-293-	· · · · · · · · · · · · · · · · · · ·				•	· · · ·			
300	310	90	16								11 V 11 11 V 11 11 V 11	

						AL1	ERA	GRA			)G PITATE	<u>15 /</u>
NEVIN	SADLIEI	A-884	OWN G	OODBRAND LTD.		[]].	1.1	1	$\overline{\mathcal{I}}$	77	$\langle \rangle \rangle$	785 DIAMOND DRILL LOG SHEET HOLE SHOVELNOSE #2 SHEET 5 OF 19
		ÛR	ILLING	LOG	_]{}	5/3/2	1	18/	3/. /.		///à	GEOLOGIC LOG
FROM	TO	*/.	ROD	DRILLING COND	78/3/	E/E/3	(1)	3/5/	3/3/	3/	//5	LITHOLOGY STRUCTURE ALTERATION PRECIPITATES
310	320	95	-311-								N         	
320	330	95	326_									11       326-360 Generally less competent       326-353 Ninor silicification       326-353 Quartz-epidote veins         core with places having a       around small quartz-spidote       here and there. Some trace         darker hue. Some zones comp-       veins.       clay precipitate. Not         common.       common.       common.
330	340	90	31 31								- 1 - 1	ц и
340	350	BO	344	From about 350-540m very blocky drill=		  					.   _ 	
350	360	60	354_	ing with consequent poor core recovery.		 				,, n,, e t,		353-360 No fabric remaining- crumbles in box. 353-360 Intense alteration of feldspars and mafics.
360	370	95	- 36+									360-363.5 Medium grey aphanitic       360-361.5 Highly argillically       360-363.5 Some carbonate and altered.         ANDESITE.       altered.       quartz veins. Minor clay on most fractures.         addressed       altered.       on most fractures.         contact 45° to c.a. Lower       minor propylitic.       and propylitic.
370	380	90	45	Thin section at 372'.				-				<ul> <li>363.5-381 QUARTZ DIORITE becomine377-381 Ninor propylitic</li> <li>increasingly broken with depth, minor argillic-trace</li> <li>shattered and veined for last</li> <li>3' even though core relatively</li> <li>a even though core relatively</li> <li>a special depth of the series</li> <li>b even though core relatively</li> <li>a special depth of the series</li> <li>b even though core relatively</li> <li>c even though core relatively</li> </ul>
380	390	80	386					*, 				

. .

41.77

				ODBRAND LTD.	,	Æ	LTE		7	PREC	TTATE	k	DIAMOND DRILL LOG SHEE	T HOLE SHOVELNOSE #2 S	HEET 6 OF 19
EVIN	SAULIEI		ILLING		-13	5/5/	x/s					29		GEOLOGIC LOG	
ROM	то	*	ROD	DRILLING COND.	18/3	1	19	[\$	1/3	//3/	15 (S	51-	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
390	400	70											17-403 Hormblende-feldepar porphyry DACITE. Very broken- rubble in places.	387-405 Minor argillic alt- eration of feldspar pheno- crysts.	387-405 Buff clay precipitate on most fracture surfaces. NP carbonate.
400	410	90	- 405-							· · · · · · · · · · · · · · · · · · ·		2	33-405 Finer grained version of DACITE. Ragged contact (lower) at ^45° to c.a. D5-409 Broken QUARTZ DIORITE. Variably foliated with inhomo-	405-409 Minor argillic alter- ation. Most mafics are	405-409 Buff clay on most fractures.
410	420	20	-413-	Grinding of core because of blocky conditions. Consequent poor recovery								<u></u>	geneous texture related to the disturbed nature of the rock. 09-413 DACITE-QUARTZ DIORITE Breccia.with volcanic matrix, dark grey, some shears at about 30° to c.a.	re-crystallized to biotite. 409-413 Moderate argillic alteration of breccia matrix leaving a dark clay. 413-423 Minor argillic alteration.	409-413 Buff clay precipitate on fractures-post breccia alteration. No carbonate. 413-423 Buff clay on fracture rare thin black veinlets
				of core.		, <b>.</b>  				• • • • •			13-423 QUARTZ DIORITE typical appearancereasonably compe- tent despite only 20% core recovery.		(MnO?).
420	430	10	-427										23-435.5 Highly broken and altered QUARTZ DIORITE. Primarily rubble with minor highly altered aphanitic vol- canic dyke at 430m. Highly.	423-435.5 Moderate-intense argillic alteration through out.	423-435.5 Minor buff clay precipitate on fractures.
430	440	80	-439-										foliated locally. 35.5-438 Dacite-QUARTZ DIORITE Breccia, Volcanic matrix. 38-455 Broken and foliated OUARTZ DIORITE-homogeneous,	435.5438 Moderate pervasive argillic alteration. 438-455 Minor-moderate argil- lic alteration of feldspar.	435.5-438 Minor buff clay. 438-455 Substantial clay pre- cipitates on all fractures.
440	450	BO	 0								H-	-	composition with well devel- oped secondary biotite. Folia- tion moderately well developed at 60° to c.a. Bighly broken in places.	Minor propylitic alteration of mafics to chlorite.	
450	460	60	- 455	Thin section at 486'.								# 4 11	55-503 Highly broken meta-QUART	2455-503 Minor argillic alter- - ation of some feldspar,more near contacts. Trace propy- litic. Local pervasive hem- atite alteration lending	fractures. Frequent fractu lined with black precipita

EVIN	SADUE	8-88(	าพพาณ	DODBRAND LTD.	ALIEN	777	/ PHI / /		「ある」 DIAMOND DRILL LOG SHEE	T HOLE SHOVELNOSE #2	SHEET 7 OF 19
E VIN	JAPEIE		ILLING				//s	15/1		GEOLOGIC LOG	
FROM	TO	*	ROD	DRILLING COND	<b>-1</b> 8/\$/\$/\$/\$/	13/5/6	13/8	¥¥ [5	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
460	470	40							Moderately developed foliation at 045° to c.a. Rock is very		
470	480	30							altered matrix.		
490	490	40	6				•	= 1 			
490	500	70	6						499-500 Breccia contact with		
500	510	90	503						darker voicanic-probably later phase of some andesite. Generally fresher. 503-510 Broken GUARTZ DIORITE highly foliated in places.	503-510 Minor argillic alter- ation, trace propylitic	503-510 Buff clayMnC, trace epidote on fractures.
510	520	90						Þ ∀	510-540 Series of andesitic intrusive dykes of at least two stages. Clasts of highly foliated QUARTZ DIORITE are, present between 522 and 525.	alteration. 510-540 Trace pervasive propylitic. Carbonates are present in core matrix.	510-540 Buff clay frequently present on fractures.Some MnO. Epidote veining here and there, Nearly always
520	530	90						D D D D			on sub-horizontal fracture: Carbonate vaining is prese to lmm.
530	540	90	535- 17 539-				. : : :	<b>V</b>			

EVIN -		- 880	WN GO	ODBRAND LTD.	,	F	ч. те 777					TATES	DIAMOND DRILL LOG SHE	ET HOLE SHOVELNOSE #2 5	HEFT 8 0F 19
	·	DRI	LLING	LOG	1	3/3	<u>]</u>	///	73)	//=	6	[[å	2/	GEOLOGIC LOG	
FROM	TO	*	RQD	DRILLING COND.	78/3	18/	11	8	(%)	14	//	150	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
540	550	95	- 51 - 549							-		¥ 1 4 1 4 1 4	540-549 Moderately competent QUARTZ DIORITE with minor andesite stringers. 549-561 Moderately competent hornblende ANDESITE distinct	540-549 Trace argillic and minor propylitic alteration throughout. Higher intensity near dykes (sericitic). 549-561 Onite fresh local	540-549 Local intense clay precipitate. Local carbonat precipitate. Some sericite near dykes. Some MnO. 549-561 Epidote veinlets.
550	560	95	-41		 							V 4	from 510-540 [°] in that less re- crystallized with distinct hornblende meedles. No folia- tion. Lower contact 30° to c.e	<pre>minor argillic alteration (2-3mm) near epidote vain- lets.</pre>	Some buff clay. Some carbonate veins to 2mm.
560	570	95	-561										561-672 QUARTZ DIORITE with large pervasive secondary biotite.	561-672 Trace argillic alter- ation pervasive. Local clay- carbonate alteration near epidote vein.	561-672 Clay-carbonate presen as precipitate on fractures. Epidote veins are frequent in various orientations. Some biotite in fractures.
570	580	95	-571- 46							 			Poorly developed foliation of random orientation. Reasonably competent with fracture angles generally at moderate angles to c.a. In local zones of		Clay-carbonate fracture coatings commonly accompanie by chlorite.
580	590	95	589-										<pre>guartz-epidote veining a gneissic texture is developed (see 593').</pre>		585-615 Epidote flooding coccurs along some veinlets forming envelopes 1-3cm in
590	600	95											Well developed large secondary biotite crystals are prevalent		width.
600	610	95	506-	Thin section at 603'.		-+	· · · ·					N      			**************************************
610	620	95	56										• • • • • • • • • • • • • • • • • • •		

.....

						A	ALTE		RAP			NG PITATE	57.0	7		
	SADUE	9-88C	WN G	OODBRAND LTD.		h	.77	77	77	77	77	777	78.š/	DIAMOND DRILL LOG SHE	ET HOLE SHOVELNOSE #2	SHEET 9 OF 19
			ILLING		1	1/2/2		//	14		4	14	93/		GEOLOGIC LOG	
FROM	то	*/.	ROD	DRILLING COND.	7 <i>8/s</i>	///	12/	//s	1/5/	/\$	3/ /	//\$	5/	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
620	630	95	-623 46	Reduce to BQ									<b>'</b>		630-672 Weak to moderate propylitic alteration (minor chloritization of hornblende, some feldspars mildly kaolinized) with	
630	640	95	-630- 55 -639-	at 630 feet.						* * • *			-		trace argillic.	
640	650	95	0			•									···· · · ··· ·	
650	660	95	- · · · ·			• • • • •							561-6	572 QUARTZ DIORITE cont.		
660	670	95	- 0				-		-	· · · ·				c contact brecciated for		661 5cm zone of buff clay wi 2-3cm quartz crystals imbeddad.
670	680	95				- i i						24	672-6 D fel	m with clay and MnO matrix, 577 Medium grained hornblend dspar ANDESITE dyke. 588 QUARTZ DIORITE as per 2004.	<pre>le672-677 Contacts exhibit strong (argillic?) alter- ation though remainder of dyke is fresh.</pre>	672-677 Carbonate veinlets common throughout dyke; generally accompanied by buff clay.
680	690	95	40				-	· · ·	•••				688-6	) 591 ANDESITE as above.		677-745 Clay-carbonate fracture coatings are comm throughout QUARTZ DIORITE. Trace sericite and MnO are present on some fractures.
690	700	95	<b>1695</b>					** *** ***** *****					691-7 med pre	745 QUARTZ DIORITE fine to dium grained. 2nd biotite esent. Reasonably competent actures at various angles.		

				A	TER		РНІС		TATES			
VIN S		R-BRC	WN GOODBRAND LTD.	H	777	$\frac{1}{77.}$	77	77.	$\frac{1}{776}$	DIAMOND DRILL LOG SHEE	HOLE SHOVELNOSE #2	SHEET 10 OF 19
		DR	LLING LOG	<b>-1</b> :[\$/\$/\$/	14/3/	18	1/ /s	$\frac{1}{2}$	//£	§/	GEOLOGIC LOG	
ROM	TO	1%	ROD DRILLING, COND.	<b>1 8/3/</b> 8/8/8	12//	13/2/	3/9	1/	156	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
700	710	95	62				- - - - -	  		Original forystal structure very hazy or non-existent. Foliation weakly developed and at various angles mostly quite steeply dipping.		
710	720	95	716						<u>*</u> * * * *			715-745 Numerous epidote fracture fillings 1-3mm thick.
720	730	95	67-						" n N - " N - "		720-745 Pervasive propylitic alteration intensity in- creases to moderate with strong chloritization of mafics	ı
730	740	95	-67- -735-						<u>н</u> н <u>1</u> н ч			735-745 Erratic fracturing wi buff clay coatings occurs in vicinity of dyke.
740	750	95	<u>49</u> 							745-746.5 Green-grey meta-ANDE- SITEno original texture remaining.	745~746.5 Strong epidote flooding in dyke.	745-746.5 Minor clay precipi- tated in erratic fracturin
750	760	95							и 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	746.5-869 Medium grained QUARTZ DIORITE. Generally as above except displaying a more medium grained texture espec- ially in biotite. Locally	746.5-777 Pervasive weak propylitic alteration of mafics to chlorite. Trace argillic alteration of feldspars.	<ul> <li>746.5-850 Silica with clay selvage fillings 2-3mm thic on fractures at 70° to c.a.</li> <li>755-790 Massive silica fractu fillings 1-3cm in width</li> </ul>
760	770	95	760 47 767-							veining produces a hazy, in- distinct grey texture or a highly foliated gneissic tex- ture. Foliation is generally steep but variable and poorly	775-850 Weak to moderate argillic alteration occurs within halos surrounding major (silica filled) fractures, Envelopes are	are common; some contain fragments of QUARTZ DIORITE 760-869 White to buff clay coats most fracture surface Generally present with mind
770	780	95	79							<pre>developed. Very competent. Fractures at all angles includ ing subhorizontal and sub- vertical.Secondary biotite absent or sparse.</pre>	generally 2-4cm though some	carbonates and rarely, trace MnO or hematite, and sericite.

······

... ... ....

						F	LTER	GRA	арні 7 р		)G PITATES	1. 1.1	7		
NEVIN	SADLIE	R-88	OWN G	OODBRAND LTD.		57	77	77.	t77	17	7777	18:8/	DIAMOND DRILL LOG SHE	ET HOLE SHOVELNOSE #2	SHEET110F19
<b></b>		DF	RILLING	LOG	71		<u> </u>		[]]	[z]z]	//[§	<u></u>	······································	GEOLOGIC LOG	
FROM	TO	%	ROD	DRILLING COND.		15/	<u> </u>	13/3	74	3	[[52	1	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
780	790	95									×= ×=				
790	600°	95	-792-								н п и				
800	810	95	- 805- 75				· · · · ·				4 = NU 11 N		•		
810	820	95	-015-	1		- - - -		- 		-,	" <u>  </u>    				
820	830	95	71 - 825-				- 7 - 1 - 7 - 1 - 7 - 1 - 7 - 1								
830	840	95	839.5					•• •• • • • • • •				ע 832 או	20cm thick quenched DESITE dyke. Contacts are ugged.	Minimal change in alteration near dyke.	835-850 Thicker silica vein- lets are tinged with pink (finely disseminated
840	850		-18-							• • •	4		1	845-860 Moderate pervasive propylitic alteration.Spotty weak argillic alteration of	hematite?)
850	860	95	85								1 × = -			feldspars.	

						FAL	TERA	GRA			G TATE			
EVIN :	SADLIE	R-BRC	WN GO	ODBRAND LTD.		77	$T_{i}$	71	77	77	77	A DIAMOND DRILL LOG SHE	T HOLE SHOVELNOSE #2 5	HEET 12 OF 19
		DRI	LLING L		Jł,	14	(5/ )		1.1	76/	112	2	GEOLOGIC LOG	
FROM	то	*	ROD	DRILLING COND.	78/8/	<i>[]</i> ē/	Ľ	3/Ę	[4]S	1/	130	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
860	870		867					  				F	860-892 Fresh to weak perva- sive propylitic alteration with some trace argillic alteration.	860-860 Minor hematite staining on some fractures
870	880	95						++ + +    			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	869-871.5 Fine grained horn- D blende ANDESITE porphyry dyke. 871.5-892 QUARTZ DIORITE as, above.		869-871.5 Clay coatings and some veining on dyke. 871.5-892 Ruff clay with minor carbonate coats most fracture faces.
880	890		67								- 1			
890	900	95 95	B92.5	•							1400	892-898 Andesite porphyry as in 869m. Meta QUARTZ DIORITE clasts included. 898-941 Medium grained QUARTZ	892-893 Strong argillic alter- ation in brecciated head- wall of dyke. 893-910 Moderate pervasive propylitic alteration.	892-893 Clay and calcite in sheared/brecciated headwa of dyke. 893-941 Buff clay coats mos fractures.
900	910	95	-907-								1	DIORITE with uniform (though altered) crystals of horn- blende, biotite. Fracturing is moderate to strong with prominent joint sets at 30°	900-941 Feldspars become strongly kaolinized within patchy areas of intense argillic alteration. Thin sub-horizontal envelopes	900-941 Sparse quartz veins (2-4cm thick) contain som massive chlorite, trace .carbonates.
910	920	95						  	· - ·			and 75° to C.A. Locally weak foliation is imparted by alignment of hornblende, trending 20-40° to C.A. Texture of QUARTZ DIORITE	exhibit particularly strong argillic alteration. 910-941 Pervasive moderate to strong propylitic alter- ation with chloritization	915-925 Hematite staining accompanies clay on most fracture faces.
920	930	95	21 - 924-								- 14	crystal boundaries in zones of more intense alteration.	of mafics, some epidote flooding.	920-930 Fractures in vicini of broken zone contain cl coatings 0.5 to 1.5mm in thickness. Clays generall contain trace carbonates.
930	940	95	936- 77								/ n 			

						ALTE				XG PITATES			
NEVIN	SADLIE	R-88	OWN G	OODBRAND LTD.	- 17	77	[]]	777	77	77	SA DIAMOND DRILL LOG SHE	ET HOLE SHOVELNOSE #2 5	HEET OF
		DF	ILLING	LOG	733	<i>3/3/3</i>	1/]	¥3/. [.	15/	//3	2	GEOLOGIC LOG	
FROM	TO	*	ROD	DRILLING COND	78/3/3/	\$/3/	[3]	5/3/3	3/	150	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
940	950	1	77			ТП	TT	UT	īΤ	14.	941-952 Intensely altered	941-952 Dyke is intensely	941-952 Minor hematite
240	1	95	<b>5</b> 942						11	<b>↓</b> √	DACITE dyke containing	kaolinized to chalky white.	staining on some breccia
		1	1							1.	brecciated fragments of plu-	Breccia fragments are altere	
		1	1						11	7	D tonic and volcanic rock to	to kaolinite on rims though	predominates.
										1 1	3cm diameter. Where present	centres are relatively	
950	960		1 8	Thin section	-		11			1-7	dyke rock contains small por-	fresh.	
	1			taken at 950'			11			- "	phyritic hornblende blades to	952-960 QUARTZ DIORITE is	952-960 Some kaolinite and
		95					11			F /	lmm length within buff-grey	strongly silicified making	other clays on fracture
			1						11	h .	cryptocrystalline groundmass.	igneous fabric hazy. Some	faces. Trace hematite
						F.				[` a	Dyke is extremely friable,	[K-feldspar] alteration	accompanies clay.
960	970	1	1			[]]]	Π.		ΓĪ	12%	incompetent. Upper contact is	accompanies silicification	960-970 Clay and carbonate
		1							II.	12	ragged, indistinct; footwall	along fractures.	coat most fracture faces.
		1	-965-		49-1 I.	11		11.		h w	is entirely fractured, contact	960-970 Intense chloritization	Trace hematite and sericite
		l I	1							12	relations destroyed.	and epidote flooding along	present.
		[				Ш			Ш	112	952-960 Medium to fine grained	shears. Epidote veinlets	
970	980		T					I P.		N =	QUARTZ DIORITE. Original	throughout.	970-1031 Patchy buff-coloured
	}	l I	66							.4	texture is hazy due to strong	970-1000 Pervasive moderate	clay coat fracture surfaces
	1	95	i							. n	alteration. Fracturing is	propylitic alteration	Trace carbonate accompanies
		1	L			<b>I</b>		HI		10 1	intense, erratic.	(strongly chloritized mafics	sparse silica veinlets
								11.		Ľ	960-970 Medium-grained QUARTZ	and argillic alteration	contain some pink k-feldspa
960	990	l I					- <b> </b> . .				<b>D</b> DIORITE. Intense fracturing	of feldspars. Considerable	
			-984-		·	L+		11.	1.1	1= 1	and shearing parallel to core	epidote flooding.	
		1	304			<b> </b>			1-1	14-+	axis.		
	[	1			<b>.</b>		44			4 <b>"</b> .	970-980 Medium-grained QUARTZ		
	L	<b>.</b>		 		<b>↓</b>		<b>.</b>	14	1.2	DIORITE with weak foliation.		
990	1000			-		441	· L I		11	<u> </u>	Fracturing is moderate and		
		95	28_	Thin section		l		· • •	łŀ	. 4	rock is more competent		
				takan at 993'		1-1-1	· . +-	ŀ⊢⊢	44	- h	980-982 Thin symplutonic dyke.		992-998 Sub-vertical fracture
					∎ł-ŀ-	<b>i</b> +  i	. <b>P</b> [		ŀŀ	1.1	982-1037 QUARTZ DIORITE as		contain carbonate-clay
	<b>↓</b>	L	Į		· ⊢-+-	<del>     </del>	-╂-╉-	┫╓┾╾┾╺	╂╂		above.Homogeneous_igneous		coatings to 2mm thickness
1000	1010				<b>.</b>		+	ŀ∮∳∙	ŀŀ	1	fabric with only local, weak	1000-1012 Alteration becomes	1005-1031 Minor epidote
						ŀ++	- -}-		ł+	1.2	foliation.	weak with fresh mafics and	flooding occurs along
			a 006		┋┋┙	<u>├-</u> +-	•   - <del> </del> •		Η	1 11	992-998 Strong sub-vertical	feldspar. Some crystals	fractures and in veinlets.
					╞╍╂╾┠╸┡╴	<u>∤</u> -	╶╂╋╌	ŀ₿ŀ∙	1+	1 5	fracturing.	fringed with chlorite.	5. ⁴
1010	1020	<u> </u>	Į		┝╊┼╂╋	╞┼┤	╂╋	╏╏┼╴	۲ł	1/2-	1000-1012 Fresher QUARTZ	2022 2022 234-24-24-24-24-24-24-24-24-24-24-24-24-24	
*010	μu20	95	h			h-+-1	11	11	H.	1.1	DIORITE contains secondary biotite to 5cm diameter.Weak	1012-1031 Alteration is patchy and variable ranging from	
		22			╞╏┝┼╴	1-1-1	tt	1 E   ''	H	'hı 🗋			
			100			1-1-1	11		Ľ.	1.2	foliation sub-parallel to c.a. 1012-1031 QUARTZ DIORITE is	propylitic + argillic.	
	l	L				L	.1		LL	1.4.2	very intact although alteratic	<u>m</u>	

ę

intensity increases.

EVIN		1-8RC	WN GO	ODBRAND LTD.	L	ALT			HIC L			DIAMOND DRILL LOG SHE	ET HOLE SHOVELNOSE #2 S	HEET 14 OF 19
		DRI	LLING	LOG	733	3/5/	1/	18/3	( <i>)</i> []	$\langle / / \rangle$	83/		GEOLOGIC LOG	
FROM	то	*	ROD	DRILLING COND.	<i>[[]\$</i> /\$/k	18/2/		///	1431	///3	5/	LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
1020	1030		1029-						   		1			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
1030	1040	95	1029-							- 11		1-1037 QUARTZ DIORITE ontains thin microcrystallin lacite(?) dykes parallel to a. 2 20cm DACITE BRECCIA.	1031-1037 QNARTZ DIORITE is strongly altered by intrusion grading towards intense argillic by 1037'. Some patchy silicification.	1031-1037 Clay with some Carbonate coats fracture surfaces. Bematite staining is stronger near intrusions
1040	1050		3							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	103 bi 5 5 t	27050 QUARTZ DIORITE ecomes extensively sheared, trongly altered. Original exture is hazy indistinct.	patchy shiftsfiltation. 1037-1050 Moderate to intense epidote flooding,chloritiza- tion of mafics and kaolini- zation of feldspars.	1037-1070 Epidote is flooded throughout along micro- fractures. Carbonate (some calcite), clay and minor -silica are present Gn
1050	1060	95	1057-							2 2 2 3	d) 105	0-1052 Bighly altered ANDEST yke contains breccia frag- ents to 2cm. 2-1070 QUARTZ DIORITE(?) is ntensely sheared, locally	TE 1050-1052 Dyke is altered to a fragmental, sandy texture. 1052-1070 Intense propylitic alteration. Original texture obliterated by epidote and	fractures, and coating rock fragments. 1054-1073 Clay gouge contains
1060	1070		6	· · · · ·							b: au ti	reclated. Large fragments of ngular quartz are present hroughout. Where clayey gougs s absent, rock is shattered joints are spaced 1-2cm	silica flooding. Where intac rock is moderately silicifie	
1070	1080	95	1073- 77 1078-							1	a 107 γ Ω f	Dart, erratic). D-1097 Intensely altered UARTZ DIORITE. No original abric present. Quartz presen n elongate blabs to 2cm.		faces. Hematite present in varying amounts though more
1080	1090									4 = ~ 44	l R C ti	n elongate Diabs to .2cm. ock, green to salmon pink in olour, is highly shattered hough healed by epidote and ilica flooding.	fabric and is accompanied by salmon pink k-feldspar.	COMMON near-shears
1090	1100	95		Thin section taken at 1096'						11	× 109	7-1104 Altered QUARTZ DIORIT emnant igneous texture presen	el097-1104 Strong propylitic L alteration though degree of	1096-1156 Clay-carbonate vein present on most fractures

	CADI (E)	9-9-0	1944 N. G.	OODBRAND LTD.		Æ	ALTE!	G NATIO		HK L PREC		ATES	DIAMOND DRILL LOG SHEET HOLE SHOVELNOSE #2	SHEET 15 OF 19
	JADLIE		ILLING		-/:/	5/31	13/3	///	(i) s	[]4	51	Įĝ	GEOLOGIC LOG	
FROM	то	1	ROD	**************************************	18/3	1/8		[3]	(5/3)	(z/3)	1//	56	LITHOLOGY STRUCTURE ALTERATION	PRECIPITATES
1100	1110			From 1100' to T.D. -blocky dril- ling and caving.									though crystals are hazy. Fracturing is intense,erratic 1104-1105 DACITE BRECCIA with QUARPZ DIORITE and silicified volcanic fragments 1105-1156 Patchy silicificatic alternates with intense pro-	1104-1105 Extensive MnO(?) h forms groundmass for brecci
1110	1120	95	6 1117-	-drilling in Grd gear.							1	× × ×	Rock is very triable. 1105-1124 QUARTZ DIORITE exhibits variable, patchy alteration. Though otherwisa competent, strong sub-vertical fracturing	
1120	1130		. 2								2 113 11 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	has shattered core. 1124-1156 QUARTZ DIORITE is intensely altered, texture is absent in silicified zones. Shearing and fracturing is (Feldspathized) envelopes around larger fractures impart a mottled salmon pinicological colour to the greenish rock.	
1130	1140	95	1137-	Thin section taken at 1135'							0		extreme resulting in large gouge-filled joints and extensive microfracturing.	1130-1140 Dilated fractures and shear zones contain kaolinits with carbonate.
1140	1150	95	10		  						- ^	2122		
1150	1160		1158-								2 A A	2010	1156-1199 Intensely altered QUARTZ DIORITE becomes more compatent; rock is intact and printing intense propylitic.	1156-1199 Precipitates are sparse (owing to weak fracturing). Where present.
1160	1170	95	80 1167-									3	training interms provide a start of salmon pink k-feldspar texture is apparent though replacement is apparent in patchy. Highly altered rock is envelopes surrounding older uniform grey-green with mod- (healed fractures).	fractures are thinly coated with clay and carbonates.
1170	1180		94								4		erately well developed foliation trending 20-50° to c.a. Transition from "granitic" to "foliated" phases is abrupt.	

						F.	TER			IC L		ATES	Take	<b></b>	
EVIN S	SADLIER		NWN G	DODBRAND LTD.	<u> </u>	1	slel	[]		$ _{\mathbf{A}}$		//e	S DIAMOND DRILL LOG SHEE		HEET <u>16</u> OF <u>19</u>
				the second descent second s	-18/2/	78	[ð] [	18	()	(8/3	1/	152	۶ <u>/</u>	GEOLOGIC LOG	
FROM	TO	<u>×</u>	ROD	DRILLING COND.	<i>144</i> ,	-7	74	(4	17	77	4		LITHOLOGY STRUCTURE	ALTERATION	PRECIPITATES
1180	1190	95	34 11 <u>8</u> 7-		- 1916 -							<pre>* * * </pre>	<i>в</i>		
1190	1200		-98	Thin section taken at 1193'									1199-1217 QUARTZ DIORITE exhibit less intense alteration with igneous texture present (though hazy). Rock is a pasts pink-green from strong alter-	k-feldspar flooding are overprinted by moderate	1199-1220 Carbonates with minor clay is formed on fractures and infills dilated, sub-vertical joint surfaces. Hematite staining
1200	1210		1206-									×=×=×	ation. Fracturing is moderate with a prominent set at 5-10° to c.a. Numerous thin quartz stringers and deformed quartz veins throughout.	with depth).	is strong in more intensely fractured zones.
1210	1220		10											1217-1251.5 Moderate to strong propylitic alteration (mafics completely chlorit-	h,*
1220	1230		1223-									-11-	rock are healed by epidote- quartz flooding.	ized) with weak to moderate argillic accompanying (feldspars are kaolinized). Envelopes 1-3cm thick of intense argillic surround	1220-1251.5 Minor carbonates present on fracture faces. Locally, trace hematite. Clays are sparse to absent. Healed shears contain silic.
1230	1240											シートに、		some fractures. Sillfication is absent and feldspathiza- tion is sparse and weak where present.	
1240	1250		1247												
1250	1260		0								••••		D grained ANDESITE dyke.Contacts . relations are destroyed in	1251.5-1255 Dyke is moderately sericitized and is strongly chloritized. 1255-1260 Strong hematite Staining accompanies strong	are present on fractures. Epidote is flooded into hairline fractures.

.....

					F	ALTER	GR. RATION			25 DIAMOND DRILL LOG SHEET HOLE SHOVELNOSE #2 SHEE	r 17 or 19
NEVIN .	SAULIEI			OODBRAND LTD.		1.13/5	///	¥,    -		GEOLOGIC LOG	0
FROM	то	- DA	ROD	DRILLING COND.		18/3/	3	1/3/	<i>\$///</i> 5	LITHOLOGY STRUCTURE ALTERATION	PRECIPITATES
1260			-1272-						    	DIORITE footwall. Numerous argillic (and moderate erratic fractures. propylitic) alteration. 1260-1395 Medium-grained, dark 1260-1378 Alteration is per- grey-green QUARTZ DIORITE. vasive moderate propylitic	thin coatings on fracture faces. On more dilated fractures, microcrystalline calcite is present. Trace
1270	1280	95	59	an i i in in inden an				• • • • •		Grains though hazy, arewith variable, patchy uniform size. Foliation, where present, is weak and erratic. Fracturing is light to moderate with one distinct joint set at 40° to c.a. hairline fractures (particu-	clays may accompany carbonates.
1280	1290		1286-					· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rock is intact, particularly larly evident in zones of lesser argillic alteration).	
1290	1300	95	_100						1 1		
1300	1310	-	1304						4	1	
1310	1320	95	73								
1320	1330		1329-					· · · · · · ·	4	. t	25-1378 Epidote is flooded through fractures though alteration haloes are
1330	1340	95					· · ·		- // \\ - \\	л 133 м	ainimal. 35-1378 Minor carbonates with buff coloured clay coat fracture surfaces.

					Ļ	ALT			7 PR		G HTATES	1.2			
EVIN S	ADLIER			DODBRAND LTD.	_k	1.1.		5		[]	[[]	ŞEL	DIAMOND DRILL LOG SHE		SHEET 18 OF 19
		_	LLING		-15/3/3	13/5	1/1	[[k]	l A	17	//€	Ef		GEOLOGIC LOG	
FROM	70	<u>×</u>	ROD	DRILLING COND.	1444	77	<i>44</i>	7.70	79	74	130	¥	LITHOLOGY STRUCTURE	ALIERAIION	PRECIPITATES
1340	1350		1347- 75						1		- # - # - #		ş		
1350		95	75 1354 69					····		- • • • •			· ·		
1360	1370			Thin section taken at 1364	· · · · · · · · · · · · · · · · · · ·			• • • •			1 4 1				
1370	1360	95	93						-1		-#			1378-1385 Intense argillic alteration and minor silici- fication in this zone.	1378-1385 Hematite and silica are present in Veinlets tranding 30° to c.a. Hipor
1380	1390		1383~						   		1 1 1 1			1385-1420 Moderate pervasive propylitic alteration throughout. Epidote and chlorite are most common along indistinct vehlets	carbonates are present on fracture faces. 1385-1420 Minor carbonates, trace clay and trace hematic
1390	1400	95										f	5-1396 ANDESITE dyke fed rom below. 6-1404 QUARTZ DIORITE as abc	through rock. Argillic alteration occurs in broad zones.	form thin coatings on fracture faces.
1400	1410		1405_				•   • - • • • • • •					t ( f) 140	4-1405 ANDESITE dyke at 10° o c.a. Probably a tongue row larger dyke below. 5-1420 QUARTZ DIORITE.Medium rained homogeneous grey gree		fractures.
1410	1420	95	.69									- m	nuartz diorite is competent, ntact.	moderately chloritized and argillized.	

						A	TERA			LOG		
EVIN S	ADLIEF	- BRC	WN G	DODBRAND LTD.		17	7	77	[]	77	77	DIAMOND DRILL LOG SHEET HOLE SHOVELNOSE #2 SHEET 19 OF 19
		DR	ILLING	LOG		3/3/3	3/	[ [\$]	al. le	5/5/ /	18	GEDLOGIC LOG
FROM	TO	%	ROD	DRILLING COND	78/3	12/2/.	1/	/3/5	///	13/ /	/54	LITHOLOGY STRUCTURE ALTERATION PRECIPITATES
1420	1430		1431-		IT	TT	Т	$\square$	T		ĿΫ	1420-1425 Dark green aphanitic 1420-1425 Dyke is moderately 1420-1442 Microcrystalline
								1			4	D ANDESITE dyke. Upper and lower chloritized. Epidote is carbonates ± clay coat
			[						11	.		contacts at 30° to c.a.; both flooded along closely spaced fractures. Hematite staini
											4 W	are smooth. fractures sub-parallel to is associated with epidote
						•		I I I			Po.	1425-1428 QUARTZ DIORITE. c.a. flooding.
1430"	1440		40								<b>N</b> ¹¹	1428-1431 ANDESITE as above. 1428-1431 Dyke altered as above.
		95										······································
											÷ (,	ation has rendered original exhibits moderate to strong
	- 1										″ ii	medium-grained texture hazy. argittic atteration over
~ +							4		44.			Fracturing is moderate, erratic, pervasive moderate propylitic.
1440	1450									4	~ ~	
								- 1		•	62	1442-1445 Altered ANDESITE dyke, contacts.
			<u>.</u>				-		·	444	$\mu^{\pm}$	Partially sheared and strongly1442-1445 Dyke is strongly 1442-1445 Hematite is staine
			1447-			1.1.1	·   · ·	1-	· · · -	44	7₩	fractured. Contacts formed by chloritized; moderate epidote on all fracture surfaces.
		·····				· • • • • •				╍┝╍┝╍┠		I TRACTOR OF AN TRACTOR OF AN TRACTOR AND TRACTOR AND CARLEN AND CRAY
1450	1460					4.6	·   ·			· [·] •	<u>*</u>	1445-1467 Grey-green medium- porphyritic feldspars are accessory.
1	1		100			• • • •	1	· - i	•	• • • •	44	grained QUARTZ DIORITE. Texture entirely kaolinized.
		95				·	····	l h i	· - {	•   •	* *	is uniform and foliation is 1445-1467 QUARTZ DIORITE 1445-1467 Carbonates ± buff
1	1		1458		FFr	+++	4	+- <b>†</b>	++	·	4 <u>N</u>	absent. Practuring is moderate exhibits pervasive argillic clay coat fractures.Hemati
					+++	++++	+	1-1	++			to strong and some local and propylitic alteration staining occurs throughout
1460	1470	1				<u>††</u> †	٠ţ٠		1+	++	∿ `#	
			- 51			-1-F	1		t i	1-1-1	κ.,	decreasing with depth. 1467-1470 Altered ANDESITE dyke. Feldspar crystals are comp- 1467-1470 Hematite and minor
1	1		)		111	111	1		111	111	<u>л с</u>	
									l Th	111	Þ∀'	Dyke is highly fractured. letely kaolinized and are epidote accompany carbonate fringed by hematite. and clay on this costinge.
1470	1460				<b>F 1</b> T		1				h \$\$	1470-1500 Dark grey QUARTZ 1467-1470 Dyke is strongly 1470-1500 Carbonates and
14/0	1100		1472"							11	. 4	DIORITE. Medium grained texture flooded by epidote, hematite. clay are predominant precip
	1	95								1.1	=	is crisp as rock becomes much Strongly chloritized. For- itates forming crusts on
					. [ . [ .						$\tilde{s_{n}}$	fresher. Foliation is weak to phyritic feldspars are fractures (though locally
											4	absent. Fracturing is moderate kabinized. as fillings to Bus thick).
1480	1490		. 60									and erratic; however, micro- 1470-1500 Alteration intensity Silica forms sparse veinle
-											· •	fracturing is intense through is markedly decreased though to 2mm (usually in dilated
ł			、						-	.   .   .	11 /	out. some zones of moderate propy fractures at 80° to c.a.)
						-+-+-		)		4.	*-	litic-argillic are evident. Commonly carbonates fringe
		<u> </u>	1490		╘┨┾	+++-		·	14-		7	Matics are only lightly chlok- the outer edges of the sil.
1490	1500			Thin section taken at 1498'			1	1		-}-}- <b>}</b>		itized and feidspars are freen. Veins. Trace hematice may
						· • • • • •	ŀ		╞┋┝╴	· • • •	= #	Epidote floods along micro- accompany clays.
				Total depth 1500'.		4	-   ·	$ \cdot $	1.	·+- -	u	fractures though envelopes are
1			1500	-100.		+	÷	+		-	* 4	generally less than laws thick.

.

. .

а^л. Г.

. • *

i

NEVIN SADLIER-BROWN | GOODBRAND | LTD

### APPENDIX C

ω.

# RECOMMENDATIONS FOR FUTURE DRILLING METHODS AT MOUNT CAYLEY

ħ.,

#### APPENDIX C

### RECOMMENDATIONS FOR FUTURE DRILLING METHODS AT MOUNT CAYLEY

Shovelnose 1 encountered severe drilling difficulties at about 450' (137.2m). Steeply dipping structures, fractured rock and formation squeeze caused continuous binding of the rods. By 516' (157.3m) conditions had deteriorated to an extent where continuation in the same fashion would have meant loss of the drill string due to breakage.

During remedial work to solve drilling difficulties in SN-1 the drill string stuck in the hole and the hole had to be abandoned. Hindsight suggests that cement adhered to and hardened on the rods and bound them to the formation. The cementing procedure adopted at the time was typical of the standard diamond drilling practice except that fast setting Ciment Fondue was used due to' the failure of normal Portland cement in several previous applications. The high alumina Fondue is notorious in the drilling industry because it's fast set properties seem to be radically altered by water chemistry and particularly temperature. As a result, flash setting in less than five seconds has been observed.

It is apparent that formation water was probably rising in the hole and may account for difficulties encountered in the previous unsuccessful cement jobs. Cement may have begun to adhere to the rods before they were lifted from the bottom of the hole or cement may have risen from the bottom under the influence of formation water flow. A combination of these actions is plausible. It is virtually certain that cement seized the rods.

Past drilling at Mount Cayley had encountered very competent rock and holes had been completed with ease using BQ equipment (Brosinsky, pers.comm.). Drilling in the upper Shovelnose Creek valley however, encountered highly fractured and altered rock cut by numerous dykes and breccias. Drilling conditions were more comparable with those in hydrothermally altered areas at Meager Creek and consequently after the abandonment of SN-1 it was decided that NQ drilling equipment should be more utilized through the worst zones. Although the NQ drilling was blocky in SN-2, none of the severe problems that stopped the drilling of SN-1 were encountered and the hole was completed successfully.

Future diamond drilling in altered, broken basement at high elevations on the Mount Cayley complex should be started with NQ until rock quality indicates that BQ will be sufficient to complete the hole. Hole refusals would be greatly minimized with such a design at only a moderate additional cost.

Where drilling problems are encountered which require remedial action, the use of cement should be a last resort. Other formation stabilization techniques are currently available which entail less risk of losing the drill string (gels and urethane foams for example). In addition the careful use of sodium carboxymethylcellulose (CMC) organic polymer muds (such as Quicktrol and Alcomer) can help control formation squeeze and cave. These light muds are only fractionally more viscous than water and generally perform in the stabilization of formation clay such as well encountered in zones of intense argillic alteration, Formation plugging, characteristic of wall cake building properties of bentonite muds, does not occur with CMC muds due to the non-flocullating properties of the polymers. Consequently, in situations where polymer muds are effective for stabilizing the formation, the hydrologic properties of the formation remain intact:

If cementing becomes the only alternative then particular caution will be required. It is recommended that immediately after the placement of the cement on bottom, the rods be brought off bottom one hundred metres and flushed with water until the return is clean. Then the complete string should be pulled during the setting period as an extra precaution. Barring a flash set this technique should avoid the problems encountered in SN-1. Considering the high risk in using cement, the additional costs in tripping rods and waiting on cement, other methods are preferable.