CONFUSION PROJECT

MILILARD COUNTY, UTAH

LOCATION AND ACCESS: The project site is located in west-central Utah, approximately 130 miles southwest of Provo. The site is reached from State Highway 50 via graded county roads. The site consists of two separate parceis totalling 15 sections.

LEASEPOSITION: TI7S, RI5W, Sections 19, 20, 22, 27, 28, 29, 30,33 and 34
T18S, R15W, Section 3
T18S, RI4W, Sections 3, 8, 9, 10 and 17

GEOTHERMAL AND GEOLOGIC DESCRIPTION: Heat flow values, ranging from 4.4 HFU to 10.2 HFU , and thermal gradients, ranging from $147^{\circ} \mathrm{C} / \mathrm{km}$ to $319^{\circ} \mathrm{C} / \mathrm{km}$, along with high Cl concentrations in ground water and numerous warm springs near the site, indicate a highly active hydrothermal system at shallow depth. The project site overlies two major range front faults forming the eastern and western boundaries of White Valley.

ENERGY MARKETING POTENTIAL: The project site lies within 120 miles of the Provo-Spanish Fork-Orem metropolitan area. The major agricultural center of Delta, which relies entirely on electrical pumping for irrigation, lies 40 miles to the east of the project site.

APPENDIX F. CONFUSION

PROTECT: Confusion, Utah. (Wiv)

IOCATION: The property consists of two parcels, west of Delta, which are centered on $113^{\circ} 30^{\prime}$ WLong., $39^{\circ} 16^{\prime}$ NLat. (T17S, R15W) in the Basin and Range province of western Utah.

IEASE POSITION: Pending:
T17S, R15W Sections 19, 20, 22, 27, 28, 29, 30, 33 and 34
T18S, R15W Section 3
T18S, R14W Sections 3, 8, 9, 10 and 17

AVAILABIE DATA: Figure F-1: Several high heat flow values, ranging from 4.4 to 10.2 HFUS, have been measured in the area. Tule Spring to the north of the lease position is a known warm spring. Several other warm springs occur in the Tule Valley north and east of the lease position. These springs and surface water in the area display high chloride concentrations.

GENERALIZED GEOLOGY: The southeastern lease position (Figure F-1) overlies the western range front fault of the House Range. Several thousand feet of displacement have occurred along this fault exposing Cambrian sediments. Tertiary and Quatemary volcanic rocks are present in the area. Chalk Knolls, which parallels the House Mountains and divides the northwestern lease position, was caused by recent tectonic activity and may be representative of a minor vent. Fowever, detailed field examination is necessary for more exact evaluation.

ASSESSMENT WORK COMPIETED: In April 1980 initial exploration was conducted which generated the data shown in Figure F-1. Preliminary work for the MX missile program has generatea further data which should become available in the near future. No subsequent work has been accomplished.

PROPOSED ASSESSNENT WORK: ASSESSment should be coorainated with evaluation of other Utah properties anả completed̄ as soon as possible. One geologist períomang a mercury survey and doing detailed geologic mapping could complete preliminary
assessment in approximately thirteen days. This would include flagging 25-30 prospective drill sites. Available boreholes drilled for the MX program since initial exploration would be logged. Available aerial coverage could be used in mapping, or new coverage could be obtained at higher cost.

Drilling both prospects would take approxinately five days, including two days' mobilization. Approximately three holes would be necessary for the southeastern prospect and two to three holes for the northwestern prospect. More holes may be necessary due to the complex heat flow pattern. Results of the mercury survey, geologic mapping and new MX borehole measurements will be necessary prior to drilling.

APPROXIMATE COSTS:

Geologic mapping, mercury survey and flagging
(1 geologist x 13 days):
Salary \$1,064
Rocm and board 468
Fuel 80
Air photos, maps and drafting 60
SUB-TOTAL \$1,672
Drilling six 150 ' holes($\$ 5.50 / \mathrm{ft} .+\$ 2.50 \mathrm{mob}$.\$7,200
PVC, misc. 220
Salary (1 geologist x 5 days) 409
Room and board 80
Fuel 40
SUB-TOTAL $\$ 7,949$
TOTAL $\$ 9,621$

Heat Flow Data
Confusion
BHT at $(m) \odot \frac{\Delta T}{}{ }^{\circ} \mathrm{C} / \mathrm{kn}$
Map No Daty Base
Heat Flow Dara
a. 19.71 at 57 m
b. $90^{\circ} \mathrm{C} / \mathrm{km}$
c 1.8 HFU at 2.0TCN

2
a. $34.70^{\circ} \mathrm{C}$ at 60 N
b. $315 \mathrm{ol} / \mathrm{kx}$
c 6.3 at 2.0

3
a 31.74 ax 415 m
b. Isothernal

5
a. 21.48 at 60 m
b. $25^{\circ} \mathrm{C} / \mathrm{/Lm}$
c. 0.5 at 2.0 tern
$7 \Delta 374$
a. 13.39 at 55 m
b. iso thermal
c. -
8. $A 375$
a 12.89 at 45 m
$6 \quad 27^{\circ} \mathrm{c} / \mathrm{km}$
c 0.5 Hfll at zTCa
9. $\Delta 368$
a. 19.77 at 60 m
b. $161^{\circ} \mathrm{C} / \mathrm{km}$
c. 3.2 HFl at z-oten
10. $A 366$
a. $17.93^{\circ} \mathrm{C}$ ex 60 m
b. $55^{\circ} \mathrm{C} / \mathrm{km}$
c. 1.1 HFU at 2.0 TCM
$11 \Delta 367$
a 16.68 at 60
$631^{\circ} \mathrm{C}$
40.6 at 20 HFLL
$12 \Delta 411$
a. 14.99 at 55
b $19^{\circ} \mathrm{C} / \mathrm{km}$
c. O. 4 ak 2.OTCM

13
$14 \Delta 369$
a $14.12^{\circ} \mathrm{Car} 44 \mathrm{~m}$
b $117^{\circ} \mathrm{C} / \mathrm{kme}$
c 2.3 at 2 TCu
$15 \Delta 370$
a. 27.23 at 60
b. $147^{\circ} \mathrm{C} / \mathrm{km}$
c. 3.0 at 2.0 TCu
16. $\Delta 372$
a 28.45 at 60
b $270^{\circ} \mathrm{c} / \mathrm{km}$
c. 5.4 at 2 TCu

17 A 371
a 15.90 at 60
b $62^{\circ} \mathrm{C} / \mathrm{km}$
c 1.2 HFU at 2.0
18.4418
a 14.21 at 35
b $220 \mathrm{c} / \mathrm{km}$
C O.f at z.OTCU
$19 \Delta 3>7$
a 13.73 at 60
b $5^{\circ} \mathrm{C}$ lkno
c 0.1 at 2.0 Hex

