MICHAEL VAUGHAN

APR 11 1990

2

Technic, wemorandum MIH Unocal Science & Technology Division Brea, California

UNOCAL®

CURT HILDEBRAND

JAN 12 1990

То:	Terry W. Kelley, Santa Rosa	Memo:	PMR 90-03M				
From:	D. L. Gallup, I M. E. Obando, I	Date:	January 4, 1990				
Department:	Products, Processes & Materials Research	Project:	745-72160				
Subject:	GMF 68-8 FLUID ANALYSES	Manager:	K. Baron, I				
cc: Library Patent S. K. All R. E. Ch A. J. Ch J. R. Fan M. M. H C. A. Hi B. J. Kel	(2) happell, Santa Rosa asteen, Santa Rosa (5) rison, Santa Rosa latter, I ldebrand, Santa Rosa lly, R	L. D. Krenzke, I D. S. Pye, UOC C. T. Ratcliffe, I H. D. Simpson, I R. N. Upadhyay, AI N. E. Voegtly, Clove J. W. Ward, A) erdale				

We recently analyzed brines and steam condensates collected during flow tests of the well, GMF 68-8. The attached table presents the results of the analyses. The first set of six samples was received on October 19, 1989 and the second set of three samples was received on November 17, 1989. The brine and steam condensates are similar in composition to those analyzed from the 1988 flow test.* In general, the brines consist of neutral sodium, potassium, calcium chloride solutions. Steam condensates consist primarily of carbonic acid and exhibit slightly acidic pH. Harrison Crecraft has suggested to us that the acidity may be due in part to the formation of sulfuric acid from oxidation of sulfide during weathering. Based on the chemistries of the brines and condensates, we anticipate that fluids produced from the Glass Mountain reservoir will exhibit low scaling and corrosion potentials.

PMR 90-03M

2

Calculated geothermometers based on sodium, potassium, calcium and silica concentrations in the brine predict downhole temperatures of the well averaging about 475°F.

* D. L. Gallup, Tech. Memo. PMR 88-161M, November 18, 1988.

D. L. Gallup Sr. Research Associate

 \mathcal{O} ho / DDD m

M. E. Obando Research Tech.

DLG/MEO(ss) Attachment

1

						•															
·				ļ							Table	l					ļ			[
				I						Fluid	Analyse	s (mg/L	.)	ļ							
		L.,						1			L	L	<u> </u>	L	L		1		<u> </u>		<u> </u>
									Susp				·····								
Sample	Description	ad No	<u>p</u>	HCOJ	<u></u>	<u> IC+CL</u>	<u>HS</u>	S04	Solids	TOS	8	Ca	<u> </u>	Mn		<u>SI</u>	i Na 🔅	AL	Mg		RD
aninun i Secologia	; ;											 									<u> </u>
4 5.33	CHE 49-R	3030	4.5		30.0	2135 0	- 5	82.0	2800	7820	· _ ·			<u> </u>	·						<u> </u>
		3040		10					- 2090		16.0	52.0	0.7	0.2	189	327	1210	1.0	1.6	9.2	1.6
	DRIKL			╂────┤					<u> </u>		10.0	1 22.0	····	0.2					1.0		
												· · ·									
2	GMF 68-8	3043	7.2	10	15.0	1886.0	5.0	5.0	3150	3770	-	- 1	-	-	-	-	-	-	-	-	-
	BRINE	3044	-		-	-	-	-	-	-	16.0	40.0	0.9	0.1	189	322	1190	0.9	0.9	9.0	1.6
		• • · · · · · ·		t																	
																					ļ
3	GMF 68-8	3050	7.4	10	15.0	1842.0	< 5	4.0	3070	3850	-	-	-	-	-						ļ
• AC 0.88	BRINE	3051	-	-	-	-		-	-	•	16.0	34.0	0.5	0.1	187	317	1160	1.0	0.6	8.9	1.3
									[L	
10 000		\										\		}			·			<u> </u>	+
\$	GHF 68-8	3053	7.3	10	10.0	1850.0	< 5	2.0	3000	3560	1(0	26.0	-	-	184	-	1130	1 1	< 0.5	8.6	15
	BRINE	3054	-		-		<u> </u>	-			10.0	25.0	0.3	0.1	100		1150		× 0.7	0.0	
												<u></u>									<u> </u>
- 244 : 200		7057			- E A	1675 0	- F	0.0	2080	7870	-	<u></u>		-	-		-	-	-	-	-
	GMF 68-8	1057	1.2	10	5.0	10/5.0		- 0.0			16.0	23.0	0.4	0.1	183	311	1120	1.1	< 0.5	8.5	1.5
	BRINE	3030																			
www.www			· · ·																		L
4	CHF 68-8	3041	6.1	10	35.0	3.0	5.0	22.0	53	35	-	-	-	-	-	-	-	-	-	-	-
	STEAM	3042	-		-		-	-	-	-	0.2	0.3	2.9	0.1	< 0.3	2.7	0.8	< 0.05	< 0.1	< 0.01	< 0.1
												<u> </u>					a case a color do color				
				Í		I		l	T			r	l	l	Γ						
43.43		7040 0	77	10.0	20	2111 0	< 5 0	37	22	4320	-	1 -	-	- 1		-	-	-	-	-	-
	GM1 68-8	3000 B	1.1	10.0				-		-	18	22	< 0.5	< 0.5	199	370	1160	NA*	NA	NA	NA
	BRINE	10001 8																			
				<u> </u>																	
A	CHE AR-R	3062 B	7.1	10.0	3.0	1870.0	< 5 *	35	580	3510	-	-	-			-	-		-		
	ARINE	3063 B			-	-	-	-	-	-	16	22	< 0.5	< 0.5	180	350	1050	NA	NA	RA.	RA
	UNIRL			 																	
		1												 							
9	GMF 68-8	3060 S	5.1	15.0	10.0	3.0	< 5	7.0	0.0	7.0							1	١A	NA	NA	NA
	STEAM	3060 S	-	-	-	-	-	-		· • •	0.2	0.4	1.0	<u> </u>	<u>, n n</u>		·	<u> </u>			
									ļ							-					1
	•	t		1								1		1							<u>م</u> مس

÷

.

11

.

۰.

5

* NA= NOT ANALYZED

MB