MEMORANDUM

SUBJECT: Time-Temperature Survey
May 30, 1984
Well 88-11 May 11 \& 12, 1984
Fish Lake, Nevada (4816A)

TO: J. E. Deymonaz
CC: H. J. Olson
Wm. Dolan
Wim Lodder
FROM: H. D. Pilkington

The bit reached TD of 6147 feet at 0600 hours. A short trip was made and completed at 1200 hours and circulation with conditioned mud was started. Circulation ceased at 1600 hours. For comparative purposes a number of different time-temperature calculations are given below:

1. Clocktime	Event	t	Temp	TE (OF)
0400 May 11	Bit arrival	t_{0}		
1600	Circulation caused	$t_{s} 4.00$		
2010	Observation MRT	$t_{1} 16.17$	212.00	
0530 May 12	Observation MRT	t2 24.50	264.00	351.5
0754	Observation Kuster	t3 26.90	279.32	361.3
1354	Observation Kuster MRT	$\mathrm{t}_{4} \quad 32.90$	296.56	365.1

The above data set combines MRT readings from run 1 and 2 by Schlumberger and the first stable temperature measured by the Kuster tool and finally the MRT readings from the Kuster survey.

MEMORANDUM
Time-Temperature Survey
May 30, 1984
Page 2

2. Clocktime	Event	t	Temp	TE (${ }^{\circ} \mathrm{F}$)
0400 May 11	Bit arrival	t_{0}		
1600	Circulation ceased	$\mathrm{t}_{5} 4.00$		
0754 May 12	Observation	$\mathrm{t}_{1} 26.90$	137.4	
0825	Observation	t2 27.42	138.44	188.0
0856	Observation	t3 27.93	139.28	184.6
0927	Observation	$\mathrm{t}_{4} 28.44$	140.21	185.0
0958	Observation	$\mathrm{t}_{5} 28.95$	141.57	190.2
1029	Observation	t6 29.46	142.30	190.5
1056	Observation	t7 29.97	143.13	190.3
1127	Observation	$\mathrm{t}_{8} 30.48$	143.96	190.1
1158	Observation	$\mathrm{t}_{9} 30.99$	144.64	189.6
1229	Observation	$\mathrm{t}_{10} 31.50$	145.42	189.3
1300	Observation	$\mathrm{t}_{11} 32.01$	145.94	188.6
1331	Observation	$\mathrm{t}_{12} 32.52$	146.36	187.6
1402	Observation	$\mathrm{t}_{13} 33.03$	146.88	186.7

The data shown above (number 2) are from the Kuster survey run on May 12, 1984. Only one of every three temperature observations taken were used in the above calculation. The equilibrium temperature of $186.7^{\circ} \mathrm{C}$
($368.1^{\circ} \mathrm{F}$) is higher than the equilibrium temperature calculated using the MRT data ($365.1^{\circ} \mathrm{F}$). The BHT is still rising after $33+$ hours.

According to Brian Roux et al (1980), the use of the Horner method of estimating reservoir temperatures will lead to low estimates for short shut-in times. They propose a correction factor based upon $t_{p d}$, a dimensionless heat producing time and a range of Horner time $\left(t_{p^{+}} \Delta_{t}\right) / \Delta t$ values. For example 1 above we have:

Circulation time $\begin{aligned} & t_{p}=4.00 \text { hours } \\ & t_{p D}=t_{p}(0.3 / h r) \text { average value for commonlithology } \\ & T_{D B}=0.055 \text { (from Figure } 4 \text { in Roux et al, 1980) }\end{aligned}$
Δ_{t} (Shut-In Time) $\quad t_{p}+\Delta_{t} / \Delta_{t}$ (Horner Time) $\quad t_{w}$ (Shut-In Temp. of)
$\Delta t_{1} \quad 24.5$ hours
$4+24.5 / 24.5=1.163 \quad 264$
$\Delta t_{2} \quad 26.9$ hours
$4+24.9 / 26.9=1.149$
279
$\Delta t_{3} \quad 32.9$ hours $\quad 4+32.9 / 32.9=1.122 \quad 297$

MEMORANDUM

Time-Temperature Survey
May 30, 1984
Page 3
$T_{f}($ formational temp $)=T w * s($ Horner proj. temp $)+m T_{D B}\left(t_{p d}\right)$

```
                                    and
Tw = Tw*s -m log [(tp + t)/ t]
                                    then
297 = 365-m log (1.122)
m log (l.122) = 68
    m(0.115) = 68
        m=591.3
```

and

```
Tf}=365+591.30 (0.055)(1.2
    = 365 + 39.03
    = 404.60 F at 6140' depth in well
```

Thus we have equilibration temperatures of $365{ }^{\circ} \mathrm{F}$ and 3680° F based upon the Crosby method. The Roux et al method give a formation temperature of 4050 F at a depth of 6140 feet.

References

Crosby, G.W., 1977, Prediction of final temperature; 2nd annual workshop on Geothermal Reservoir Engineering, Stanford University, California.

Roux, B., Sanyal, S.K., and Brown, S.L., 1980. An improved approach to estimating true reservoir temperature from transient temperature data; 50th annual California Regional meeting Society of Petroleum Engineers.

HDP/VI

Fig. 4-Correction curve ($\mathrm{t}_{\mathrm{p}} \mathrm{O}: 25$).

Fig. 5 - Correction curw ($t_{p 0}: 80$).

Fig. 6 - Correction curve ($t_{p D}: 100$).

