Union Science (Technology Division

Union Oil Company of California 376 South Valencia Avenue P. O. Box 76, Brea, California 92621 Telephone (714) 528-7201

-COPY-

United

E&P GEOL 82-51

January 26, 1982

Mr. Alex Schriener Santa Rosa, California

ALEX SCHRIENER JAN 2 8 1982

Dear Alex:

i gitt

Seco

K/Ar AGES FOR SAMPLES FROM MEDICINE LAKE, CALIFORNIA

I am writing this letter in light of our discussions of problems in the interpretation of K/Ar data supplied by Geochron Labs. In reporting age data, Geochron does two things wrong. Firstly, they have retained use of the old "Western" decay and concentration constants, while almost everyone else has switched to the new IUGS constants. Secondly, Geochron attaches unrealistic uncertainties to their ages. This second annoying practice is particularly misleading, for it makes any Geochron K/Ar age look good, regardless of problems with contamination. In order to avoid any ambiguity, it is always a good idea to recalculate ages supplied by Geochron. I will use the diorite(?) from the Medicine Lake area (your sample #ML-2-750) as an example of the recalculation exercise.

The first thing to do is to recalculate the age based on the new IUGS constants. Notice that Krueger uses the following constants: $\lambda_b = 4.72 \times 10^{-10} \text{ yr-1}$, $\lambda_e = 0.585 \times 10^{-10} \text{ yr-1}$, and $40 \text{K/K} = 1.22 \times 10^{-4} \text{ g/g}$. This last concentration constant is given in terms of weights. This is equivalent to $40 \text{K/K} = 1.19 \times 10^{-4} \text{ mol/mol}$. Table 1 in the enclosed Research Note (Dalrymple, 1979) shows that Geochron is still using the old "Western" decay and concentration constants, so the conversion to new constants is very straightforward. Dalrymple's Table 2 shows that to calculate the correct age, one needs to multiply the "old" date by 1.02666. This yields a "new" corrected date of 7.2 m.y. Notice that this "new" date is not very different from the "old" one. Because you are generally working with such young rocks, the 2.7% age correction is not very important. You may find, however, that correcting all of your ages to the new constants will help when you are trying to compare age data for rocks dated by different labs.

Now that we have the corrected age of 7.2 m.y., let us attach a realistic uncertainty to it. There are two principal origins of this uncertainty: (1) statistical uncertainty in the analyses, and (2) contamination by atmospheric 40 Ar. In practice, the second of these problems is by far the most important and this is the uncertainty which is entirely ignored by Geochron.

Furthermore, in hydrothermally altered or weathered samples this ⁴⁰Ar contamination is almost always severe, so the uncertainty in the age will almost always be larger than that cited by Geochron. Daniel Krummenacher of San Diego State University's Isotope Geology Institute is aware of this problem and he uses the following graph to determine his age corrections:

÷	ADDED TO AGE:	0.2%	0.5	1.0	1.4	3	6	8	18	40	100	(in	%	of	age)
%	ATMOSPHERIC AR:	10%	20	30	40	60	70	80	90	95	98				

Geochron's lab report indicates that the amount of radiogenic 40 Ar is 0.039 and 0.061 (2 analyses). By averaging these values (0.05), it is clear that only 5% of the total 40 Ar is radiogenic and that 95% of the 40 Ar is atmospheric. Reference to the above graph indicates that the uncertainty of this age should be ± 40% of the age, or ± 2.9 m.y. (67% confidence level). We can, therefore, declare a 67% confidence that the true age of this rocks is 7.2 ± 2.9 m.y. To be more confident (95%), we can double the 1 sigma uncertainty. We will be right 19 out of 20 times if we say the rock is 7.2 ± 5.8 m.y. old.

In practice, Bob Varga and I have found that any rock containing greater than 80% atmospheric argon is likely to yield an erroneous K/Ar age. One can avoid this problem in hydrothermally altered terrains by dating large numbers of samples, and by culling those data which do not conform to the general picture (especially if atmospheric 40 Ar exceeds 80%). In light of the geological difficulties implied by the 7.2 m.y. date for the sample from the Medicine Lake area, my recommendation is to disregard the date entirely.

Our final bit of immediate business concerns the K/Ar dating of the obsidian sample from Medicine Lake (your sample number ML-1-570). I have arranged for this sample to be analyzed at the Isotope Geology Institute, San Diego State University. I expect to be able to phone you with this data no later than February 5, 1982.

Thanks again for the pleasant and informative tour of the Geysers. I hope that we can get together and do some work which will have a practical payoff in the future. Good health to you, your wife, and your impending proto-Schriener.

Regards,

Brian M. Smith

Brian M. Smith

BMS:ds

RESEARCH NOTE

Critical tables for conversion of K-Ar ages from old to new constants

G. Brent Dalrymple

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

In 1976, the IUGS Subcommission on Geochronology recommended that a new set of decay and abundance constants be adopted for the calculation of K-Ar ages (Table 1; Steiger and Jager, 1977). These new constants are now used by nearly all K-Ar laboratories.

Prior to the 1976 IUGS recommendation, there were primarily two sets of old constants in use. Nearly all laboratories in the Western world used the ⁴⁰K decay constants recommended by Aldrich and Wetherill (1958) and the ⁴⁰K abundance of Nier (1950); these values are given in the column headed "Western" in Table 1. Most K-Ar ages in the Russian literature were calculated using a different value for $\lambda_{\epsilon} + \lambda'_{\epsilon}$, and the Western values for λ_{β} and ${}^{40}K/K_{total}$; these values are given in the column headed "Russian." For discussions of the origins of these various constants, see Nier (1950), Aldrich and Wetherill (1958), Wetherill (1957, 1966), Beckinsale and Gale (1969), Garner and others (1975), and Steiger and Jager (1977).

The effect of the new constants is nonlinear, so conversion of ages from one set of constants to another is not straightforward. For example, an age calculated with the new IUGS constants is 2.7% older than one calculated with the old Western constants at 1 m.y., but is 1.7% younger at 4,500 m.y. Thus recomputation is required for each age, a troublesome and time-consuming task for most geologists.

Tables 2 and 3 have been prepared as an aid for the rapid and easy conversion of K-Ar ages calculated with either set of old constants to ages based on the new IUGS constants. An "old" age multiplied by the indicated correction factor will give the "new" age (example 1). The tables are arranged as critical tables, and interpolation is not required. Correction factors are given to the nearest 0.02%. For ages that coincide with a tabulated value, use the correction factor on the line above (example 2). The maximum error resulting from use of these tables is 0.01%, which is better than the precision of K-Ar ages by more than two orders of magnitude.

The tables may also be used to convert "new" ages to "old" ages by using the correction factors as divisors (example 3), a procedure that increases the maximum error by only a few thousandths of a percent.

Example 1: Convert an "old" age of 27.7 m.y. to a "new" age (Table 2): 27.7 m.y. $\times 1.0262 = 28.4$ m.y.

Example 2: Convert an "old" age of 108 m.y. to a "new" age (Table 2): 108.0 m.y. \times 1:0248 = 110.7 m.y.

Example 3: Convert a "new" age of 825 m.y. to an "old" age (Table 2): 825 m.y. \div 1.0128 = 815 m.y.

Tables 2 and 3 do not cover all the published K-Ar ages. Occasionally, the reader may find K-Ar ages in the literature that have been calculated with a different set of old constants than those given in Table 1. These ages may be converted by first calculating a new ${}^{40}Ar_{rad}/{}^{40}K$ ratio:

$\frac{{}^{40}\text{Ar}_{\text{rad}}}{{}^{40}\text{K}} = \frac{LK_0(e^{\lambda_0 t} - 1)}{1.167 \times 10^{-4}} , \qquad (1)$

where $L = \text{old} (\lambda_{\epsilon} + \lambda_{\epsilon})/\lambda$, $K_0 = \text{old}^{40}$ K/K_{total}, $\lambda_0 = \text{old total decay constant}$ ($\lambda_{\epsilon} + \lambda'_{\epsilon} + \lambda_{\beta}$), and t = old K-Ar age; this new ratio can then be used to calculate the new age *T*, on the basis of the IUGS constants (2)

$$T = 1.804 \times 10^9 \ln (9.541 \frac{{}^{40}\text{Ar}_{\text{rad}}}{{}^{40}\text{K}} + 1).$$

Old K-Ar ages that are converted by using Table 2 or Table 3 or equations 1 and 2 will be no more precise than the number of significant digits in the published age. If possible, it is always desirable to recalculate ages using equation 2 and the original analystical data. Users of equation 2 are cautioned that the quantity ${}^{40}\text{Ar}_{rad}/{}^{40}\text{K}$ is an atomic ratio, usually expressed in mole/mole, and that analyses given in weight percent, parts per million, or cubic centimetres STP must be converted to the proper units (Table 4).

Constant [#]	01d	New	
	Western	Russian	IUGS
40 _{K/K}	1.19 x 10 ⁻⁴ mol/mol [†]	1.19 x 10 ⁻⁴ mol/mol ⁺	1.167 x 10 ⁻⁴ mol/mol
٨ _e	$4.72 \times 10^{-10} \text{ yr}^{-1}$	$4.72 \times 10^{-10} \text{ yr}^{-1}$	$4.962 \times 10^{-10} yr^{-1}$
$\lambda_{e} + \lambda_{e}^{\prime}$	$0.585 \times 10^{-10} \text{ yr}^{-1}$	0.557×10^{-10}	$0.581 \times 10^{-10} \text{ yr}^{-1}$

Age	F	Age	F	Age	F	Age	F	Age	F	Age	F	Age	Ĩ. F	Age	F	Age	. F	Age	F
0	1.0268	259	1.0218	555	1 0168	889	1 0118	1270	1 0068	1712	1 0019	2233	0 0069	2865	0.0010	3656	0.00(0	4693	
5	110200	271	1.02.10	568	120100	903	1.0110	1287	1.0000	1731	1.0018	2256	0.9900	2893	0.9918	3692	0.9868	4741	0.9818
15	66	282	16	580	66	01A	16	1303	66	1750	16	2270	66	2022	16		66	11700	16
	64		14		64	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	14	L OC I	64	1750	14	2217	64	6922	14	3120	64	4190	14
25	62	293	12	593	62	932	12	1320	62	1770	12	2302	62	2950	12	3765	62	4840	12
35	1 0060	305	1 00 10	606		947		1336		1789		2326		2979	, 2	3802	02	4891	
45	1.0200	316	1.0210	619	1.0150	961	1.0110	1353	1.0060	1809	1.0010	2350	0.9960	3008	0.9910	3840	0.9860	4942	0.9810
56	58	227	08	622	58	070	80	1270	58	4.000	08		58		08		58		08
70	56	361	06	032	56	9/0	06	1370	56	1829	06	2373	56	3038	06	3878	56	4994	06
66	54	339	O.B.	645	5.11	990	01	1387	5.5 E 10	1849	oli	2397	e li	3068	0 h	3916	- 1	5049	
76	C	350	04	658	7	1005	04	1404	74	1869	04	2422	24	3098	04	3955	54		04
87	52	362	02	671	52	1020	02	1421	52	1880	02	ծենգ	52	2128	02	1000	52		
	1.0250		1.0200		1.0150		1.0100		1.0050	1009	1:0000	2440	0.9950	3120	0.9900	277*	0.9850		
97	48	374	1.0198	684	48	1035	1.0098	1439	-49 -48	1909	0.9998	2471	48	3159	0.9898	4034	hR		
108		385		697		1050		1456		1930		2495		3189	0.9090	4074			
118	46	397	96	710	46	1065	95	1474	46	1950	96	2520	. 46	3221	96	4115	46	-	
120	44	hoo	94	70.1	44		94	41.04	44		94		44		94		44		÷
129	42	409	92	124	42	1081	92	1493	42	1971	92	2546	42	3252	92	4156	42		
139	1.0280	421	1.0100	737	1.0180	1096	1 0000	1509	1.0000	1992	0.0000	2571	o oche	3284		4198			
150	1.0240	433	1.0190	750	1.0140	1111	1.0090	1527	1.0040	2013	0.9990	2597	0.9940	3316	0.9890	4240	0.9840		
161	38	11.115	88	764	38	1127	88	1546	38	ວດວ່ອ	88	2622	38	2211	88	1000	38		
	36		86	104	-36	1121	86	54	35	2035	86	2022	.36	3340	86	4203	36		
172	34	457	84	778	34	1142	84	1563	35 34	2056	84	2648	211	3381	8 la	4326	110		
182		469	- · ·	791	5,	1158		1581	33	2078		2675		3414	04	4370	-6		
193	32	481	82	805	32	1174	82	1599	32	2099	82	2701	32	3448	82	11 L L L L	32		
201	1.0230		1.0180		1.0130		1.0080		1.0030		0.9980	2,01	0.9930		0.9880		0.9830		
204	28	493	78	819	28	1190	78	1618	28	2121	78	2728	28	3482	78	4459	28		
215	26	506		833		1206		1636		2143		2755		3516		4505			
226	20	518	10	847	26	1222	76	1655	26 15	2165	76	2782	26	3550	76	4551	26		
227	24	530	74	061	24	1000	74	45	24		74		24		74		24		
<31	22	530	72	001	22	1230	72	1074	22	2188	72	2809	22	3585	72	4597	22		
248	1.0220	543	1.0170	875	1 0120	1254	1 0070	1693	1 0020	2210	0 0070	2837	0.0020	3620	0.0870	4645	0.0800		
259	¢	555	110110	889	110120	1270	110010	1712	110020	2233	0.3310	2865	0.9920	3656	0.9010	4693	0.9020		

Note: To convert an age based on the old Western constants to one based on the new IUGS constants, multiply by the indicated correction factor (E). Ages are in 10^6 yr.

factor (F). Ages are in 10^6 yr. Old Western constants: $\lambda_{e} + \lambda'_{e} = 0.585 \times 10^{-10}$ yr⁻¹, $\lambda_{\beta} = 4.72 \times 10^{-10}$ yr⁻¹, 40 K/K_{total} = 1.19 x 10^{-4} mol/mol. New IUGS constants: $\lambda_{e} + \lambda'_{e} = 0.581 \times 10^{-10}$ yr⁻¹, $\lambda_{\beta} = 4.962 \times 10^{-10}$ yr⁻¹, 40 K/K_{total} = 1.167 x 10^{-4} mol/mol. _

Age	F	Age	F	Age	F	Age	F	Age	F
		588		1410		2551		4338	
0		624	0.9738	1458	0.9698	2620	0.9658	4457	0.9618
10	0.9776	660	36	1506	96	2692	56	4581	16
30	74	607	34	1556	94	3765	54	11708	14
	72	. 160	32	1000	92	2105	52	4708	12
68	0.9770	734	0.9730	1606	0.9690	2839	0.9650	4841	0.9610
98	69	772		1657	00	2916		4978	
128	00	811	20	1710	60	2994	40	5120	00
158	66	849	26	1763	86	3074	46		
180	64	880	24	1817	84	2166	44		
	62	009	22	1017	82	3150	42		
220	0.9760	92 9	0.9720	1871	0.9680	3240	0.9640		
252	58	969	18	1927	78	3327	38		
284	. 56	1011	16	1984	76	3415	20	i.	
316	50	1052	10	2042	10	3506	30		
348	54	1095	14	2102	74	3600	34		
381	52	1138	12	2162	72	3696	32		
11E	0.9750		0.9710	2102	0.9670	30,90	0.9630		
415	48	1101	08	2223	68	3795	28		•
448	. 46	1226	06	2286	66	3897	25		
483	44	1271	<u>0</u> #	2350	64	4003	24		
517	ho	1316		2416	4-	4111	27		
552	42	1363	02	2483	62	4223	22		
588	0.9740	1010	0.9700		0.9660	h	0,9620		

TABLE 3. CRITICAL TABLE FOR CONVERSION OF K-Ar AGES

Note: To convert an age based on the old Russian constants to one based on the new IUGS constants, multiply by the indicated correction factor (F). Ages are in 10^6 yr. Old Russian constants: $\lambda + \lambda_c^* = 0.557 \times 10^{-10}$ yr⁻¹, $\lambda_B^* = 4.72 \times 10^{-10}$ yr⁻¹,

 $40_{K/K_{total}} = 1.19 \times 10^{-4} \text{ mol/mol.}$

New IUGS constants: $\lambda_{\pm} + \lambda_{\pm}^{*} = 0.581 \times 10^{-10} \text{ yr}^{-1}$, $\lambda_{\beta} = 4.962 \times 10^{-10} \text{ yr}^{-1}$, $\frac{40}{K/K_{\text{total}}} = 1.167 \times 10^{-4} \text{ mol}/\text{mol}$.

TABLE 4. CONVERSION FACTORS To convert Ťo Multiply by 104 Weight percent DDW 10⁻⁻⁴ weight percent DDE percent K percent K₂0 1.205 K20/K percent K₂0 percent K 0.8301 K/K,0 moles ⁴⁰Ar/gram ppm ⁴⁰Ar 4.000×10^7 gram ppm/mole 2.241 x 10⁴ cc STP/mole moles Ar ec STP Ar 4.462 x 10⁻⁵ mole/cc STP cc STP Ar moles Ar cc STP ⁴⁰Ar/gram ppm ⁴⁰Ar 1.785 x 10³ gram ppm/cc STP ppm ⁴⁰Ar moles ⁴⁰Ar/gram 2.500×10^{-8} mole/gram ppm ppm ⁴⁰Ar cc STP 40Ar/gram 5.602 x 10⁻⁴ cc STP/gram ppm

REFERENCES CITED

- Aldrich, L. T., and Wetherill, G. W., 1958, Geochronology by radioactive decay: Annual Review of Nuclear Science, v. 8, p. 257-298.
- Beckinsale, R. D., and Gale, N. H., 1969, A reappraisal of the decay constants and branching ratio of ⁴⁰K: Earth and Planetary Science Letters, v. 6, p. 289-294.
- Garner, E. L., and others, 1975, Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium: U.S. National Bureau of Standards Journal of Research-A. Physics and Chemistry, v. 79A, p. 713-725.
- Nier, A. O., 1950, A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium: Physical Review, v. 77, p. 789-793.
- Steiger, R. H., and Jager, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, v. 36, p. 359-362.
- Wetherill, G. W., 1957, Radioactivity of potassium and geologic time: Science, v. 126, p. 545-549.

-1966, Radioactive decay constants and energies: Geological Society of America Memoir 97, p. 513-519.

ACKNOWLEDGMENTS

Reviewed by R. Drake and G. H. Curtis. I thank J. L. Morton, M. A. Lanphere, and J. D Obradovich for their critical comments and for reviewing the tables. G. Seger first suggested to me that a simple means of converting K-Ar ages would be useful.

MANUSCRIPT RECEIVED MAY 23, 1979 MANUSCRIPT ACCEPTED SEPT. 4, 1979

<u>___</u>

KRUEGER ENTERPRISES, INC. GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET . CAMBRIDGE, MA. 02139 . (617)- 876-3691

PRIORITY BASIS POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No.	F-6056		Date Rece	vived: 12/3	0/81
Your Reference:	letter of	12/21/81	Date Repo	orted: 12/3	1/81
Submitted by:	Alex Schr Union Oil P.O. Box Santa Ros	iener Co. of Cali 5854 a, Calif. S	if. 95406	-	- - -
Sample Description	& Locality:	Chips (cutt Sample ML-2	ings?) of dacit 2-750	ce or grano	diorite.
Material Analyzed:	Feld Trea	spar concent ted with dil	rate, -100/+200 Lute HF and HNO) mesh. 3 to remove	any alterat
Ar ⁴⁰ */K ⁴⁰ =	.0004	09	AGE =	7.0 <u>+</u> 0.5	M.Y.
Argon Analyses:					
Ar ^{40*} , ppm.		Ar ⁴⁰ */ To	otal Ar ⁴⁰	Ave. Ar 404	*, ppm.
.000762 .000735		.039 .06	9 1	.000	749
Potassium Analyses:					
% K		Ave. 9	%K	K ⁴⁰ , ppi	m
1.500 1.501		- 1.5(00	1.830	-
Constants Used:			-		
$\lambda_{\beta} = 4.72 \times 10^{-10} / \text{y}$ $\lambda_{e} = 0.585 \times 10^{-10} / \text{J}$	ear vear	AGE	$= \frac{1}{\lambda_e + \lambda_\beta} \ln \left[\frac{\lambda_\beta + \lambda_\beta}{\lambda_e} \right]$	$\frac{\Lambda_e}{K^{40}} \times \frac{Ar^{40*}}{K^{40}} +$	1

Note: Ar ⁴⁰ * refers to radiogenic Ar ⁴⁰. M.Y. refers to millions of years.

 $K^{40}/K = 1.22 \times 10^{-4} \text{ g./g.}$

WEST JORDAN OFFICE

Date:

Client:

Certificate of Analysis

95401

Page 1 of RMGC Numbers: Local Job No 81-37-36-SL Foreign Job No.:

وخر

Invoice No.M. 104573.

alex schriener

DEC. 7 1981

Client Order No.:

41 Cutting Samples Report On:

Attn:

none

Submitted by:

Alex Schriener

December 3, 1981

Union Oil - Geothermal

Alex Schriener

1450 Guerneville Road Santa Rosa, California

11/17/81 **Date Received:**

Analysis:

Arsenic, Copper, Zinc and Mercury.

Arsenic determined by hydride. Remaining elements **Analytical Methods:** determined by atomic absorption.

11.

Remarks:

CC:

enc. file (2) GJC/1w

KRUEGER ENTERPRISES, INC. GEOCHRON LABORATORIES DIVISION

24 BLACKSTONE STREET . CAMBRIDGE, MA. 02139 . (617)- 876- 3691

PRIORITY BASIS POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No.	F-6056		Date Receiv	ed: 12/30/81	
Your Reference:	letter of	12/21/81	Date Report	red: 12/31/8	1
Submitted by:	Alex Schri Union Oil P.O. Box 6 Santa Rosa	ener Co. of Calif. 854 , Calif. 95406	5	•	
Sample Description	& Locality:	Chips (cuttings Sample ML-2-750	s?) of dacite)	or granodior	ite.
Material Analyzed:	Felds Treat	par concentrate ed with dilute	e, -100/+200 HF and HNO ₃	mesh. to remove any	[,] alterati
Ar ⁴⁰ */K ⁴⁰ =	.00040)9	AGE =	7.0 <u>+</u> 0.5 M).Y.
Argon Analyses:					
Ar ^{4 0} *, ppm.		Ar ⁴⁰ */ Total Ar	40	Ave. Ar ⁴⁰ *, ppm	1.
.000762 .000735		.039 .061		.000749	
Potassium Analyses:	:				
% K		Ave. %K		K ⁴⁰ , ppm	
1.500 1.501		1.500		1.830	
Constants Used: $\lambda c = 4.72 \times 10^{-10}$	(A2)	AGE =	$\frac{1}{\ln \left[\frac{\lambda_{\beta} + \lambda_{e}}{2}\right]}$	$x \frac{Ar^{40*}}{1} + 1$	
·p==+./2×10 /) \	(CO)	λe	+λ _β [λ _e	K ⁴⁰	

 $\lambda_e = 0.585 \times 10^{-10}$ / year K 40 /K = 1.22 x 10⁻⁴ g./g.

Note: Ar ⁴⁰* refers to radiogenic Ar ⁴⁰. M.Y. refers to millions of years.

Client	<u> </u>	. <u>стиат</u> р	ate <u>10/3/01</u>	RMGC	Job No. 01-37-30-SL
					Page2 of3
	Sample No.	ppm Arsenic	ppm Copper	ppm <u>Zinc</u>	ppb Mercury
	ML-2-81 0	3.4	35	25	79
	20	4.5	70	60	51
	40	1.3	60	45	17
	60	0.5	70	55	15
	80	0.3	75	60	29
	100	2.1	35	25	12
	120	1.2	30	20	15
	140	1.1	25	15	ʻ12
	160	0,9	25	25	18
	180	0.8	45	50	43
	200	1.3	40	40	39
	220	1.2	35	35	46
s .	240	1.2	35	30	20
	260	1.3	35	35	20
	280	0.8	35	25	12
	300	0.7	40	30	18
	320	0.6	40	40	15
	340	0.4	35	25	9
	360	0.6	35	25	14
	380	0.6	35	20	22
	385	0.6	35	20	18
	400	3.5	40	20	20
	420	3.3	40	20	28
	440	3.5	35	20	30
	ML-2-81 460	3.7	40	20	84

ł

١,

··· 👷 ···

· · · · ·

Client	Un_on_O1 Gec ermal	Date	12/3/87	RMG	C Job No. 81-	37-36-SL
					Page 3	of3
	Sample No.	ppm Arsenic	ppm Copper	ppm Zinc	ppb Mercury	
	ML-2-81 480	3.6	35	15	14	
	500	3.5	40	15	18	
	520	3.6	40	15		
	540	3.6	50	20	15	
	560	3.9	50	20	15	-
	580	0.5	50	20	13	
	600	3.5	55	25	20 *	
	620	- 3,8	50	20	20	• •
	640	3.5	35	25	22	
	660	3.8	95	25	20	
	680	3.6	35	20	22	
	700	3.7	40	25	13	· .
	705	3.6	45	30	12	
·· .	720	3.6	50 × 2	· 30	15	+ =
	ML-2-81 740	3.8	65	25	16	
	MSHA-6-12-80	0.8	25	30	26	

By J17 Cardwel

