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ABSTRACT

\ considerable group of minerals, including the clay minerals, zeolites, pyrophyl-
. (hlorite, alunite, vermiculite, certain carbonates, sulfates, and other minerals
'er special circumstances, may originate through the interaction of thermal fluids
. *rock masses. The fluids consisting of heated waters, water vapor under pressure,
i, and frequently metallic ions originate well within the earth’s crust as an after-
. «th of vulcanism. The reaction halos, aureoles, disseminations, and bleached zones
. which the products of hydrothermal alteration are found represent the locale of
« tion. In the interpretation of the origin of mineral deposits alteration areas are
- uently as significant as associated intrusives. = ) )
\iteration minerals form a group with unusual stability which exhibits a remark-
.*:e tendency toward convergence. :
Ihe effects of weathering and the minerals produced are often similar to the
- «ucts of hydrothermal alteration insofar as the hydrous silicates are concerned.
‘emperature and chemical environment are equally important as controlling factors
- supergene processes as under hypogene conditions.
The alteration effects may represent a single progressive epoch in a single rock type
+may be due to different epochs embracing several types of wall rock. Alteration of
‘ s.unger igneous rocks may have a high argillic content, as in the Tertiary sequences
¢+ ithe western United States. On the other hand, alteration of old rock masses where
~ional metamorphism has been prevalent may yield a large content of chlorite of
~erent types, hydromica, pyrophyllite, or serpentine. Both are more or less wide-
:: 'ead hydrothermal effects in contrast to more local alteration such as zeolitization.

The fluids responsible for aggregates of hydrothermal minerals have long since
-anished. However, through a gradual accumulation of evidence on mineral synthe-
+«, microscopic study of sequence, observations on thermal springs and fumaroles, a
~::¢h improved picture of the conditions prevalent during hydrothermal alteration
+emerging.

The accumulation of field relationships becoming known through the studies of
1:tious observers places emphasis upon the relative role of wall rock in determining
‘¢ nature and magnitude of alteration halos. Such factors as permeability, porosity,
t:d conduits for fluid penetration assume an importance parallel to rock type. Es-
entially similar alteration aggregates may result from rocks as dissimilar as diorite
v lalaskite, while tremendous differences in the magnitude of the alteration halo may
< noted between a porous tuff and a compact quartz monzonite even in the same
LAtrict.

Halos of hydrothermal alteration are frequently a prelude to metallic mineraliza-
“-n. This has been particularly noted in connection with certain tungsten-bearing
[mins, disseminated porphyry copper deposits, certain lead-zinc deposits, some gold-
ranng veins, and some uranium-bearing veins. In such deposits the metallic epoch
s ordinarily closely associated with the culmination of hydrothermal activity.

1"hc source solutions with H,S, HCl, HF, steam, and other reagents may be neu-
't :lized or even rendered slightly alkaline by reaction with wall rock and release of
t aali or alkaline earth elements. The temperatures under which the alteration takes
e as interpreted from the minerals formed appear to lie in the range 100°—400° C
";'*} emphasis on the middle temperature zone.

Ihrough the utilization of improved techniques in identification the fine mineral
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526 THE CRUST OF THE EARTH

aggregates of alteration halos are becoming better understood. The evidence . ,
study is contributing to a better understanding of the origin of associated .. ,
minerals.

INTRODUCTION

The products of hydrothermal alteration as emplaced in the outer portions . 1
earth’s crust are formed by a process which follows crystallization of igneous ¢ .., .
or regional metamorphism. The resultant minerals are distinct from the ear}y ; -,
ucts of magmatic crystallization and are largely due to crystallization brough’z Al
by reactions between the final magmatic fluids and the enclosing rocks. In (-
to the total precipitation, the addition of elements from below is quantitatively ¢
Minerals’ which may originate during alteration include: clay minerals, 2
pyrophyllite, chlorite, alunite, sericite, vermiculite, certain carbonates, and su''x -
Deposits of these minerals may range from small scattered pockets to wide s,
covering mountain slopes. :

Alteration minerals may form under widely varying conditions; some ar :-
duced by the action of compressed water vapor at several hundred degrees «.
grade, whereas others occur during soil formation, weathering, or diagenesis -
transition from one extreme to the other is gradual, and the proper location i ¢
given mineral on the geologic temperature scale is often difficult. Furthermorr -
gradation is at times confusing since supergene clay aggregates formed under s
mospheric conditions may grade into hypogene masses.

Gases, vapors, or solutions from below often force their way upward throu® - «
rocks of the earth’s crust to produce deposits of clay minerals. These in turn are a,
form halos associated with metallic mineralization. In this process the el
found in clay minerals themselves are derived largely from the invaded rocks. :
little aside from water comes from below. Metallic mineralization is frequently » *
localized, but it is also more dependent upon addition from below.

The temperatures prevailing at the time of hypogene clay crystallization ;- -
ably range from less than 100°C to somewhat above 400°C. Since the solutic:s ¢
influenced by acid vapors from the magma, the pH is frequently low. Howeve
increase in pH often results from reactions with invaded rocks, and neutral or ¢
alkaline conditions may develop.

Fumaroles, geysers, and volcanic vents may provide centers for the format:~
clay and other forms of alteration in wall rock. The most active agents arc g3+
emanations, compressed vapors, and thermal waters. The most abundant dr:-
of clay, tufa, er siliceous sinter are attributed to thermal waters either at depth ~ -
the surface. Nevertheless, at times compressed vapors or mixed fluids and *-
may bring about argillic alteration of rock-forming minerals buried in cavi
pegmatite dikes or igneous masses.

Rock decomposition is not restricted to hydrothermal processes, but parts
at the surface or near the surface of the earth’s crust it is often accomplt’
weathering. Even here, temperature and pH as well as the abundance and ¢
of solutions become all-important factors.

Temperature and chemical conditions appear to be the most significant fa:!
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..+hermal processes. Pressure is believed to be much less effective, particularly
¢ near-surface conditions. For example, the amount of mineral change due to
. iwad is surprisingly small in Miocene clays from oil wells in southern Louisiana
.ths in excess of 15,000 feet. Likewise, changes in x-ray-diffraction measure-
-, or thermal curves are comparatively slight when artificial pressures corre-
ng to much greater depths are employed.
- Jucts of alteration whether supergene or hypogene are for the most part finely
~\ilinc and are studied with difficulty. However, through the application of such
~uues as x-ray diffraction, differential-thermal analysis, electron microscopy,
.. .frared absorption, in addition to more conventional microscopic and chemical
-mls, substantial progress has been made in recent years in the study of these
- yietials.
+or studies in which techniques are outlined in addition to much general informa-
<. the reader is referred to such works as those by Brindley (1951), Eitel (1952), and
n (1953), and the reports of Research Project 49, American Petroleum Institute
setr el al., 1951).

DIRECT MEASUREMENT OF HYDROTHERMAL TEMPERATURES

Ihree types of data may be utilized to acertain the temperatures prevailing dur-

. the formation of hydrothermal minerals: (1) thermometry of drill holes which

- cirate active hydrothermal areas; (2) thermometry of surface emanations; and

* temperatures observed during mineral synthesis.

the thermometry of drill holes in the geyser basins of Yellowstone Park was de-
~ted by Fenner (1934) in his studies of hydrothermal metamorphism. At 265 feet
Norris Basin the temperature was 180°C, and in Upper Geyser Basin at 406 feet

» temperature was 205°C.

\t Larderello, in Italy, a major power development is maintained, and borax is

*+luced from steam derived from holes drilled in a fumarole area (Ippolito, 1947).

- «crand Valduga (1946) report at a depth of 876 feet a temperature of 205°C and
+ . tessure of 63.5 pounds per square inch. The general range in temperature is 140~

» C (Mazzoni, 1948), and the distribution is irregular, depending largely on the

i ture system.

Krannock ef al. (1948) report that the temperature at 156 feet in a well at Steam-

-t Springs, Nevada, was 138°C.

in measurements at Kilauea Volcano, Hawaii, Macdonald (1944) reports that
* ‘atara had the temperature of boiling water (95.5°C) at that altitude.

Mteiner (1953) in a study of hydrothermal alteration in the hot-spring and fumarole
<"t at Wairakei, New Zealand, reports temperatures of 198°C to 213°C at a depth
7 ™95 feet where adularia occurs. The solutions that leave this zone are enriched in
*+aand lime.

it would appear that the temperatures as measured in drill holes are considerably

*¢r than those which may prevail in fumarole areas several thousand feet below
“ surface. The minerals found in localities where erosion has exposed deeper por-

-8 of former hot-spring areas as at Marysvale, Utah (Kerr et al., 1952), confirm

< observation. It seems likely that the temperatures in such hydrothermal areas

o
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are considerably higher than those required to satisfy the thermal gradien; 1,

may be properly attributed to remote magmatic activity.

The temperatures of hot springs or fumaroles cover a wider range than 'Y
recorded for drill holes. Zies and his associates (1924) carried on an elaborate ; .
of such measurement in the Valley of Ten Thousand Smokes, Alaska, {oi]:;..
Katmai eruption in 1912. Gases escaping from fumaroles were found to raz;,
less than 100°C to 650°C.

Temperature measurements were also made at Paricutin Volcano in Me.
Zies (1946); values up to 640°C were observed for fumaroles in the older 7,
flow.

The springs, geysers, and fumaroles of Iceland have been investigated b, :
(1950). Here superheated steam is rare, but it is found occasionally in hot L, -
and around active craters. It has been reportéd from two hot springs with re .
temperatures of 118°C and 120°C. Other steam vents exhibit temperatures (. -«
the boiling point of water with slight but inconspicuous superheating.

Cone A in Okmok Caldera, on northeastern Sumnak Island, was exam. :
Byers and Brannock (1949). The temperatures dropped from 320°C on Ju!

90°C on September 5 in 1946. More information on such geologically rapid « « _

is to be desired.
TEMPERATURES OF MINERAL SYNTHESIS

Direct measurement of temperature is inapplicable to the many areasof : -
thermal alteration which are of geologic interest and no longer thermally
It is here that minerals such as kaolinite, dickite, nacrite, montmorillonite, ha:
nontronite, illite, sericite, adularia, alunite, etc., become valuable indicit -
order to understand their genesis much work on mineral synthesis has beer. «
taken in a number of laboratories. While the extent to which these temje::
apply to field interpretation is often uncertain, in lieu of more direct data su.* -
peratures cannot be ignored.

An alteration mineral frequently referred to is kaolinite. Noll (1934) rejwirs
kaolinite was formed at 320°C in N/2 HCI. He also found (1936) that kaolin:tr * -
in neutral alkali-free solutions or in acidic alkali-bearing solutions below ¥/
concludes that under acid conditions kaolinite would form even below 200°C" ! ;
sufficient time.

Through the use of diluted hydrofluoric acid acting on orthoclase, Collins **
claimed that kaolinite formed in 96 hours at 16°C. While identification of th

uct should probably be verified by more recently developed techniques th = -

of alteration at room temperature by strong acid is of interest.

Schwarz and Walcher (1925) stated that kaolinite must form between pll ¢
5.2, with best results from a pH of 4.8 to 5.2. Schwarz (1933) produced kac'-
feldspar by treating with 0.5N to 1.0N NH,CI or H,SO, at 300°C for 2‘“

The alteration of feldspars under laboratory conditions has been studic
(1947). He found that kaolinite forms in acid solutions up to about ?‘” v
rather high and K low. Muscovite forms as low as 200°C through §25°C & * -
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wlutions and, if K and Al are high, in acid solutions. Pyrophyllite forms be-
., about 300°C and 550°C when Al and K are both low.
aies cover a wider range 1 |, . .¢lt and Insley (1935) synthesized kaolinite from alumina-silica gels in a bomb
11924) carried on an clabor,.n . . . The temperature of direct synthesis thus falls within the range observed
20usand Smokes, Alaska, ,-“:;”; .+ ¢ alteration of feldspar.
2 fumaroles were found 10 1, ' .. inference from experimental evidence, kaolinite could form from the alteration
‘ - tspar under supergene conditions given adequate time with acid conditions.
. mineral may also form under pressure and at the lower temperatures which pre-
. wn fumaroles. The hydration curve for kaolinite indicates that it is not likely to
- above 400°C.
.. kite, the clay mineral most representative of hydrothermal conditions (Ross
1 Kerr, 1930), has been synthesized by Ewell and Insley (1935) from hydrous
wina-silica gels at 350°C and 365°C. The peaks on differential-thermal curves also

20 satisfy the thermal gr,f;,, .
Ltic activity.

-2 at Paricutin Volcano in \f,
=d for fumaroles in the olic;

:and have been investigated 1y
-1s found occasionally in hot 1. .
2d from two hot springs with

an vents exhibit temperatures | ate that dickite is stable at higher temperatures than kaolinite.

onspicuous superheating, ‘ricite has been recognized by many as a hydrothermal mineral. Noll (1932) found
=n Sumnak Island, was exar. . - + lowest temperature of formation to be 225°C, but the greatest amount formed at
‘es dropped from 320°C on Ji. . . 'C. Gruner (1944), on the basis of numerous experiments, concludes that mus-

.te (var. sericite) forms above 350°C, and kaolinite below. In his experiments
gars were altered with HCI solutions at 300°C to 400°C and in one instance at
(. He found that pyrophyllite would form throughout the temperature range of

zon on such geologically raji .

ERAL SYNTHESIS : eaperiments, Norton (1937) demonstrated the formation of sericite by CO, in
>pli! to the many areas of ', Jays at 280°C and 1800 pounds per square inch, as well as in 150 days at 320°C
=rest and no longer therma’y - +:12950 pounds per square inch.
e, nacrite, montmorillonite, i.. \Jularia is a significant vein feldspar which may form under hydrothermal condi-
etc., become valuable indicat =+ .~3. Morey and Ingerson (1937) synthesized adularia between 245°C and 300°C.
on mineral synthesis has been riner (1936) has formed adularia (or orthoclase) by heating montmorillonite in
> extent to which thesc temc . - . +!-lined bombs in aqueous solutions of KHCO; (10%). Well-crystallized adularia
_ in lieu of more direct datt su.© - - «us produced in 7 days at 300°C. After 10 days at 272°C the x-ray-diffraction pat-
i of the feldspar became distinct. The stronger lines of orthoclase appeared after
» is kaolinite. Noll (1934) rojn - - lays at 245°C. No change was detected in 4 weeks at 200°C.
also found (1936) that kaolrr - - ine montmorillonite group is common in alteration halos. Noll (1936) synthesized
ali-bearing solutions below 4+ = - - ~ atmorillonite using ratios of alkali:alumina:silica of 0.02:1:4 to 1:1:4 and NaOH,
would form even below 200°¢C 4, - * 'H,and Ca(OH); at 87 atmospheres and 300°C. He concluded that montmorillonite
"~s from mixtures with alkali or alkaline earth metals when solutions are alkaline.
d acting on orthoclase, Collins **~n Mg(OH), is present in excess, magnesium enters into the composition of mont-
6°C. While identification of t*~ - - willonite up to 15.3 per cent MgO. Norton (1939) produced beidellite by the use
ntly developed techniques ' ¢ - * {Urcharged water on albite at 275°C-325°C. Ewell and Insley (1935) produced
zid is of interest. " “uronite from coprecipitated Fe;0;:2SiO; gels in a bomb at 350°C.
olinite must form between pH & 7+ \lunite is at times associated with clay minerals and forms under hydrothermal
hwarz (1933) produced kao': ¢ =litions. Leonard (1927) formed 60-90 per cent alunite at 200°C in sealed pyrex
! or HySO, at 300°C for 230! - eswhich were heated for 7 days with 0.1 M solutions of H,SO,, K2SOy, and Na;SO,
- conditions has been studin! * - 7 ‘i’:‘thcr with ammonium sulfate. Alunite (50~99 per cent) was also formed at 100°C
solutions up to about 3¢~ * ~ * “eating for 100 days in 0.05 M solutions with 50 gm of aluminum sulfate. Simi-

w as 200°C through 525°¢ i = - * wlutions gave 40-60 per cent alunite in 60 days at 22°C.




i et AR

“IE EARTH HYDROTHERMAL ALTERATION AND WEATHERING 529
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\lularia is a significant vein feldspar which may form under hydrothermal condi-
-ss. Morey and Ingerson (1937) synthesized adularia between 245°C and 300°C.
~ner (1936) has formed adularia (or orthoclase) by heating montmorillonite in
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¢ il,and Ca(OH), at 87 atmospheres and 300°C. He concluded that montmorillonite

would form even below 2000 ¢ ¢ -+
-=s from mixtures with alkali or alkaline earth metals when solutions are alkaline.

3 acting on orthoclase, Colliny **en Mg(OH); is present in excess, magnesium enters into the composition of mont-
6°C. While identification of 1 ¢ - * r.lonite up to 15.3 per cent MgO. Norton (1939) produced beidellite by the use
mtly developed techniques tie & - < (Orcharged water on albite at 275°C-325°C. Ewell and Insley (1935) produced
~id is of interest. “~‘ronite from coprecipitated Fe;0;-2SiO; gels in a bomb at 350°C.
olinite must form between pii 8 \lunite is at times associated with clay minerals and forms under hydrothermal
~hwarz (1933) produced kav.o7e - ™htions. Leonard (1927) formed 60-90 per cent alunite at 200°C in sealed pyrex
1 or H.SO4 at 300°C for 25t - #s which were heated for 7 days with 0.1 M solutions of H:SO4, K2SO4, and Na;SO,
- conditions has been studiei f o * . ¢ther with ammonium sulfate. Alunite (50-99 per cent) was also formed at 100°C
solutions up to about 3%t ' ' 7 ~ “eating for 100 days in 0.05 M solutions with 50 gm of aluminum sulfate. Simi-
w as 200°C through 525°¢C i « **wlutions gave 40-60 per cent alunite in 60 days at 22°C.
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Noll (1936) reports that the same type of experiment in which montmoriljo,
synthesized also produced analcite with an excess of NaOH, Ca(OH),, and M,
Noll believes that zeolites will form under more alkaline conditions th,:, ,
montmorillonite or sericite.

Stringham (1952) has furnished a tabulation which outlines the generally 4

temperature ranges of formation of the more common hydrothermal minera:, |

large degree these represent a summary of observations on synthesis by va
thors.

GASEOUS EMANATIONS CAUSING ALTERATION

Steam and minor amounts of acid are the vapors from fumaroles, fissure e« . _

tions, or hot springs. Zies (1929) found that the vapors of the Valley of Ter :
sand Smokes contain the acid constituents HC-0.117%; H.S—0.009";

0.032%. The fumarole gases on northeastern Umnak Island were identificd by & .
and Brannock (1949) as water vapor, carbon dioxide, and sulfur dioxide, Tt -. ...

authors found that the springs on Umnak Island contain as high as 139 ;
boron expressed as B;0; with a few parts per million of arsenic and an -
Shepherd and Merwin (1927) studied the residual gases in the freshly erupte« -
of Mt. Pelee. The samples were heated in vacuo, the chief volatiles being 1.0
CO;—9%; with Cl, S, and F in smaller amounts.

Mazzoni (1948) in his account of steam vents of Tuscany and the Larderelis- - .
furnishes the average composition (in gm) of 1 kg of natural steam as follaws

Steam, HaO. ... ... 9585. 24
Carbon dioxide, COu.. . ....cviiniit ittt i et iae e 41.5¢
Combustible gas, (CH, Ha). . ... e 1.10
Hydrogensulfide, HoS. ... ... .. il 0.9
Nitrogen, Na. .. .ooviniiiii i e e 0 3
Boricacid, HsBOs. ..o oo e e e 0 M
Ammonia, NHj. . .. ... e 0.19
Rare gases, (He, Ar, N€). . ... oottt e’

He also gives the average speed of flowing steam as 410 ft/sec.

Many cavities in pegmatite dikes or within intrusive masses contain aits-
minerals. The fluids present are presumed to have formed under considers! -
sure. Silva and Neiva (1948) attribute montmorillonite in granite pegmatite:
drothermal conditions. Cymatolite at Branchville, Connecticut, first recovs -
Brush and Dana (1880), is a pink claylike alteration closely related to m:=-

lonite. Apparently it resulted from an early stage of alteration when high j«=+

prevailed. Clay minerals that coat crystals in pegmatitic cavities are fairly «:¢

DEEP-SEATED VEINS

Field relationships suggest that among the clay minerals dickite is usi " !
under deeper-seated conditions. It is usually, if not always, hydrotherma! - ‘
At Cerro de Pasco, Peru, coarse crystals of enargite formed in vugs arc ¢+
granular dickite. The veins at Ouray, Colorado, contain dickite associat® b
mary sulfides. The original dickite of Anglesey (Ross and Kerr, 1930) i~ «
to be hydrothermal. Sales and Meyer (1949), in describing the hydrother: -~

tion along the veins at Butte, Montana, place dickite in the higher-temp<**
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Jll attention to the occurrence of the mineral in the lowest levels of the mines.
. v has been reported by Frankel (1949) in the gold-bearing rocks of the Wit-
..rand. It is found associated with pyrrhotite, gersdorffite, chloritic material, a
&-gray clay, and lustrous organic material. Davidson and Bowie (1951) favor
sothermal origin on the basis of association with the organic material thucholite.
¢nt studies of the volcanic region at Marysvale, Utah, dickite has been identi-
«ith the earlier phases of hydrothermal alteration. In the alteration of the
-yry sill above the ore bodies at Gilman, Colorado, dickite appears to represent
+er-temperature clay-mineral phase. Dickite forms the best crystals of all the
. minerals, yields the most precise x-ray reflections, and appears to have the most
. ‘¢ internal structure.
+ write has been reported from too few localities to compare with dickite as a hy-
‘termal indicator mineral. However, the mineral occurs intergrown with dickite
«1. George, Utah (Kerr ef al., 1951), and is presumably of similar hydrothermal
;n. The well-known occurrence at Brand, Saxony, is also hydrothermal.

HYDROTHERMAL DEPOSITS

i1 recent years great emphasis has been placed on the relationship of alteration
. « to economic mineralization. Considerable data have accumulated through
“tes at Tintic, Utah, by Lovering (1949); Butte, Montana, by Sales and Meyer
;40); Castle Dome, Arizona, by Peterson, Gilbert, and Quick (1946); Gilman,
rado, by O’Neill'; Bingham, Utah, by Stringham (1953); and at Park City,
+h, by Williams (1952). These studies as well as similar others are largely con-
=1 to regions of late Mesozoic or Tertiary volcanism in the western Cordillera of
+ United States. They are based to a considerable degree upon the observation of
~v-mineral relationships. More recently, close attention to chloritic zones in the
sanda District by Price (1953) has shown the applicability of alteration studies to
"~ambrian mineralization. It is now recognized that deposits of tungsten, molyb-
um, zinc, lead, copper, gold, and uranium may occur where the wall rock has been
rothermally altered, which in turn is related to mineralization.
iwo of the most common features observed in the early stages of hydrothermal
-ation associated with mineral deposits are the development of chloritization in
‘usives and dolomitization of carbonate rocks. Both have been described at Tintic,
th (Lovering et al., 1949). At Silver Bell, Arizona (Kerr, 1951), and at Santa Rita,
“» Mexico (Kerr ef al., 1950), chlorite marks the earliest phase of alteration of the
rusive,
icroy (1954) in a study of the relationship between copper mineralization and hy-
‘hermal alteration at-Santa Rita, New Mexico, concludes that the hypogene cop-
- mineralization is directly related to an end stage of argillic alteration. Chemical
vyses of the altered intrusive associated with the mineralization show that the
T content increases considerably at this stage.
“tles and Meyer (1949) found montmorillonite as one of the earliest indications
vdrothermal alteration at Butte, Montana. The margin of alteration outlines the
“t'est penetration of solutions and vapors from fissures into the wall rock. At this

Unpublished report reviewed through the courtesy of the New Jersey Zinc Co.
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point the alkali and alkali-earth ingredients of the wall rock react more strongly w;::
acidic fluids from the magma, and there is a tendency to produce neutral or sligh:’,
alkaline conditions. '

Sales and Meyer (1949) have carefully sampled and reported analyses for the ulte:
ation sequence along the Butte veins. An outer montmorillonite zone is bordcsr:
within by a hydromica (illite) zone of slightly lower pH. On the vein side of this s ..,
kaolinite becomes the dominant mineral. The zone closest to the vein is predo:
inately sericite.

In the zones of alteration which border veins the mineral constituents obscrsc:
indicate an increase in temperature toward the center. There is also a variatios .
pH from slightly alkaline along the periphery to neutral, slightly acid, or sligh- ,
alkaline toward the center. The processes of metallic mineralization are influenced t;;»
the chemical and physical conditions which also control the zones of alteration.

Stringham (1953) has carried on an extended study of the hydrothermal alters
tion at Bingham, Utah. Here the alteration halo and the ore zone are closely simi.:
The suite of alteration minerals is essentially the same as may be observed in ot?.. -
porphyry copper deposits of the region.

In the Coeur d’Alene district, however, Mitcham (1952) reports that hydroti.r:
mal bleaching of large areas of country rock is largely the destruction of rock .y
ments, and no strong sericitization is involved.

Field studies in the Marysvale district, Utah, have demonstrated that montmo:.
lonite and hydromica (illite) may be formed by hydrothermal alteration of g!. -.
volcanic dikes. The transition from glass to clay may be quite sharp. In the vici:
of Lovelock, Nevada, masses of volcanic glass may be observed altered by hy.:
thermal solutions to montmorillonite.

The susceptibility of various rock types to hydrothermal alteration and the rev
ant products constitute a feature of considerable complexity. At Marysvale, U+
recent studies have shown that of the rock types observed volcanic ash and tut!
the most susceptible to alteration. In the same area a fine-textured aplitic granir *
the least altered of the igneous rock types. Quartz monzonite is not highly alte«”
in contrast to the tuff or even granular flow rocks, but the emplacement of urar.
mineralization has been heaviest in this rock. Sediments found in the district «
sist of limestones, shales, conglomerate, and quartzitic sandstone, chiefly u; @<
Paleozoic and Mesozoic. Aside from the limestones these show comparativeiy -~
hydrothermal alteration in contrast to the igneous rocks. The latter show alters’
along fractures to light-gray chlorite (Kerr et al., 1953). _

Burbank (1950) in a study of alteration in Colorado mining districts cone
that clay alteration and silicification are characteristic of a comparatively <
environment in volcanic rocks extending to somewhat more than a mile b
original surface. In the zone of alteration the altering solutions are dom::
leaching agents. Voids occur at higher levels but diminish abruptly with dei”
the tighter zone below, sericite and quartz predominate as alteration product>
above hydrothermal clays and voids are a characteristic feature. o

Schwartz (1950), in studying alteration of limestone bordering ore bodirs
bee, Arizona, found that a large amount of manganese as well as lesser am:* !
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» and probably magnesia had been added from invading solutions. Until more
- histories are available general conclusions concerning the additive effect of
. -othermal solutions in contact with wall rock will be open to question.
i me of the most significant features of hydrothermal veins now coming to be recog-
| is the sequence of clay minerals. The progressive alteration from fresh wall
.. through such a sequence as montmorillonite, illite, kaolinite, sericite, and dickite
. auw looked upon as a characteristic feature of many hydrothermal veins.
An occurrence of palygorskite, believed to have formed along a zone of shearing in
. «ranite owing to the action of hydrothermal solutions, has recently been described
- Stephen (1954). This high-magnesia clay mineral formerly recognized to form
w{er supergene conditions may also originate because of hydrothermal action.

HYDROTHERMAL SOLUTIONS

Although the magmatic source may consist of vapors rich in acid vapors such as
1], HF, and H,S, contact with ground water and wall rocks may produce neutral
 alkaline conditions. The character of the solutions may be inferred at times from
.e wall rock penetrated and the alteration minerals produced.
Acceleration of alteration due to acid solutions has been noted by Payne and
‘tau (1946) in volcanic regions. Two types were observed in basalt around Kilauea
. .tter in Hawaii. At steam vents where sulfur dioxide is present, alteration proceeds
¥ :apidly, and alkali and alkaline-earth elements are removed, leaving a siliceous yellow
‘~~sidue. At vents where sulfur dioxide is absent silica and soluble bases are leached
a1y, leaving hydrated oxides of aluminum and iron.

Macdonald (1944) has described the action of solutions believed to be weak in
.arbonic, sulfurous, and sulfuric acids. Opal and a smaller amount of kaolinite are
ieveloped. Also cavities may be lined with sulfur crystals, and minerals such as
spsum, alum, mirabilite, kieserite, aphthitalite, and epsomite may be deposited.

In studying the geyser basins and igneous emanations of Yellowstone Park, Allen
1935) felt that the bicarbonates of alkalis in the thermal waters indicated attack by
1% upon the wall rocks at depth. In other studies at Yellowstone Park, Fenner
1936) found two processes causing alteration to clay. Near the surface acid sulfate
sttacked the feldspars, and kaolin was formed. At depth, beidellite was produced.

Steiner (1953) reports that hydrothermal agents in the thermal area at Wairakei,
\ew Zealand, have altered and are still altering tuffaceous and arenaceous rocks,
“ut not the interbedded argillaceous rocks, which are impervious. Four main zones
{ hydrothermal alteration observed downward are: (1) sulfuric acid leaching, (2)
uillization, (3) zeolitization, and (4) feldspathization. Kaolinite, alunite, and opal
‘vur near the surface, in the zone of sulfuric acid leaching. Montmorillonitelike
v and pyrite are characteristic hydrothermal minerals. Ptilolite and analcite are
"¢ zeolites present. Adularia forms in the zone of feldspathization.

Lovering (1949) has pointed out that sulfur acids on the outlet side of an altera-
" zone may yield a quartz-alunite rock, while at greater distance from the outlet
" hearer the surface alunite would give way to diaspore. This feature was observed
¥ Whitman Cross (1896) in the alteration of rhyolite on Mount Robinson, Colorado.
\t East Tintic, Utah, Lovering (1949) concludes that alunite is formed in a less acid
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534 THE CRUST OF THE EARTH

environment than the kaolin minerals, because of an increase in pH through wall-
rock influence.

Lovering (1950) has also pointed out that the solubility of silica in pure water in-
creases from about 275 ppm at 50°C to some 2400 ppm at 350°C. The solubility in
NaOH and Na,CO;, however, is much greater, although the increase in solubility
due to acids depends on prevailing conditions. He concludes that the great change
in solubility with temperature probably accounts for much of the precipitation of
hydrothermal silica.

The formation of halloysite by sulfate-bearing solutions acting on kaolinitic clay
has been postulated by Ross and Kerr (1934). Vapors containing SO,, S vapor, and
a trace of HCl in solfataric action have formed kaolinite (Macdonald, 1944).

At Park City, Utah, Williams (1952) points out that kaolinite results from acid
solutions in siliceous or argillaceous-siliceous wall rocks, while in the overlying car-
bonate rocks halloysite is formed.

Localities such as Liége, Belgium, Tintic, Utah, and Park City, Utah, may repre-
sent the precipitation of halloysite due to acid solutions acting on carbonate rock.

It was pointed out by Nutting (1945) that minerals of the montmorillonite group
as found in soils will dissolve or disperse in water solutions containing 0.01 to 0.4
per cent acid.

SUPERGENE PROCESSES

In the absence of special conditions which may accelerate the process of weather-
ing, normal surficial clay-mineral development or the development of related minerai
aggregates may require a long time. The chemistry involved is complex and not too
well understood, but it is generally believed that if given sufficient time even weak
concentrations of acid or alkali solutions in the presence of small amounts of alkal:
or alkaline-earth elements, alumina, silica, and other chemical constituents may
weather to large masses of clay and other deposits.

Special climatic conditions may yield increases in temperature which combined
with the introduction of solutions giving a more concentrated chemical action may
decrease the time factor.

Diagenesis may be a factor in surficial mineral changes where saline conditiom
prevail in bodies of water where sediments are accumulating. Organic acids may pla
an important role in hot humid regions. Even organic concentrations in bogs art
active in clay formation although temperatures are not extreme.

The transportation and redeposition of the clay minerals in a new site may t<
considered a simple process. On the other hand, considerable alteration of the v
erals involved is apt to occur during the process.

NORMAL SURFACE ACTION

In normal surface action leaching and deposition may be distinguished from we¢v
ering and soil formation.

The formation of bentonite illustrates a process in which supergene leachiny @
deposition are involved. Bentonite as defined by Ross and Shannon (1926) is for
by the alteration of glassy igneous material, usually tuff or volcanic ash. The *
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Lte deposits of the lower Mississippi Valley and Gulf Coast region (Hagner, 1939)
.r in a stratigraphic sequence in which it seems unlikely that ash would have

, -ererd under other than supergene conditions. The complete replacement of shells
.. montmorillonite at Pontotoc, Mississippi, as pointed out by Nutting (1945) indi-
v+ that alumino-silicate sols may be deposited under conditions that suffice to
wwove the original bases in the shell-forming material. In certain Pacific Coast
.--1s in which volcanic materials predominate, Allen (1944) emphasizes the impor-

;¢ of sedimentary processes in the formation of clay minerals. Montmorillonite is
resent in clays derived directly from volcanic materials. For the most part these

“wvs are low in available alumina. However, kaolinite is a dominant mineral in
. avs derived from leaching aluminous rocks under conditions of thorough drainage.

Foster (1953) has studied the swelling of montmorillonite and finds that it correlates ’
with octahedral substitution. A montmorillonite with a high degree of octahedral :
whstitution has a lower swelling volume than one with a low degree of substitution.
lhe greater swelling of Na-montmorillonite in contrast to Ca-montmorillonite is
ewplained by the greater dissociation of Na-montmorillonite by which a greater
rumber of structural units are left with a negative charge.

Weaver (1953) in a study of Ordovician K-bentonites concludes that the clay
farmed originally as an expanded 2:1 layered mineral probably corresponding to
montmorillonite but later adsorbed potassium which caused 80 per cent of the layers
to form a nonexpanded lattice corresponding to illite. Such changes shown to take
i'ace under supergene conditions indicate the susceptibility of montmorillonite to
transformation in situ.

Attapulgite (polygorskite) is the chief mineral constituent of fuller’s earth found
i large quantities in the Georgia-Florida area (Kerr, 1937). The sedimentary ac-
«umulations are believed to have been transported from areas of crystalline rocks in
the highlands. It may be suggested, however, that the accumulation of attapulgite
itpresents more than simple transport and deposition. It is reasonable to believe
'hat waters containing magnesium contributed to the formation of this unusual
~.wnesia-rich clay.

Foshag and Woodford (1936) have described the magnesian clay mineral hectorite
frrmed by the alteration of Tertiary volcanic rocks in the Mojave Desert of Cahfor-
s Presumably the alteration is supergene.

Tarr and Keller (1936) report kaolinite deposited from solution in several localities
- Missouri.

Kaolinite occurs in quartz geodes and in small solution cavities in limestone near
Krokuk, Towa.

A clay mineral from Ballater, Aberdeenshire, somewhat related to illite has been
‘excribed by MacKenzie (1949) as formed by supergene action. The clay occurs in an
ttcred vein in granite. Since the extent of the alteration in depth has not been de-
‘fimined the distinction between supergene and hypogene origin is uncertain.

Stringham and Taylor (1950) have described nontronite formed as a weathering
-"wluct of diopside, tremolite, and pyrophyllite owing to the action of slightly acid
* ‘utions, The mineral occurs in a contact zone at Bingham, Utah.

Halloysite (4H,0) from Bedford, Indiana, is believed by Callaghan (1948) to
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represent a supergene reorganization. A former residual soil is represented by other
clay types.

Kaolinite derived from limestone by supergene processes has been described by
Allen (1937). An earthy limestone subjected to the action of carbonic acid waters ig
considered to have given rise to the Cheltenham clay of Missouri. The sedimentary
clay deposit has been formed by erosion into a closed basin or choked sink hole.

Presumably nontronite found in cracks or fissures and in spaces between polyg-
onal joints in basalt near Garfield and Manito, Washington (Kerr ef al., 1951), has
been formed by the action of solutions of a neutral or slightly alkaline character, at
normal temperature and under supergene conditions.

Hole (1951) has described the surface decomposition of limestone with the forma-
tion of residual clays in the Austinville area, Virginia. Owing to the erosional rem-
nants remaining iz sifu in the sedimentary series and the surficial character of the
clay deposits the accumulation is believed to be essentially supergene.

An unusual deposit of kaolinite was encountered during the construction of a sub-
way tunnel beneath Newtown Creek, Brooklyn (Kerr, 1930). The clay mineral,
along with vermiculite as an intermediate stage, has been derived from the decom-
position of Ravenswood granodiorite. Apparently the occurrence represents an old
bog deposit in which organic acids played an important role.

WEATHERING

Surface temperatures, rainfall, and drainage as well as rock type are important
factors in weathering and soil formation. Probably surface temperature is highly
significant.

In cold zones or areas of glacial action clay minerals commonly formed elsewhere
by weathering are sparsely produced. Allen (1947) in studying varved clays deposited
under conditions of Pleistocene glaciation along the Hudson Valley at Newburgh,
New York, found a relatively small clay-mineral content; the varves were composed
largely of rock flour. The same feature has been reported elsewhere by various in-
vestigators.

Under tropical or semitropical conditions, as at Fazenda Pacu, Brazil, Kerr (1942
has called attention to deep weathering #z sif« in the wall rock of quartz-crystal de-
posits. Such weathering may produce kaolinitic masses which extend for hundreds
of feet in depth. At Fazenda Pacu the original texture of the granite is preserved in
the clay.

The weathered products of granites and pegmatites in the southern Appalachiar:
region have been studied by Sand and Bates (1952). Halloysite is formed only from
the weathering of féeldspars under conditions of intense leaching. Original mica alters
to vermicular kaolinite. Where leaching is less intense, potash feldspars may yicl!
vermicular kaolinite with an intermediate stage of secondary mica. Halloysite, how-
ever, appears to form directly from plagioclase.

It seems to be generally agreed that, given abundant time, decomposition of rochs
by the action of normal surface waters results. Water in soil may occur in cavitit:
and capillaries, as hygroscopically combined water, as adhering water, as chemicaii;
combined water, and as water vapor. Constant additions and subtractions change
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.+ total water content of a soil. The pH ranges widely. In a discussion of tropical

. Mohr (1944) reports a range from below 3 to more than 9. He points out that
. +u quartz, which is resistant in acidic conditions, dissolves in time at a pH greater
.+ 7.5. In the tropics acid water is effective in the formation of kaolinite deposits.
« wreoncludesthat pure water, or water containing carbonic, sulfuric, or humic acids,
..\l cause the weathering of feldspar to kaolinite. However, under similar tropical

titions where alkali or OH ions prevail montmorillonite is apt to form.
¢'orrens and Engethardt (1938) have investigated the mechanism of weathering
- ywtash feldspar. With an abundance of time and suitable pH, decomposition to
v may occur in soil in the case of a number of rock-forming silicates, which are
+ ordinarily considered particularly soluble.

The ion-exchange characteristics of clays and argillaceous sediments have been

~ensively studied by Kelley (1939). The most conspicuous effect is reflected in:
,ermeability; calcium-saturated clays tend to be granular and comparatively porous,

«\ile sodium clays are highly dispersed and relatively impervious. The pH of a clay

-ay be influenced in a significant manner by ion exchange. Calcium clays, where .
-c¢ from calcium carbonate, are approximately neutral, but under certain circum-,
ances sodium clays may be highly alkaline.

Kelley points out that, although sodium is present in sea water in greater abun-
tince than magnesium, the magnesium takes a more active part in ion exchange in
-liments with which it comes in contact. This may explain why many clays of
mirine origin contain substantial amounts of magnesium.

Kelley also notes that ordinary water contains a low concentration of hydrogen
»ms, while rain water is commonly acidic because of dissolved carbon dioxide. In
ayvs the hydrogen ions that have strong replacing power tend to replace sodium,
~ith the consequent formation of dilute solutions of sodium bicarbonate, sodium
atbonate, or sodium hydroxide. Thus the sodium clays tend to become alkaline.

The clay minerals in Iilinois sediments have been utilized by Grim et al. (1939)
2 an attempt to interpret climatic conditions of the source areas. The presence of
‘oth kaolinite and illite has been interpreted to indicate that some parts of the source
il a warm climate and in other parts the climate was cool.

Hosking (1940) has compared Australian soils derived from granitic and basaltic
-arent material. In several soils of granitic origin kaolinitic clay has been identified.
I soils of basaltic origin, however, the type of clay reflects the soil-moisture condi-
'ns during weathering. Kaolinitic types characterize the red loams, while mont-
~orillonitic types prevail in the red-brown earth. Montmorillonite alone is typical
{ the black earths.

s

MECHANICAL ACCUMULATION

A number of sedimentary basins on various parts of the earth’s surface yield re-
“arkably similar clay-mineral assemblages. Apparently a convergence in the ul-
"“Mate products exists which is in some respects similar to the convergence of end
“Ages observed in hydrothermal alteration, although the mineral suites formed in
¢ two cases differ.

Recent studies of clays in the Mississippi delta region of Southern Louisiana un-
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_dertaken at Columbia University show a remarkable uniformity of illite-mon.

morillonite-kaolinite mixtures throughout some 15,000 feet vertically and over 4
considerable area laterally. Studies of a large number of samples skow only miner
variation from a fairly uniform aggregate.

Bates (1947) has shown that illite (hydromica) forms the bulk of the fine micaceoy,
material in slates from the Lehigh-Northampton district of northeastern Pennsy|.
vania. In this case, however, some alignment by metamorphic processes following
transportation and deposition is believed to have taken place. However, the illite of
the underclays of Illinois described by Grim and Bradley (1939) is believed to have
been both transported and deposited as illite. The so-called fuller’s earth from the
Porter’s Creek formation of the Eocene near Olmstead, Illinois (Grim, 1933), con-
tains montmorillonite as the most abundant mineral constituent and the only clay
mineral. »

Henry and Vaughan (1937) have described the sedimentary kaolinite of Georgia.
Prior to the Cretaceous feldspathic rocks of the Piedmont Plateau were deeply
weathered. Clays derived from the erosion of the plateau were carried to the coast
and accumulated in fanlike fresh-water deltas.

Kerr et al. (1951) have studied the textural features of kaolinite from Mesa Alta,
New Mexico. Apparently the deposit represents a sedimentary accumulation, but
some recrystallization has taken place after deposition.

DIAGENESIS IN SALINE WATERS

It is believed that some minerals, particularly clays or related species, may form
under conditions of marine diagenesis. In this process small flakes of mica, kaolinite,
or other minerals in position on the floor of the ocean may undergo progressive changr
to illite and montmorillonite. In some cases research workers have even suggested
that the clay-mineral assemblage and the textures of crystallization may indicate
depth of deposition. Most clay minerals are found in marine sediments although
dickite is either absent or unusual in this occurrence. Halloysite and sepiolite-paly-
gorskite are also missing.

Glass (1951) applied diagenesis in the study of conditions of origin of clay minerals
in the Cretaceous and Tertiary sediments of New Jersey. Mineral changes subjed’
to an original marine environment were attributed to a group of minerals whi'!
included kaolinite, montmorillonite, hydromuscovite, illite, a chloritic mineral, an!
glauconite. The crystallinity of kaolinite is said to range from euhedral in fresh-watet
Triassic shale hollows to irregular in areas of brackish water. Reducing and non-
reducing conditions are also said to affect the minerals produced. Dietz (1941) cvt
cluded that montmorillonite may be the original clay mineral deposited on the oces”
floor at times, but it may be altered to illite.

Grim et al. (1949) have attributed the elimination of kaolinite from the sedinic:
tary accumulation along the Pacific Coast to a diagenetic process with increase
depth.

The erosion of illite and chlorite from rock masses may be accompanied by resi*
tive losses of potassium and magnesium. The accumulated sedimentary debris <+
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.sining these “‘degraded” minerals is believed by Grim (1953) to be especially sus-
_eptible to the reaccumulation of the original elements in a new environment.

LATERITE

Almost a century and a half ago Buchanan (1807) proposed the name laterite for
1 type of red soil found in southern India. Notwithstanding the antiquity of the term
e nature and mode of origin have long been a problem for which divergent solutions
-ave been proposed (Robinson, 1949).

From among many descriptions the statement of Harder (1949) concerning bauxite,
an ultimate product of the process of lateritization, is probably as satisfactory as any.
Weathering is involved. Any one of many rock types or their weathered derivatives
may produce bauxite or laterite. However, high alumina and the presence of soluble
.onstituents are accelerating circumstances. A warm humid climate with alternating
wet and dry seasons hastens the process. A land surface of low relief with sluggish
runoff is considered essential. The original rock may determine whether bauxite, iron
ore, OF Ianganese results.

The minerals common to laterite are such aluminian minerals as cliachite, gibbsite,
hoehmite, or diaspore and such ferrian minerals as limonite, goethite, or lepidocro-
cite. The minerals are usually impure, but the extent of their development is an in-
dex to the extent of the process of lateritization in a given deposit.

Allen (1948) recognizes three processes in the formation of bauxite: desilication,
migration, and resilication. The first two have long been recognized, but resilication
or the union of silica with gibbsite to form clay is 2 more recent interpretation. Allen
attributes certain cellular kaolin in Georgia to the addition of silica to gibbsite.

Lapparent (1936) in describing the bauxitic clays of Ayrshire, derived from basalt,
believes that the laterite began as an alumina-silica gel, resulting from the hydrolysis
of silicates under warm humid conditions. Rankama and Sahama (1950) point to the
role of carbonated waters in the formation of aluminum hydroxide from mafic igne-
nus rocks. Calcareous bauxite in certain instances is attributed to the action of car-
bon dioxide-bearing waters in a warm climate.

According to Goldich (1948) in regions favorable for the formatxon of laterite and
bauxite the position of the water table may determine whether an intermediate or
“transitional” clay may form or bauxite will be produced directly. Clay minerals are
favored as the end product of weathering below the water table, while above, the
end product is bauxite or laterite.

SALIENT FACTORS |

A survey of hydrothermal alteration and weathering indicates that one of the
most important single factors in the breakdown and reorganization of rocks involved
in either process is temperature. In one case it is the temperature from within the
#arth, in the other it is climate.

Of equal importance is chemical activity. Acids derived from within or alkalis due
‘0 reaction in contact with crustal rocks produce alteration minerals. At the surface
icids, due to local decomposition such as sulfuric acid, organic acids, and carbonic
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acid, or alkalis react to form soils or weathered masses. Even in diagenesis enviro,
ment is an important factor.

Water as steam is often in part the predominant vehicle in hydrothermal alter;.
tion. In weathering the most intense effects frequently develop in humid areas o
stagnant drainage.

The elements in minerals formed by hydrothermal alteration are largely tho.
derived from the rocks subject to alteration. In weathered areas the predominant con.
stituents come from the rocks near at hand.

Convergence in hydrothermal alteration (Schwartz, 1930) frequently results in ;
uniform suite of alteration minerals although the originating rocks may be quitr
different. The great basin of the Mississippi yields clay mineral aggregations over 1
wide area of considerable similarity. Tendency toward convergence may be a generu:
feature in both hypogene and supergene processes.
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